Pervasive Attention: 2D CNNs for Sequence-to-Sequence Prediction

Maha Elbayad^{1,2} Laurent Besacier¹ Jakob Verbeek² ¹ Université Grenoble Alpes ² INRIA Grenoble, France

Conference on Computational Natural Language Learning 2018

Machine translation

- ▶ Given pairs of aligned sentences (*x*, *y*) (source, target)
- Model the conditional distribution p(y|x)

- Translation model: p(y|x)
- Language model: p(y)

Neural machine translation

 RNN encoder-decoder models
 [Kalchbrenner and Blunsom, 2013, Cho et al., 2014, Sutskever et al., 2014]

$$p(y_{1:T}|x_{1:L}) = \prod_{t=1}^{T} p(y_t|y_{(1)$$

Recurrent neural encoder

- 1. One-hot encoding: (sub)words tokens
- 2. Vector representation $s_t = W x_t, W \in \mathbb{R}^{d \times V}$
- 3. Recursion: $h_t = f_{\theta}(h_{t-1}, s_t)$
- 4. Code: $C(x_{1:L})$

Recurrent neural decoder

Source: Kyunghyun Cho, NYU.

- 1. Recursion: $z_{t+1} = f_{\theta}(z_t, y_t, C(x_{1:L}))$
- 2. Emission prob.: $p(y_t|z_t) = \text{SoftMax}(Ez_t)$
- 3. Generation: sampling, greedy, beam search

Performance vs. sentence length

"You can't cram the meaning of a whole %&!\$ing sentence into a single \$&!*ing vector!"

Ray Mooney @ ACL Workshop on Semantic Parsing, 2014

"You can't cram the meaning of a whole %&!\$ing sentence into a single \$&!*ing vector!"

Ray Mooney @ ACL Workshop on Semantic Parsing, 2014

Ok, so how about cramming it into two vectors?!

"You can't cram the meaning of a whole %&!\$ing sentence into a single \$&!*ing vector!"

Ray Mooney @ ACL Workshop on Semantic Parsing, 2014

Ok, so how about cramming it into two vectors?!
 Bi-directional RNN encoder [Schuster and Paliwal, 1997]

Attention [Bahdanau et al., 2015]

- Re-encode input given current decoder state z_t
- Use re-encoded input in decoder state update

$$z_{t+1} = f_{\theta}(z_t, y_t, C(x_{1:L}), A(x_{1:L}, y_{1:t}))$$
(2)

Attention [Bahdanau et al., 2015]

- Re-encode input given current decoder state z_t
- Use re-encoded input in decoder state update

$$z_{t+1} = f_{\theta}(z_t, y_t, C(x_{1:L}), A(x_{1:L}, y_{1:t}))$$
(2)

Elements of state-of-the-art machine translation

- Elements of state-of-the-art machine translation
- 1. Bi-directional RNN encoder

- Elements of state-of-the-art machine translation
- 1. Bi-directional RNN encoder
- 2. RNN decoder with beam-search

- Elements of state-of-the-art machine translation
- 1. Bi-directional RNN encoder
- 2. RNN decoder with beam-search
- 3. Attention mechanism

- Elements of state-of-the-art machine translation
- 1. Bi-directional RNN encoder
- 2. RNN decoder with beam-search
- 3. Attention mechanism

Now let's try something else...

No encoder

- Elements of state-of-the-art machine translation
- 1. Bi-directional RNN encoder
- 2. RNN decoder with beam-search
- 3. Attention mechanism

Now let's try something else...

- No encoder
- No decoder

- Elements of state-of-the-art machine translation
- 1. Bi-directional RNN encoder
- 2. RNN decoder with beam-search
- 3. Attention mechanism

Now let's try something else...

- No encoder
- No decoder
- No attention (?)

Trading depth for parallelism

- ▶ RNN: directed, shallow, unlimited receptive field with depth 1
- CNN: undirected, deep, receptive field grows by 1 each layer In NLP, eg. [Collobert and Weston, 2008, Kalchbrenner et al., 2014, Gehring et al., 2017b]

Trading depth for parallelism

- RNN: directed, shallow, unlimited receptive field with depth 1
- CNN: undirected, deep, receptive field grows by 1 each layer In NLP, eg. [Collobert and Weston, 2008, Kalchbrenner et al., 2014, Gehring et al., 2017b]

Joint coding: input N-grams given last M output tokens

Joint coding: input N-grams given last M output tokens

- Joint coding: input N-grams given last M output tokens
 - Receptive field: $(N,M) = 1+ (2,1) \times depth$

- Joint coding: input N-grams given last M output tokens
 - Receptive field: $(N,M) = 1+ (2,1) \times depth$
- Parrallel work in machine reading [Raison et al., 2018]

Pervasive attention

- Similar to "classic" attention: re-coding input given output
- Token-level interaction between source and target
- Present in every layer, rather than an "afterthought"

Network architecture

- ▶ Input tensor X_{i,j} = [v_i, w_j] concatenates word embeddings
- > 2D masked CNN layers, *e.g.* DenseNet [Huang et al., 2017]

