Areas of Attention in Image Captioning

Marco Pedersoli^{*}, Thomas Lucas Cordelia Schmid, Jakob Verbeek

INRIA Grenoble Rhône-Alpes, France * Now at École de Technologie Supérieure Montreal, Canada

Image captioning

Given an image, generate a natural language description

a black and white photo of a window .

a young boy standing on a parking lot next to cars .

a wooden table and chairs arranged in a room .

a car is parked in the middle of nowhere .

a ferry boat on a marina with a group of people .

a little boy with a bunch of friends on the street .

Encoder-decoder models for captioning

- State of the art based on encoder-decoder approach [Kiros et al., 2014]
 - Inspired from encoder-decoder models in machine translation, see e.g. [Sutskever et al., 2014]
- Encoder transforms input to a internal representation
- Decoder maps internal representation to output

Figure taken from [Vinyals et al., 2015]

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

Limitations

- Only discriminative training
 - Pure-text corpus to better learn language?
 - Image-only data to learn image parser?
- Limited to a fixed vocabulary
 - How to generalize better from few examples?
 - Character-level prediction?

the two birds are

trying to be seen

(counting)

in the water

- Single image parse into a vector representation
 - Global image representation, how to get compositionality?
 - How to offload visual content from memory state?

a giraffe is standing next to a fence in a field . (hallucination)

a parked car while driving down the road .

(contradiction)

the handlebars are trying to ride a bike rack . (nonsensical)

a woman and a bottle of wine in a garden . (gender)

Leveraging locality and compositionality with attention

- Sequentially attend to different parts of the input
- Associate local image evidence with words in caption
- Also used in speech recognition and machine translation

- Which areas to consider?
- Which mechanism to exploit these areas?

Baseline: "vanilla" captioning system

Figure taken from [Vinyals et al., 2015]

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

Encoder

- CNN with VGG-16 architecture [Simonyan and Zisserman, 2015]
 - ▶ 16 layers with trainable weights, 138M parameters
 - Penultimate layer of ImageNet pre-trained model

Decoder

- ► GRU-based RNN [Chung et al., 2014]
 - State initialized with CNN code
 - Previous word used as input: "output feedback"

Figures taken from [Karpathy and Fei-Fei, 2015] and http://colah.github.io

Baseline model: word prediction

Baseline RNN is based on state-word interactions

$$p(w_t|h_t) \propto \exp\left(w_t^\top W \theta_{wh} h_t\right)$$
 (1)

- w_t: 1-hot coding of word at time t
- W: contains word-embedding vectors in rows
- θ_{wh} : parameter matrix to score word-state combination
- Think: "a logistic discriminant word-classifier given state"
- Train: maximum-likelihood using ground-truth inputs for state evolution ("teacher forced")
- Test: Generate approximate maximum-likelihood sentences with beam-search

Our "Areas of Attention" model

Based on scoring state-word-region combinations

Which region-word pair "stands out" given the current state?

$$p(w_t, r_t | h_t) \propto \exp s(w_t, r_t, h_t),$$
(2)

$$s(w_t, r_t, h_t) = w_t^\top W \theta_{wh} h_t + w_t^\top W \theta_{wr} R^\top r_t + r_t^\top R \theta_{rh} h_t + w_t^\top W \theta_w + r_t^\top R \theta_r,$$
(3)

- w_t: 1-hot coding of word at time t
- W: contains word-embedding vectors in rows
- r_t: 1-hot coding of region at time t
- R: contains region feature vectors in rows
- $\theta_{wh}, \theta_{wr}, \theta_{rh}$: region-word-state interaction matrices
- θ_w, θ_r : region and word bias vectors

Our "Areas of Attention" model

- Predict words using $p(w_t|h_t) = \sum_{r_t} p(w_t, r_t|h_t)$
- Use appearance of attended regions for state update

$$v_t = \sum_{r_t} p(r_t | h_t) r_t^\top R, \qquad (4)$$

$$h_{t+1} = \operatorname{GRU}(h_t, [w_t^\top W \ v_t^\top]^\top).$$
(5)

And how about the regions?

 Our AoA model is agnostic to type of image region, experimentally we compare three different region types

- Activation grid: take positions of conv5 layer as regions, descriptor is "column" of activations across feature channels
- Object proposals: using EdgeBox object proposals [Zitnick and Dollár, 2014], average conv5 features over box
- Spatial transformer: predict region from each conv4 position, compute conv5 features over warped 3 × 3 area

Spatial transformer regions

- Localization network regresses affine transformations for all feature map positions
- Transformations are applied to the anchor boxes that are used to locally re-sample the feature map, before convolution
- Reverts to "Activation grid" for identity transformation

Microsoft Common Objects in Context (MSCOCO)

▶ 80k train, 40 development images, 5 sentences per image

- 1. A woman kneeling down next to a dog on a snow covered slope.
- 2. A boy and his dog are playing in the snow.
- 3. A snowboarder in a blue jacket and a black and brown dog.
- 4. Snowboarder sitting next to a dog in the snow.
- 5. A snowboarder sits in snow beside a dog.

