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Density estimation
Given a query image I, descriptors d are estimated at multiple locations l and scales σ 
and matched against the database. The probability of observing pose x given image Z
is:

Density associated with a single local feature

Implicit Shape Model
The probability of observing pose x given a patch I at location l and scale σ is 
modeled using a Gaussian model. The model gives more confidence to pose ‘parts’ 
mk closer to patch locations l

s is the covariance scale. It corresponds to the patch reliability and is learned from 
training data

Introduction
Our goal is to perform pose estimation from single images. Our main contribution 
is a generalization of the Implicit Shape Model – introduced earlier for object 
recognition by Leibe & Schiele – to learn the relationship between articulated pose 
and the appearance of reference patches. 
Recovering accurate pose from single images requires a more sophisticated 
model than the Implicit Shape Model. In our approach, flexibility in the model is 
obtained by introducing hyper-parameters that are learned from training data and 
optimally weigh the spatial and pose contribution of patches. In our framework, the 
appearance of a patch is modeled using multiple descriptors. A task-specific 
metric in the patch space is learned for best performance on pose estimation.

Pose Estimation from Local Features
Individual local features provide rich and useful information on the global pose.
e.g.    

- Location of ‘landmarks’ in the neighborhood of local features
- Scale, configuration, …

Approach
We employ a technique similar to the Implicit Shape Model introduced

- Database construction. Learn a set of local patches (and associated 
descriptors) and pose x relative to their location in the image. 

- Vocabulary tree. Build a vocabulary tree using k-means clustering using the 
Pyramid Match Toolkit by J. Lee et al.

- Pose estimation. For each local feature of a query image, retrieve its kNNs in 
the database and compute the density by kernel-based estimation. Pose is 
found by maximizing the density (voting)

Benefits of our approach:
Robustness to occlusions
Does not require segmentation or normalization
Fast

Relative/absolute pose
In order to incorporate geometric relationships, the relative pose x associated with 
a local feature I is given with respect to the feature location lI and scale σI. At 
testing, the absolute pose is reconstructed from the feature location l and scale σ.
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Training set Experiments

Articulated Body Pose
Evaluation on the HumanEva database [L. Sigal and M. J. Black.]. We used a 
subset of the database containing sequences of Walking, Jogging and Boxing.
Sequences were evenly divided into training and testing sets

Mean and variance of the errors (in pixels) on the HumanEva testing set.

Vocabulary Tree

Error mean and 
variance (in pix.)

Full database 2.32 (0.52)

Occlusions
Occlusions were synthetically generated (black rectangles) in real images

Occlusion 
size

Error mean 
and variance 

(in pix.)
30x30 2.52 (0.61)
60x60 4.46 (8.41)Image I

Pose x

u1

u2

x1

x2

kNN search 

Example of results for the occlusion experiment.

Pose estimation (local optimization)

Fiducial
Estimation of the 2D location of 20 fiducial points (e.g. nose, mouth, eye corners) 
BioID database – 1521 images – 23 users

• Database generated from 1000 training images ~ 90000 patches.
• Testing set consists of 100 images (subjects different from training images)
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Task-Oriented Patch Metric
The patch likelihood p(Ii|e) is defined as a linear combination of kernels

Warping function 
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SIFT SC CC
12.36 (5.10) 13.52 (6.29)

5.47 (4.21)5.13 (3.62)

Multi-D
Leibe et al. 11.32 (7.58)
ISM-pose 5.01 (3.58) 4.73 (2.58)

ISM-pose
Walking 4.16 (2.71)
Jogging 4.29 (1.68)
Boxing 7.22 (5.03)

Error Mean (top) and variance (bottom) 
vs. covariance scale s

Ternary diagram showing the average 
error vs. descriptor weights d


