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Interactive Image labeling

Sky, Tree, Building, Sea, Plant, Ground, Rock, Person, Windows, Sand, Water.

Ask the user: Building (false), Rock (true), Sea (true), ...

Update the ranked list of keywords based on this information
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Introduction - 1

Image labeling problem, a.k.a. classification, annotation,
attribute prediction,. . .
Used for e.g.: keyword based retrieval, indexing ,
clustering, . . .
State of the art: train binary SVMs per label using fancy
features (SIFT, Bow, Fisher Kernels, spatial pyramids, ...)

Problem 1: it ignores structure in output, correlation
between labels (e.g. car & indoor ).
Problem 2: how to incorporate user input
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Introduction - 2

How to obtain a (tractable) structure?
How to learn the parameters of this structure?
How to select labels to ask the user?
How does it perform?
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Tree Structures
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Nodes are (class/category/attributes) labels.
Learn weights between nodes to encode co-occurrence.
Exact inference in tree structure is tractable (using BP).
Inference is used for learning, label prediction and label elicitation.
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Tree structured model on image labels

Each node presents a label in the tree.
Vector of (binary) labels: y = {y1, . . . , yL}.
Edges (L-1) are (somehow) given: E = {e1, . . . ,eL−1}.

E(y ,x) =
L∑

i=1

ψi(yi ,x) +
∑

(i,j)∈E

ψij(yi , yj), (1)

p(y |x) =
1

Z (x)
exp−E(y ,x), (2)

Z (x) =
∑

y∈{0,1}L

exp−E(y ,x) (3)
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Unary Potentials

E(y ,x) =
L∑

i=1

ψi(yi ,x)︸ ︷︷ ︸
Unary Potentials

+
∑

(i,j)∈E

ψij(yi , yj)

yi is a label Rock, Sea, City, People,. . .
ψi(yi = l ,x) = [φi(x),1]>w l

i

φi(x): Pre-trained SVM score for label i
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Pairwise Potentials

E(y ,x) =
L∑

i=1

ψi(yi ,x) +
∑

(i,j)∈E

ψij(yi , yj)︸ ︷︷ ︸
Pairwise Potentials

yi = Sand, and yj = City
Independent of image input

ψij(yi = s, yj = t) = vst
ij
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Defining the Tree

Optimal tree structure for conditional models is intractable
For generative models use the Chow-Liu algorithm

Fully connected graph
Edge weight = Mutual Information
Maximum Spanning Tree
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Learning
Learning w and v in unary and pairwise potentials
Using Log-likelihood (concave):

L =
N∑

n=1

Ln =
N∑

n=1

ln p(yn|xn).

Gradients:

∂Ln

∂w l
i

=
(

p(yi = l |xn)− [[yin = l]]
)
φi(xn), (4)

∂Ln

∂vst
ij

= p(yi = s, yj = t |xn)− [[yin = s, yjn = t ]], (5)
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Trees over groups of labels
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Trees over groups of labels

To allow more dependencies between labels
A node is a group of fully connected labels.
Every state modeled explicitly, a node has 2k states.

To define a tree-structure
• Agglomerative clustering of labels,
• Chow-Liu algorithm on these clusters.
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Compund Node

State Marginal Landscape/Nature Sky Clouds
1 3.4 % 0 0 0
2 0.0 % 0 0 1
3 9.8 % 0 1 0
4 59.9 % 0 1 1
5 0.4 % 1 0 0
6 0.0 % 1 0 1
7 2.6 % 1 1 0
8 23.9 % 1 1 1

Marginal on label = true 26.9% 96.2% 83.8%

BP gives us node marginals,
read-off label marginals p(yi |x).
message passing: O(22k )
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Label Elicitation

SUN 09 - 5 labels Before Questions
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Label Elicitation
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Label Elicitation

interactive setting: Ask the user at test time to set some
of many labels for a single example.

active learning: Ask the user at train time for class label
of some of many examples.
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Label Elicitation

Select a label i such that expected uncertainty
in remaining labels is minimized:

H(y\i |yi ,x) =
∑

l

p(yi = l |x)H(y\i |yi = l ,x).

Entropy Identity:

H(y |x) = H(yi |x) + H(y\i |yi ,x)

Equals to select label i with highest entropy H(yi |x).

19



Outline

1. Introduction

2. Structured image annotation models

3. Label Elicitation

4. Experimental Evaluation

5. Attribute-based image classification

20



Databases

Table: Basic statistics of the three data sets.

ImageCLEF SUN’09 Animals w.A.
# Train images 6400 4367 24295
# Test images 1600 4317 6180
# Labels 93 107 85
Train img/label 833 219 8812
Train label/img 12.1 5.34 30.8
Nr of parameters for k = 1 ± 740 852 676
trees with k = 2 ±1284 1480 1172
group size k = 3 ±2912 3340 2644

k = 4 ±7508 8640 6836

Performance evaluated using:
• MAP: retrieval performance per label,
• iMAP: annotation performance per image.
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Results 1
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Results 2
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the amount of user input, ImageCLEF dataset

23



Outline

1. Introduction

2. Structured image annotation models

3. Label Elicitation

4. Experimental Evaluation

5. Attribute-based image classification

24



Attribute-based image classification
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Attribute-based image classification - 2

Predict attributes with our tree-structured models.

Deterministic mapping between attributes and classes.

p(z =c|x)=
p(yc |x)∑C

c′=1 p(yc′ |x)
=

exp−E(yc ,x)∑C
c′=1 exp−E(yc′ ,x)

. (6)

Note: does not require belief-propagation, it suffices to
evaluate E(yc ,x) for the C attribute configurations.
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Correction Term
Observation: some classes are over-predicted:

p(z = c|x) ∝ exp
(
− E(yc ,x)− uc

)
, (7)

40 train / 10 test classes 50 train / 50 test classes
Independent Mixture Independent Mixture

Class Acc 35.84 Class Acc 14.12 Class Acc 36.20 Class Acc 36.10

Class Acc 36.53 Class Acc 38.72 Class Acc 40.06 Class Acc 43.54
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Label Elicitation for classification

Label Elicitation on Attribute Level

Goal to minimize uncertainty on class label
Any informative question rules out at least 1 class.

Results (again) in attribute i with highest entropy H(yi |x).
But p(yi |x) is defined differently:

p(yi = 1|x) =
∑

c

p(z = c|x)yic , (8)
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Results Classification

Init 1 2 3 4 5 6 7 8
Indep 36.5 53.1 68.5 77.8 85.1 90.6 94.5 97.7 99.4
Mixt 38.7 55.3 72.3 84.8 92.4 96.9 99.0 99.8 100.0

classification accuracy of the independent and mixture of
trees models.
Initial results, and after user input for one up to eight
selected attributes.
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Conclusions

Tree-structured CRF models for interactive
• Image annotation, and
• Attribute-based classification

Improves moderately over independent models
Real power in interactive setting: (i) propagate user input,
(ii) ask more informative questions
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Tree structured CRF models
for interactive image labeling

Questions?!?
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