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| Abstract i | 3. Results |

We propose a method to automatically extract vision-oadnt  Qualitative. We observe that the Flickr hierarchy reflects vi-
semantic information from Flickr. Building on image tags - sual and contextual similarities between the categorieslsd
small pieces of semantics provided by Flickr users - we show expresses more relationships than the WordNet hierarchy.

how to construct a rich class hierarchy that reflects visuialis

larities between classes. In our automatically built claggar- |W1°'T

chies we observe semantic relationships similar to onesaorie plactnta| S— Wmdotv, —
In expert ontologies, but we also discover visual conteXdl v . |

and scene-type groupings. Experiments show that our vision nodere pol cormvore paw] - [pEeTenRon

oriented hierarchies outperform ontology-based hieragshn
terms of modeling the visual similarities between objex$sés.
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Figure 3: Automatically retrieved WordNet hierarchy
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Input. Flickr — a large, non-expert database of personal pho- B‘ﬁ
tos. Association rules [1] from Image tags can be mined.

Method. An association rule could indicate a relation between
classes. We reduce the graph to a directed acyclic graph.

Result. We discover c
and semantic. This can help object recognition [3].
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Figure 2: Flickr tag clusters - densely connected companerthe associa-
tion rules graph mined from image tags (see fig. 1)
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Semantic. High-level concepts are automatically assigned to ol e
high-level nodes (concept organization like in WordNethisT § O S S oS L
allows reasoning, see our CVPR'07 paper [2]. P S
Visual. The hierarchy reflects how Flickr users see the world. : >l
Four kinds of relationships are dominant: ol
¢ high-level concept groupingét, animal) 023
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e inclusion of parts€ye nose
e contextual links grass fence
e scene-type associationgtfy, farm)
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Figure 4. Automatically retrieved Flickr hierarchy
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Quantitative. We evaluate if classes which are close in the hier-
ass hierarchies that are both vision-oreentearchy are visually similar. The capacity to distinguishvietn
clusters of classes is measured.

Figure 5: Results on the Pascal VOC’07 challenge dataset
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Figure 6: Results on the Caltech 256 dataset

Figure 1: Association rules mined from Flickr image tagse fuery consisted of 10 VOC’06 class labels. Note the unsireild form of the graph.
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| 4. Discussion | [ 5. Summary '

We check how representative are the discovered inter-iass
lationships for popular benchmark datasets.

(c) A train on a bridge (d) Cows and horses next to a fence (VOC'O®) A horse among cars
and Caltech-256), links 22, 23

(VOC'07), link 11

(VOC'07), link 8

(f) A horse in a city (Caltech- (g) Dogs and cats may be difficult to distinguish (VOC’'Okijtennode

256), link 8

Figure 7. Examples illustrating the discovered relatignshNote the cor-
responding links in the class hierarchy.

e Semantic and visually oriented class hierarchies can lwe aut
matically extracted from Flickr

e Flickr inter-class relationships go beyond grouping aads
high-level concepts or building objects from parts — contex
tual links and scene-types are also present

e The knowledge extracted from Flickr can explain the content
of popular recognition benchmarks

e [t can be used to predict the inter-class similarities artpeu
forms WordNet based semantic hierarchies for a large numbel
of classes
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