Convolutional Neural Fabrics

Shreyas Saxena and Jakob Verbeek INRIA, Grenoble, France

Neural Information Processing Systems 2016

Deep learning breakthrough in computer vision

- Convolutional nets at ImageNet'12 [Krizhevsky et al., 2012]
- Learning instead of hand-crafting features
- State of the art for visual recognition and matching

Images from [Kokkinos, 2016]

Keys issues in practice:

Keys issues in practice: (1) Data

Collection of huge manually labelled datasets, e.g.

IM AGENET

Keys issues in practice: (1) Data

Collection of huge manually labelled datasets, e.g.

IM AGENET

Synthetic datasets "cloned" from real footage

Virtual KITTI dataset [Gaidon et al., 2016]

Keys issues in practice: (2) Optimization

Keys issues in practice: (2) Optimization

- Efficient techniques for non-convex optimization
 - Back propagation, stochastic gradient descent, initialization

Keys issues in practice: (2) Optimization

- Efficient techniques for non-convex optimization
 - Back propagation, stochastic gradient descent, initialization

Powerful compute platforms based on GPUs

Nvidia P100

Nvidia DGX-1

Keys issues in practice: (3) Network design

Keys issues in practice: (3) Network design

 Activations: Rectified linear unit [Nair and Hinton, 2010], residual units [He et al., 2016]

Keys issues in practice: (3) Network design

 Activations: Rectified linear unit [Nair and Hinton, 2010], residual units [He et al., 2016]

Network architecture

Pooling type, filter size, pool and convolve ordering, etc.

AlexNet architecture [Krizhevsky et al., 2012]

Important problem: maximize performance given hardware

• Important problem: maximize performance given hardware

- ► Hard problem: exponentially large architecture space
 - Pooling type, filter size, pool and convolve ordering, etc.
- Example: 19 Conv \times 5 Pool layers = 42,504 architectures
 - Training a single architecture takes weeks on a GPU

• Important problem: maximize performance given hardware

- ► Hard problem: exponentially large architecture space
 - Pooling type, filter size, pool and convolve ordering, etc.
- Example: 19 Conv \times 5 Pool layers = 42,504 architectures
 - Training a single architecture takes weeks on a GPU

• Important problem: maximize performance given hardware

- ► Hard problem: exponentially large architecture space
 - Pooling type, filter size, pool and convolve ordering, etc.
- Example: 19 Conv \times 5 Pool layers = 42,504 architectures
 - Training a single architecture takes weeks on a GPU

Architecture design in practice: One size fits all ?!

Lack of systematic methods for architecture design

- Lack of guiding theory
- Naive exhaustive search way too expensive
- ▶ Local search with parameter "recycling" [Chen et al., 2016]

Architecture design in practice: One size fits all ?!

- Lack of systematic methods for architecture design
 - Lack of guiding theory
 - Naive exhaustive search way too expensive
 - ▶ Local search with parameter "recycling" [Chen et al., 2016]
- Massive reliance on a handful of architectures
 - Re-purposing Alex-net, VGG-16/19 nets, residual nets
 - Can result in overkill, by lack of other designs

Routing traffic in a city

- Combinatorially many routes in a city
- Example of how a 2D structure embeds many 1D sequences

Routing traffic in a city \approx routing signal in a fabric

- Combinatorially many CNNs in a 2D grid network
- > 2D network embeds VGG-19 [Simonyan and Zisserman, 2015]
- One path among 42,504 in fabric with 120 nodes

Convolutional neural fabrics

Nodes are like conventional CNN layers

Classification and segmentation CNNs embedded in fabrics

Convolutional neural fabrics

- Edges are 3 × 3 convolutions
- Diagonal edges use up/down sampling

Fabric properties

- Embed exponentially many CNNs as paths
- Implicit ensembling of all models, sharing weights on overlap
- ▶ Multiple outputs possible: *e.g.* classification and segmentation

Fabric structure

- Homeogeneous local connectivity across nodes
- All channels interact between connected nodes
 - As in most CNNs, but exceptions exist, e.g. AlexNet

Fabric structure

- Homeogeneous local connectivity across nodes
- All channels interact between connected nodes
 - As in most CNNs, but exceptions exist, e.g. AlexNet
- Minimal "infrastrucutre" to implement CNNs ?

