Tree structured CRF models for interactive image labeling

Thomas Mensink^{1,2}

Gabriela Csurka¹

Jakob Verbeek²

¹Xerox Research Centre Europe, Grenoble, France

²INRIA, Grenoble, France

To appear at CVPR 2011

Outline

1. Introduction

2. Structured image annotation models

3. Label Elicitation

4. Experimental Evaluation

5. Attribute-based image classification

Sky, Tree, Building, Sea, Plant, Ground, Rock, Person, Windows, Sand, Water.

- Sky, Tree, Building, Sea, Plant, Ground, Rock, Person, Windows, Sand, Water.
- Ask the user: Building (false), Rock (true), Sea (true), ...

- Sky, Tree, Building, Sea, Plant, Ground, Rock, Person, Windows, Sand, Water.
- Ask the user: Building (false), Rock (true), Sea (true), ...
- Update the ranked list of keywords based on this information

Introduction - 1

- Image labeling problem, a.k.a. classification, annotation, attribute prediction,...
- Used for e.g.: keyword based retrieval, indexing, clustering, ...
- State of the art: train binary SVMs per label using fancy features (SIFT, Bow, Fisher Kernels, spatial pyramids, ...)

Introduction - 1

- Image labeling problem, a.k.a. classification, annotation, attribute prediction,...
- Used for e.g.: keyword based retrieval, indexing , clustering, ...
- State of the art: train binary SVMs per label using fancy features (SIFT, Bow, Fisher Kernels, spatial pyramids, ...)
- Problem 1: it ignores structure in output, correlation between labels (*e.g.* car & indoor).
- **Problem 2**: how to incorporate user input

Introduction - 2

- How to obtain a (tractable) structure?
- How to learn the parameters of this structure?
- How to select labels to ask the user?
- How does it perform?

Outline

t-Introduction

2. Structured image annotation models

3. Label Elicitation

4. Experimental Evaluation

5. Attribute-based image classification

Nodes are (class/category/attributes) labels.

- Nodes are (class/category/attributes) labels.
- Learn weights between nodes to encode co-occurrence.

- Nodes are (class/category/attributes) labels.
- Learn weights between nodes to encode co-occurrence.
- Exact inference in tree structure is tractable (using BP).
- Inference is used for learning, label prediction and label elicitation.

Tree structured model on image labels

- Each node presents a label in the tree.
- Vector of (binary) labels: $\mathbf{y} = \{y_1, \dots, y_L\}$.
- Edges (L-1) are (somehow) given: $\mathcal{E} = \{e_1, \ldots, e_{L-1}\}$.

$$E(\boldsymbol{y}, \boldsymbol{x}) = \sum_{i=1}^{L} \psi_i(\boldsymbol{y}_i, \boldsymbol{x}) + \sum_{(i,j) \in \mathcal{E}} \psi_{ij}(\boldsymbol{y}_i, \boldsymbol{y}_j), \quad (1)$$

$$p(\boldsymbol{y}|\boldsymbol{x}) = \frac{1}{Z(\boldsymbol{x})} \exp -E(\boldsymbol{y}, \boldsymbol{x}), \qquad (2)$$

$$Z(\boldsymbol{x}) = \sum_{\boldsymbol{y} \in \{0,1\}^L} \exp - E(\boldsymbol{y}, \boldsymbol{x})$$
(3)

Unary Potentials

$$E(\boldsymbol{y}, \boldsymbol{x}) = \underbrace{\sum_{i=1}^{L} \psi_i(\boldsymbol{y}_i, \boldsymbol{x})}_{\text{Unary Potentials}} + \sum_{\substack{(i,j) \in \mathcal{E} \\ \psi_{ij}(\boldsymbol{y}_i, \boldsymbol{y}_j)}} \psi_{ij}(\boldsymbol{y}_i, \boldsymbol{y}_j)$$

■ y_i is a label Rock, Sea, City, People,... ■ $\psi_i(y_i = l, \mathbf{x}) = [\phi_i(\mathbf{x}), 1]^\top \mathbf{w}_i^l$

• $\phi_i(\mathbf{x})$: Pre-trained SVM score for label i

Pairwise Potentials

$$E(\boldsymbol{y}, \boldsymbol{x}) = \sum_{i=1}^{L} \psi_i(\boldsymbol{y}_i, \boldsymbol{x}) + \underbrace{\sum_{(i,j)\in\mathcal{E}} \psi_{ij}(\boldsymbol{y}_i, \boldsymbol{y}_j)}_{\text{Pairwise Potentials}}$$

y_i = Sand, and y_i = City
 Independent of image input

$$\Psi_{ij}(\mathbf{y}_i = \mathbf{s}, \mathbf{y}_j = t) = \mathbf{v}_{ij}^{st}$$