Evaluation of model components

Method	B1	B4	Meteor	CIDEr
Baseline: θ_{wh}	66.3	26.4	22.2	78.9
Ours: θ_{wh}, θ_{wr}	68.0	28.0	22.9	83.6
Ours: $\theta_{wh}, \theta_{wr}, \theta_{rh}$	68.2	28.4	23.3	85.5
Ours: conditional feedback	68.3	28.7	23.7	86.8
Ours: full model	69.1	28.8	23.7	87.4

Using activation grid as attention areas

- Local word-region interaction improves
- Local region-state interaction improves
- ► Word-conditioning visual feedback, *i.e.* using p(r_t|w_t, h_t) instead of p(r_t|h_t), degrades w.r.t. full model

Evaluation of attention areas

- Object proposals: top regions by "objectness"
- ► Grids + transformers: regular sampling

Effect of CNN fine-tuning

- RNN training only: fixed pre-trained CNN
- CNN-RNN fine-tuning: second stage trains all

Method	B1	B4	Meteor	CIDEr		
	RNN training only					
Baseline	66.3	26.4	22.2	78.9		
Spatial transformers	70.2	30.2	24.2	91.1		
	CNN-RNN fine-tuning					
Baseline	68.6	28.7	23.5	87.1		
Spatial transformers	70.8	30.7	24.5	93.8		

Comparison of attention areas

Comparison of attention areas

Comparison of attention areas

Comparison to the state of the art

- Competitive with state-of-the-art methods
- ▶ More data (80k+30k) improves performance
- Ensemble of training with different seeds expected to improve

Method	B1	B4	Meteor	CIDEr
Vinyals <i>et al.</i> [Vinyals et al., 2015]	-	27.7	23.7	85.5
Xu et al. [Xu et al., 2015], soft	70.9	24.3	23.9	-
Xu <i>et al.</i> [Xu et al., 2015], hard	71.8	25.0	23.0	-
Yang et al. [Yang et al., 2016]	-	29.0	23.7	88.6
Jin <i>et al.</i> [Jin et al., 2015]	69.7	28.2	23.5	83.8
Donahue <i>et al.</i> [Donahue et al., 2015]	71.1	30.0	24.2	89.6
Ranzato <i>et al</i> . [Ranzato et al., 2016]	-	29.2	-	-
Bengio <i>et al.</i> [Bengio et al., 2015]	-	30.6	24.3	92.1
Areas of Attention (ours)	70.8	30.7	24.5	93.8
AoA, data augmentation	72.1	31.1	25.0	95.6

More examples

More examples

More examples

Areas of Attention in Image Captioning

Marco Pedersoli^{*}, Thomas Lucas Cordelia Schmid, Jakob Verbeek

INRIA Grenoble Rhône-Alpes, France * Now at École de Technologie Supérieure Montreal, Canada

References I

- [Bengio et al., 2015] Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling for sequence prediction with recurrent neural networks. In NIPS.
- [Chung et al., 2014] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. In NIPS Deep Learning Workshop.
- [Donahue et al., 2015] Donahue, J., Hendricks, L., Rohrbach, M., Venugopalan, S., Guadarrama, S., Saenko, K., and Darrell, T. (2015).

Long-term recurrent convolutional networks for visual recognition and description. In $\ensuremath{\textit{CVPR}}$

[Jin et al., 2015] Jin, J., Fu, K., Cui, R., Sha, F., and Zhang, C. (2015). Aligning where to see and what to tell: image caption with region-based attention and scene factorization. arXiv:1506.06272.

[Karpathy and Fei-Fei, 2015] Karpathy, A. and Fei-Fei, L. (2015).

Deep visual-semantic alignments for generating image descriptions. In CVPR.

```
[Kiros et al., 2014] Kiros, R., Salakhutdinov, R., and Zemel, R. (2014).
Multimodal neural language models.
In ICML.
```

[Kiros et al., 2015] Kiros, R., Salakhutdinov, R., and Zemel, R. (2015). Unifying visual-semantic embeddings with multimodal neural language models. *TACL*. to appear.

```
[Noh et al., 2015] Noh, H., Hong, S., and Han, B. (2015).
Learning deconvolution network for semantic segmentation.
In ICCV.
```

References II

[Ranzato et al., 2016] Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016). Sequence level training with recurrent neural networks. In *ICLR*.

[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In *ICLR*.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence to sequence learning with neural networks. In NIPS.

[Vinyals et al., 2015] Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A neural image caption generator. In CVPR

[Xu et al., 2015] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., and Bengio, Y. (2015).

Show, attend and tell: Neural image caption generation with visual attention. In $\ensuremath{\textit{ICML}}$

[Yang et al., 2016] Yang, Z., Yuan, Y., Wu, Y., Salakhutdinov, R., and Cohen, W. (2016). Encode, review, and decode: Reviewer module for caption generation. In NIPS.

[Zitnick and Dollár, 2014] Zitnick, C. and Dollár, P. (2014). Edge boxes: locating object proposals from edges. In *ECCV*.