Fabrics with sparse channel connectivity

- Each node contains a single response map
- Channels organized along a third dimension

Sparse fabrics: signal propagation

 Activations computed as 3 × 3 convolutions of neighboring scales and channels in previous layer

$$a(s,c,l+1) = \sum_{i=-1}^{+1} \sum_{j=-1}^{+1} \operatorname{Conv}(a(s+i,c+j,l);\theta_{scl}^{ij}) \quad (1)$$

• Units process $3 \times 3 \times 3 \times 3$ area, convolution in space only

Learning instead of hand-crafting architectures

- Signals advance on layer axis: standard back-prop training
- Learning configures the fabric to implement one architecture, or as an ensemble of embedded architectures

Convolutional neural fabric is a "universal" architecture

 Large enough fabrics can essentially implement any CNN [Krizhevsky et al., 2012, Simonyan and Zisserman, 2015, Noh et al., 2015, Farabet et al., 2013, Ronneberger et al., 2015, Long et al., 2015]

Universality: (1) ordering of pooling and convolution

Different paths across the fabric

Universality: (2) down-sampling operators

- Fabrics do down-sampling by strided convolution
 - Enough to "build-up" average and max pooling
- Average pooling: striding uniform filter along single channel

Universality: (2) down-sampling operators

- Fabrics do down-sampling by strided convolution
 - Enough to "build-up" average and max pooling
- Average pooling: striding uniform filter along single channel
- Max-pooling: consider computing max(a, b)
 - Compute three terms via convolution $\{(a+b)/2, (a-b)/2, (b-a)/2\}$
 - Apply ReLU activation: $x \leftarrow \max(0, x)$
 - At most two non-zero terms remain
 - Summing all three terms by convolution gives max(a, b)

Universality: (3) up-sampling operators

► Fabrics do up-sampling by zero-padding + convolution

Universality: (3) up-sampling operators

► Fabrics do up-sampling by zero-padding + convolution

Various interpolations by convolution with specific filters

Bi-linear:
$$\frac{1}{4} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$
 Nearest neighbor: $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

- Fabric embeds these per-channel interpolations
- More general, e.g. cross-channel, interpolation as well

Universality: (4) Filter sizes

- ► Fabrics use only **3** × **3** convolutions
- \blacktriangleright Consider computing a 5 \times 5 convolution over a single channel
 - ► Compute 9 "temporary" channels using 1-hot filters

$$\left(\begin{smallmatrix}1&0&0\\0&0&0\\0&0&0\end{smallmatrix}\right), \left(\begin{smallmatrix}0&1&0\\0&0&0\\0&0&0\end{smallmatrix}\right), \ldots$$

Universality: (4) Filter sizes

- ► Fabrics use only **3** × **3** convolutions
- Consider computing a 5×5 convolution over a single channel
 - ► Compute 9 "temporary" channels using 1-hot filters

$$\left(\begin{smallmatrix}1&0&0\\0&0&0\\0&0&0\end{smallmatrix}\right), \left(\begin{smallmatrix}0&1&0\\0&0&0\\0&0&0\end{smallmatrix}\right), \ldots$$

 \blacktriangleright Stores vectorized version of 3 \times 3 patch in 9 channels

Universality: (4) Filter sizes

- ► Fabrics use only **3** × **3** convolutions
- Consider computing a 5×5 convolution over a single channel
 - Compute 9 "temporary" channels using 1-hot filters

$$\left(\begin{smallmatrix}1&0&0\\0&0&0\\0&0&0\end{smallmatrix}\right), \left(\begin{smallmatrix}0&1&0\\0&0&0\\0&0&0\end{smallmatrix}\right), \ldots$$