Defining the Tree

Optimal tree structure for conditional models is intractableFor generative models use the Chow-Liu algorithm

- Fully connected graph
- Edge weight = Mutual Information
- Maximum Spanning Tree

Learning

Learning *w* and *v* in unary and pairwise potentials
Using Log-likelihood (concave):

$$\mathcal{L} = \sum_{n=1}^{N} \mathcal{L}_n = \sum_{n=1}^{N} \ln p(\boldsymbol{y}_n | \boldsymbol{x}_n).$$

Gradients:

$$\frac{\partial \mathcal{L}_n}{\partial \boldsymbol{w}_i^l} = \left(p(\boldsymbol{y}_i = l | \boldsymbol{x}_n) - \llbracket \boldsymbol{y}_{in} = l \rrbracket \right) \phi_i(\boldsymbol{x}_n), \quad (4)$$
$$\frac{\partial \mathcal{L}_n}{\partial \boldsymbol{v}_{ij}^{st}} = p(\boldsymbol{y}_i = \boldsymbol{s}, \boldsymbol{y}_j = t | \boldsymbol{x}_n) - \llbracket \boldsymbol{y}_{in} = \boldsymbol{s}, \boldsymbol{y}_{jn} = t \rrbracket, \quad (5)$$

Trees over groups of labels

Trees over groups of labels

- To allow more dependencies between labels
- A node is a group of fully connected labels.
- Every state modeled explicitly, a node has 2^k states.
- To define a tree-structure
 - Agglomerative clustering of labels,
 - Chow-Liu algorithm on these clusters.

Compund Node

arease and	-			-
		and the second second	CHARDEN CONTRACTOR	PIDINE IN
				_

State	Marginal	Landscape/Nature	Sky	Clouds
1	3.4 %	0	0	0
2	0.0 %	0	0	1
3	9.8 %	0	1	0
4	59.9 %	0	1	1
5	0.4 %	1	0	0
6	0.0 %	1	0	1
7	2.6 %	1	1	0
8	23.9 %	1	1	1
Marginal on label = true		26.9%	96.2%	83.8%

- BP gives us node marginals,
- read-off label marginals $p(y_i | \mathbf{x})$.
- message passing: O(2^{2k})

Outline

1. Introduction

2. Structured image annotation models

3. Label Elicitation

4. Experimental Evaluation

5. Attribute-based image classification

SUN 09 - 5 labels

BeforeQuestions01 Sky02 Tree03 Building04 Sea05 Rocks06 Plant07 Ground08 Rock09 Person10 Window

SUN 09 - 5 labels

Questions Before 01 Sky 02 Tree 03 Building 04 Sea 05 Rocks 06 Plant 07 Ground 08 Rock 09 Person 10 Window

Building

SUN 09 - 5 labels

Questions Before 01 Sky 02 Tree 03 Building 04 Sea 05 Rocks 06 Plant 07 Ground 08 Rock 09 Person 10 Window

Building Tree

Before	Questions
01 Sky	
02 Tree	
03 Building	
04 <mark>Sea</mark>	Building
05 Rocks	Tree
06 Plant	Sea
07 Ground	
08 Rock	
09 Person	
10 Window	

Before	Questions
01 <mark>Sky</mark>	
02 Tree	
03 Building	
04 <mark>Sea</mark>	Building
05 Rocks	Tree
06 Plant	Sea
07 Ground	Rocks
08 Rock	
09 Person	
10 Window	

Before	Questions
01 <mark>Sky</mark>	
02 Tree	
03 Building	
04 <mark>Sea</mark>	Building
05 Rocks	Tree
06 Plant	Sea
07 Ground	Rocks
08 Rock	Rock
09 Person	
10 Window	

Before
01 <mark>Sky</mark>
02 Tree
03 Building
04 <mark>Sea</mark>
05 Rocks
06 Plant
07 Ground
08 Rock
09 Person
10 Window

Questions	After
	01 Rock
	02 Rocks
	03 <mark>Sea</mark>
Building	04 <mark>Sky</mark>
Tree	05 Sand
Sea	06 Ground
Rocks	07 Plant
Rock	08 Person
	09 Window
	10 Water

- interactive setting: Ask the user at *test* time to set some of many labels for a single example.
- **active learning:** Ask the user at *train* time for class label of some of many examples.