Collapsing source dimension

- Max-pool over variable-length source dimension
 - Generates one vector per target position

$$M_j = [\max_i X_{ij}^1, \dots \max_i X_{ij}^D]$$
(3)

Soft-max to predict next token at every target position

Target sequence

Experiments: IWSLT'14

- Translation of TED and TEDx talks
- 160k German-to-English train pairs
- Prediction at sub-word level (BPE)

Experiments: IWSLT'14

- Translation of TED and TEDx talks
- 160k German-to-English train pairs
- Prediction at sub-word level (BPE)

Model	BLEU	$Flops{\times}10^5$	#params			
Average	31.57 ± 0.11	3.63	7.18M			
Max	33.70 ± 0.06	3.44	7.18M			
Attention	32.09 ± 0.12	3.61	7.24M			
[Max, Attn]	33.81 ± 0.03	3.51	7.24M			
Our model with different pooling operators.						
$(L=24, g=32, d_s=d_t=128)$						

Embedding size, number of layers, and growth rate

Token-level alignments from max-pooling

Token-level alignments from max-pooling

Token-level alignments from max-pooling

Comparison to the state of the art

Word-based	De-En	$_{(\times 10^5)}^{\rm Flops}$	# prms	En-De	# prms
Conv-LSTM (MLE) [Bahdanau et al., 2017]	27.56				
Bi-GRU (MLE+SLE) [Bahdanau et al., 2017]	28.53				
Conv-LSTM (deep+pos) [Gehring et al., 2017a]	30.4				
NPMT + language model [Huang et al., 2018]	30.08			25.36	
BPE-based					
RNNsearch* [Bahdanau et al., 2015]	31.02	1.79	6M	25.92	7M
Varational attention [Deng et al., 2018]	33.10				
Transformer** [Vaswani et al., 2017]	32.83	3.53	59M	27.68	61M
ConvS2S** (MLE) [Gehring et al., 2017b]	32.31	1.35	21M	26.73	22M
ConvS2S (MLE+SLE) [Edunov et al., 2018]	32.84				
Pervasive Attention (this paper)	$33.81{\pm}~0.03$	3.51	7M	27.77± 0.1	7M

* Obtained using FairSeq.

** Obtained using author's code = FairSeq.

Joint-coding approach, alternative to encoder-decoder

2D CNN with masked filters

- 2D CNN with masked filters
- Source-target interactions pervasive in architecture

- 2D CNN with masked filters
- Source-target interactions pervasive in architecture
- Max-pooling generates implicit sentence alignment

- 2D CNN with masked filters
- Source-target interactions pervasive in architecture
- Max-pooling generates implicit sentence alignment
- Performance compares favorably to encoder-decoder models
 - Also in nr. of parameters and compute

- 2D CNN with masked filters
- Source-target interactions pervasive in architecture
- Max-pooling generates implicit sentence alignment
- Performance compares favorably to encoder-decoder models
 - Also in nr. of parameters and compute
- Future directions:
 - More efficient hybrid 1d-2d architectures
 - Architectures for multiple language pairs
 - Low-latency decoding

Thanks for your attention

References I

[Bahdanau et al., 2017] Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R., Pineau, J., Courville, A., and Bengio, Y. (2017). An actor-critic algorithm for sequence prediction. In *ICLR*.

[Bahdanau et al., 2015] Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In *ICLR*.

[Cho et al., 2014] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014).

Learning phrase representations using RNN encoder-decoder for statistical machine translation. In EMNLP.

- [Collobert and Weston, 2008] Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML.
- [Deng et al., 2018] Deng, Y., Kim, Y., Chiu, J., Guo, D., and Rush, A. (2018). Latent alignment and variational attention. arXiv preprint arXiv:1807.03756.
- [Edunov et al., 2018] Edunov, S., Ott, M., Auli, M., Grangier, D., and Ranzato, M. (2018). Classical structured prediction losses for sequence to sequence learning. In NAACL.

[Gehring et al., 2017a] Gehring, J., Auli, M., Grangier, D., and Dauphin, Y. (2017a). A convolutional encoder model for neural machine translation. In ACL.

[Gehring et al., 2017b] Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. (2017b). Convolutional sequence to sequence learning. In *ICML*.

References II

[Huang et al., 2017] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. (2017). Densely connected convolutional networks. In CVPR.

[Huang et al., 2018] Huang, P., Wang, C., Huang, S., Zhou, D., and Deng, L. (2018). Towards neural phrase-based machine translation. In *ICLR*.

[Kalchbrenner and Blunsom, 2013] Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation models. In ACL

[Kalchbrenner et al., 2014] Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural network for modelling sentences. In ACL.

```
[Raison et al., 2018] Raison, M., Mazaré, P.-E., Das, R., and Bordes, A. (2018).
Weaver: Deep co-encoding of questions and documents for machine reading.
arXiv preprint arXiv:1807.03756.
```

[Schuster and Paliwal, 1997] Schuster, M. and Paliwal, K. (1997). Bidirectional recurrent neural networks. Signal Processing, 45(11):2673–2681.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence to sequence learning with neural networks. In NIPS.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In NIPS.