- \blacktriangleright Stores vectorized version of 3 \times 3 patch in 9 channels
- \blacktriangleright Convolution with 3 filter can now access 5 \times 5 patch

Universality: (5) Channel connectivity

 Fabrics with sparse channel connectivity suffice to implement networks with dense channel connectivity

Universality: (5) Channel connectivity

Channels

- Fabrics with sparse channel connectivity suffice to implement networks with dense channel connectivity
- Demonstration by explicit construction
 - Create multiple copies of input channels
 - Aggregate input with corresponding filters
 - Fiddle with biases to remove negative intermediate results

Γ	a	a	a	a	a	a	a	a	a	a		a		
Γ	b	a	b	b	b	b	b	b	b	b		b		
Γ	с	b	\boldsymbol{a}	c	c	c	b	c	c	c		с		
Γ	d	с	с	a	d	d	c	b	d	d		d		
Γ	e	d	d	d	a	e	d	d	b	e		e		
Γ		е	e	e	e	a	e	e	e	b		e		
							a	a	a	a		d	c+d+e	
												с		a+b+c+d+e
												b	a+b	
												a		
ſ												•		
												:		

Layers

Extension: Channel doubling across scales

- Channels are "cheaper" at coarser resolutions
 - Grow the number of channels when down-sampling
 - Commonly used in densely connected networks
 - Computation constant per layer for dense connect
- How about channel doubling in sparse fabrics ?

Extension: Channel doubling across scales

- Channels are "cheaper" at coarser resolutions
 - Grow the number of channels when down-sampling
 - Commonly used in densely connected networks
 - Computation constant per layer for dense connect
- How about channel doubling in sparse fabrics ?
 - As before: total of 9 incoming channels per node
 - 4 from coarser, 2 from finer, 3 from same resolution

Experimental evaluation:

Experimental evaluation: Face Segmentation

Part Labels	Year	# Params.	Accuracy
Tsogkas <i>et al</i> . [Tsogkas et al., 2015]	2015	>414M	96.97%
Kae <i>et al.</i> [Kae et al., 2013]	2013	0.7M	94.95%
Convolutional Neural Fabric (sparse)		0.1M	95.58%
Convolutional Neural Fabric (dense)		8.0M	95.63%

image

prediction

image

prediction

Experimental evaluation: Face Segmentation

Part Labels	Year	# Params.	Accuracy
Tsogkas <i>et al.</i> [Tsogkas et al., 2015]	2015	>414M	96.97%
Kae <i>et al.</i> [Kae et al., 2013]	2013	0.7M	94.95%
Convolutional Neural Fabric (sparse)		0.1M	95.58%
Convolutional Neural Fabric (dense)		8.0M	95.63%

Competitive with the best hand-crafted architectures

- ▶ Without structured prediction model: CRF, RBM, etc.
- ▶ Upto 4,000× fewer params. than re-purposed VGG net
- ► Trained from scratch with 500× fewer images

image

prediction

image

Experimental evaluation: digit classification

MNIST	# Params.	# Error
[Chang and Chen, 2015]	447K	0.24%
[Wan et al., 2013] (Dropconnect)	379K	0.32%
[Goodfellow et al., 2013] (MaxOut)	420K	0.45%
Convolutional Neural Fabric (sparse)	249K	0.48%
Convolutional Neural Fabric (dense)	5.3M	0.33%

Experimental evaluation: digit classification

MNIST	# Params.	# Error
[Chang and Chen, 2015]	447K	0.24%
[Wan et al., 2013] (Dropconnect)	379K	0.32%
[Goodfellow et al., 2013] (MaxOut)	420K	0.45%
Convolutional Neural Fabric (sparse)	249K	0.48%
Convolutional Neural Fabric (dense)	5.3M	0.33%

Competitive with the best hand-crafted architectures

- Sparse versus densely connected fabric
 - ► 20× fewer parameters
 - Error increased by 0.15%

Experimental evaluation: MNIST digit classification

All 33 errors among 10,000 test samples

Format: Prediction (True)