Select a label *i* such that expected uncertainty in remaining labels is minimized:

$$H(\mathbf{y}_{\setminus i}|y_i,\mathbf{x}) = \sum_{l} p(y_i = l|\mathbf{x}) H(\mathbf{y}_{\setminus i}|y_i = l,\mathbf{x}).$$

Entropy Identity:

$$H(\boldsymbol{y}|\boldsymbol{x}) = H(y_i|\boldsymbol{x}) + H(\boldsymbol{y}_{\setminus i}|y_i,\boldsymbol{x})$$

Equals to select label *i* with highest entropy $H(y_i | \mathbf{x})$.

Outline

t-Introduction

2. Structured image annotation models

3. Label Elicitation

4. Experimental Evaluation

5. Attribute-based image classification

Databases

Table: Basic statistics of the three data sets.

		ImageCLEF	SUN'09	Animals w.A.
# Train images		6400	4367	24295
# Test images		1600	4317	6180
# Labels		93	107	85
Train img/label		833	219	8812
Train label/img		12.1	5.34	30.8
Nr of parameters for	k = 1	\pm 740	852	676
trees with	k = 2	± 1284	1480	1172
group size	k = 3	± 2912	3340	2644
	k = 4	±7508	8640	6836

Performance evaluated using:

- MAP: retrieval performance per label,
- iMAP: annotation performance per image.

Results 1

Results 1

Results 2

Interactive image annotation performance as a function of the amount of user input, ImageCLEF dataset

Outline

1. Introduction

2. Structured image annotation models

3. Label Elicitation

4. Experimental Evaluation

5. Attribute-based image classification

Attribute-based image classification

otter

black: yes white: no brown: stripes: no water: ves eats fish: ves

polar bear

black. no white: yes brown: no stripes: no water: ves eats fish: yes

zebra

black: ves white: yes brown: no stripes: ves water: no eats fish: no

- images x,
- ▶ class labels $y_1, \ldots, y_K \in \mathcal{Y}$ (at training time)
- class labels $z_1, \ldots, z_L \in \mathcal{Z}$ (at test time)
- ▶ attributes $a_1, \ldots, a_M \in \{0, 1\}^M$ (encode description)

Attribute-based image classification - 2

Predict attributes with our tree-structured models.

Attribute-based image classification - 2

- Predict attributes with our tree-structured models.
- Deterministic mapping between attributes and classes.

$$p(z=c|\boldsymbol{x}) = \frac{p(\boldsymbol{y}_c|\boldsymbol{x})}{\sum_{c'=1}^{C} p(\boldsymbol{y}_{c'}|\boldsymbol{x})} = \frac{\exp -E(\boldsymbol{y}_c, \boldsymbol{x})}{\sum_{c'=1}^{C} \exp -E(\boldsymbol{y}_{c'}, \boldsymbol{x})}.$$
 (6)

Note: does not require belief-propagation, it suffices to evaluate $E(\mathbf{y}_c, \mathbf{x})$ for the *C* attribute configurations.

Correction Term

Observation: some classes are over-predicted:

$$p(z = c | \boldsymbol{x}) \propto \exp\left(-E(\boldsymbol{y}_c, \boldsymbol{x}) - u_c\right),$$
 (7)

Label Elicitation for classification

Label Elicitation on Attribute Level

Label Elicitation for classification

- Label Elicitation on Attribute Level
- Goal to minimize uncertainty on class label
- Any informative question rules out at least 1 class.

Label Elicitation for classification

- Label Elicitation on Attribute Level
- Goal to minimize uncertainty on class label
- Any informative question rules out at least 1 class.
- Results (again) in attribute *i* with highest entropy H(y_i|x).
 But p(y_i|x) is defined differently:

$$p(y_i = 1 | \boldsymbol{x}) = \sum_{c} p(z = c | \boldsymbol{x}) y_{ic}, \quad (8)$$

Results Classification

	Init	1	2	3	4	5	6	7	8
Indep	36.5	53.1	68.5	77.8	85.1	90.6	94.5	97.7	99.4
Mixt	38.7	55.3	72.3	84.8	92.4	96.9	99.0	99.8	100.0

- classification accuracy of the independent and mixture of trees models.
- Initial results, and after user input for one up to eight selected attributes.

Conclusions

Tree-structured CRF models for interactive

- Image annotation, and
- Attribute-based classification
- Improves moderately over independent models
- Real power in interactive setting: (i) propagate user input,
 (ii) ask more informative questions

Tree structured CRF models for interactive image labeling

Questions?!?

