An Empirical Bayes Approach to Contextual Region Classification

Svetlana Lazebnik
University of North Carolina at Chapel Hill

Maxim Raginsky
Duke University
• **Our goal**: Improving a purely local model without prior learning of contextual interactions
A minimalistic approach to context

• **Key question:** Can we get useful contextual information about the class labels from the unlabeled test data – with minimal prior assumptions?

• **Key insight:** The structure of the unknown label sequence is indirectly revealed through the statistical redundancy of the observation sequence
 – A contextual model of the observations can be turned into a contextual model of the class labels
Methodology

- **Empirical Bayes methods** (Robbins 1956): obtain a prior directly from the data instead of committing to it in advance
 - No parametric contextual model
 - No need to learn context from training data

- **Compound decision theory** (Robbins 1951): solve a series of decision problems that share a common statistical structure

- **Universal denoising** (Weissman et al. 2005)
The elements of the label sequence \mathbf{x} are independently corrupted by the noisy channel Q to obtain the observation sequence \mathbf{y}

$$P(\mathbf{Y} = \mathbf{y} | \mathbf{x}) = \prod_{i=1}^{n} Q(y_i | x_i)$$

Q: channel transition matrix
The elements of the label sequence x are independently corrupted by the noisy channel Q to obtain the observation sequence y.

Our goal is to design a denoising procedure to estimate x given Q and y.
Compound decision approach

• Optimal decision rule: \(\hat{x}_i = \arg \max_x P(X_i = x \mid y) \)

\[
P(x_i \mid y) = P(x_i \mid y_i, y_{-i}) = \propto P(y_i \mid x_i, y_{-i}) P(x_i \mid y_{-i}) = Q(y_i \mid x_i) P(x_i \mid y_{-i})
\]

• Simplification 1: replace whole sequence with local neighborhood (sliding window rule)

\[
\hat{x}_i = \arg \max_x Q(y_i \mid x) P(x \mid y_{N(i)})
\]

• Simplification 2: define a context function \(\xi \)

\[
\hat{x}_i = \arg \max_x Q(y_i \mid x) P(x \mid \xi_i)
\]
Estimating the contextual prior

• Decision rule:

\[\hat{x}_i = \arg \max_x Q(y_i \mid x) P(x \mid \xi_i) \]

- Channel transition matrix
 Assumed known (i.e. learned at training time)
- Probability of unobserved clean symbol given observed context

• We need an estimate of \(P(x \mid \xi_i) \), but we only have direct access to \(P(y \mid \xi_i) \)
Statistical inversion

• How to go from output distribution $P_y = P(y|\xi)$ to input distribution $P_x = P(x|\xi)$?

• We have

\[P(y|\xi) = \sum_x Q(y|X=x)P(X=x|\xi) \]

or

\[P_y = Q^T P_x \]

• Estimating P_x:

\[\hat{P}_x = Q^{-T} P_y \]

• More robust approach: find input distribution that minimizes KL-divergence between observed and predicted output distributions

\[\hat{P}_x = \arg \min_P D(P_y \parallel Q^T P) \]
Summary of algorithm

Training:
• Learn channel transition matrix Q from labeled data

Testing:
• For each test patch i:
 – Estimate output distribution $P(y_i | \xi_i)$
 – Obtain contextual prior $P(x_i | \xi_i)$ by statistical inversion
 – Find x_i by MAP rule

\[
\hat{x}_i = \arg \max_x Q(y_i | x)P(x | \xi_i)
\]
Implementation: Feature extraction

- Three types of image features

Similar to Verbeek & Triggs (2007)
Implementation: Feature extraction

- **Observation model 1: Quantizer**
 - Observation y is a tuple of discrete quantizer labels for each feature
 - Channel transition matrix is estimated by Naive Bayes

- **Observation model 2: Classifier**
 - Observation y is the output of an SVM classifier
 - Channel transition matrix is the confusion matrix of the classifier on a validation dataset
Context representation