Activated connections in trained fabric

- Effective multi-path network is recovered by training CIFAR10
- Can be used to prune fabric to fit hardware requirements
 - ▶ Cutting 67% of connections increases error from 7.4% to 8.1%

Activated connections in trained fabric

- Effective multi-path network is recovered by training CIFAR10
- Can be used to prune fabric to fit hardware requirements
 - ▶ Cutting 67% of connections increases error from 7.4% to 8.1%

- Fabrics are universal architecture for conv nets
 - Fabric learns across architectures instead of selecting one

- Fabrics are universal architecture for conv nets
 - Fabric learns across architectures instead of selecting one
- From hand-crafted to learned features

- Fabrics are universal architecture for conv nets
 - Fabric learns across architectures instead of selecting one
- From hand-crafted to learned features architectures

- Fabrics are universal architecture for conv nets
 - Fabric learns across architectures instead of selecting one
- From hand-crafted to learned features architectures
- Ongoing and future work
 - Scaling from hundreds to thousands of channels
 - Long-range connections across channels and layers
 - Scale invariance by convolution along scale axis

Convolutional Neural Fabrics

Shreyas Saxena and Jakob Verbeek firstname.lastname@inria.fr

Thank you !

Neural Information Processing Systems 2016

References I

```
[Chang and Chen, 2015] Chang, J.-R. and Chen, Y.-S. (2015).
   Batch-normalized maxout network in network.
   Arxiv preprint.
[Chen et al., 2016] Chen, T., Goodfellow, I., and Shlens, J. (2016).
   Net2net: Accelerating learning via knowledge transfer.
   In ICLR.
[Farabet et al., 2013] Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013).
   Learning hierarchical features for scene labeling.
   PAMI, 35(8):1915-1929.
[Gaidon et al., 2016] Gaidon, A., Wang, Q., Cabon, Y., and Vig, E. (2016).
   Virtual worlds as proxy for multi-object tracking analysis.
   In CVPR
[Goodfellow et al., 2013] Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013).
   Maxout networks.
   In ICMI
[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016).
   Identity mappings in deep residual networks.
   In ECCV.
[Kae et al., 2013] Kae, A., Sohn, K., Lee, H., and Learned-Miller, E. (2013).
   Augmenting CRFs with Boltzmann machine shape priors for image labeling.
   In CVPR
[Kokkinos, 2016] Kokkinos, I. (2016).
```

Ubernet : Training a 'universal' convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. arXiv 1609.02132.

References II

- [Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In NIPS.
- [Long et al., 2015] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In CVPR.
- [Nair and Hinton, 2010] Nair, V. and Hinton, G. (2010). Rectified linear units improve restricted Boltzmann machines. In *ICML*.
- [Noh et al., 2015] Noh, H., Hong, S., and Han, B. (2015). Learning deconvolution network for semantic segmentation. In ICCV.
- [Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention.
- [Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In *ICLR*.
- [Tsogkas et al., 2015] Tsogkas, S., Kokkinos, I., Papandreou, G., and Vedaldi, A. (2015). Deep learning for semantic part segmentation with high-level guidance. Arxiv preprint.
- [Wan et al., 2013] Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R. (2013). Regularization of neural networks using DropConnect. In *ICML*.

Fabric analysis

Comparing fabric variants: maps, parameters, activations

# chan. / scale	# resp. maps	# parameters (sparse)	# parameters (dense)	# activations
constant	$C \cdot L \cdot S$	$C \cdot L \cdot 3^{D+1} \cdot 3 \cdot \mathbf{S}$	$C \cdot L \cdot 3^{D+1} \cdot C \cdot S$	$C \cdot L \cdot N^2 \cdot \frac{4}{3}$
doubling	$C \cdot L \cdot 2^{S}$	$C \cdot L \cdot 3^{D+1} \cdot 3 \cdot 2^S$	$C \cdot L \cdot 3^{D+1} \cdot C \cdot 4^S \cdot \frac{7}{18}$	$C \cdot L \cdot N^2 \cdot 2$