- Orderless context function: ξ_i is the histogram of observation labels in a neighborhood of region i
- Estimating $P(y|\xi_i)$: k nearest neighbors ($k=500$)
Context representation

- Orderless context function: ξ_i is the histogram of observation labels in a neighborhood of region i
- Estimating $P(y|\xi_i)$: k nearest neighbors ($k=500$)
- Context size

Neighborhood size 1
Context representation

• Orderless context function: ξ_i is the histogram of observation labels in a neighborhood of region i
• Estimating $P(y|\xi_i)$: k nearest neighbors ($k=500$)
• Context size

Neighborhood size 2
Effect of context size

<table>
<thead>
<tr>
<th>σ</th>
<th>building</th>
<th>tree</th>
<th>car</th>
<th>ground</th>
<th>sign</th>
<th>Final labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.56</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88.97</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89.71</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88.24</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.56</td>
</tr>
</tbody>
</table>
Image-level context

- When neighborhood radius becomes large enough to encompass the whole image, all regions in that image share the same context.
- The estimate of $P(y|\xi)$ is given by the histogram of observation labels in the image.
- This reduces to pLSA!

\[
P(y | \xi) = \sum_x Q(y | X = x) P(X = x | \xi)
\]

Context (ξ) = document index
Label (x) = topic
Observation (y) = word
Enriching the context function

- Context ξ can depend not only on the observations in a local neighborhood, but also on estimated labels in that neighborhood
- An initial estimate of labels can come from the image-level context
- Denoising can be applied repeatedly with improved contextual estimates – similar to ICM
Datasets

- **MSRC dataset (Shotton et al. 2006)**
 - 594 images, 21 classes

- **Geometric context dataset (Hoiem et al. 2005)**
 - 300 images, 7 classes
Context vs. local model

SVM

Quantizer

MSRC

Geometric context

Classification rate

Context size
Per-image improvements

MSRC

Initial rates: local quantizer model
Final rates: combined context, neighborhood size 2

Geometric context
Examples on MSRC dataset

<table>
<thead>
<tr>
<th>Image</th>
<th>Ground truth</th>
<th>Initial labels</th>
<th>Final labels</th>
<th>Contextual priors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples on geometric context dataset

<table>
<thead>
<tr>
<th>Image</th>
<th>Ground truth</th>
<th>Initial labels</th>
<th>Final labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g)</td>
<td></td>
<td>61.00</td>
<td>83.89</td>
</tr>
<tr>
<td>(h)</td>
<td></td>
<td>71.33</td>
<td>82.33</td>
</tr>
<tr>
<td>(i)</td>
<td></td>
<td>51.54</td>
<td>75.38</td>
</tr>
<tr>
<td>(j)</td>
<td></td>
<td>80.00</td>
<td>93.33</td>
</tr>
</tbody>
</table>

Contextual priors:
- sky
- ground
- vert. left
- vert. right
- solid
- porous
- vert. center
- solid
- porous
A few failures

<table>
<thead>
<tr>
<th>Image</th>
<th>Ground truth</th>
<th>Init. labels</th>
<th>Final labels</th>
<th>Contextual priors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

• **Contextual region classification as denoising**
 – Image observations can be regarded as a systematically “corrupted” version of the underlying class labels
 – All we need to know is the mapping converting labels to observations (local likelihood)
 – Can denoise the output of any black-box local classifier provided we know its confusion matrix

• **An empirical Bayes approach**
 – A spatially varying prior over class labels is obtained from the unlabeled test data by statistical inversion
 – No specific assumptions about the distribution of the label sequence
 – No need to learn a contextual model from training data
Current limitations

• The transition matrix has to be estimated from labeled training data
 – Use EM to simultaneously estimate transition matrix and contextual prior?

• Estimation of contextual probabilities is very slow
 – Use fast approximate nearest neighbors or context hashing