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The problem

Ground truth

ground

Local model Contextual model

e Our goal: Improving a purely local model without
prior learning of contextual interactions




A minimalistic approach to context

o Key guestion: Can we get useful contextual
iInformation about the class labels from the
unlabeled test data — with minimal prior
assumptions?

Key insight: The structure of the unknown label
sequence Is indirectly revealed through the
statistical redundancy of the observation
sequence

— A contextual model of the observations can
be turned Into a contextual model of the class

labels




Methodology

 Empirical Bayes methods (Robbins 1956):
obtain a prior directly from the data instead of
committing to it in advance
— No parametric contextual model
— No need to learn context from training data

e Compound decision theory (Robbins 1951):
solve a series of decision problems that share a
common statistical structure

e Universal denoising (Weissman et al. 2005)




Region classification as denoising

Class labels Observations
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 The elements of the label sequence x are
iIndependently corrupted by the noisy channel Q to
obtain the observation sequence y

P(Y =y |X) = HQ(% | x;) Q: channel transition matrix
=]




Region classification as denoising

Class labels Observations
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 The elements of the label sequence x are
iIndependently corrupted by the noisy channel Q to
obtain the observation sequence y

e Our goal Is to design a denoising procedure to
estimate x given Q and y




Compound decision approach

IO oli[aEINe [Tl lo]aWV[Hll x. = arg max _  P(X, =x|Y)

P(x, |y)=P(x; |y, Y_; The whole observation
sequence excluding y;

o« P(y; [ x,y_)P(x; |y_,)
— Q(yi |xi)P(xi |y—i)

o Simplification 1: replace whole sequence with local
neighborhood (sliding window rule)

x, =argmax, QO(y; | x) P(x| yN(i))
o Simplification 2: define a context function &

x, =argmax, Q(y, | x) P(x| &; Function of yy




Estimating the contextual prior

e Decision rule:

x; =arg max, O(y; | x)P(x| &)

Channel transition matrix Probability of unobserved
Assumed known (i.e. learned clean symbol given

at training time) observed context

 We need an estimate of P(x|&), but we only have
direct access to P(y|S)
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Statistical inversion

How to go from output distribution P, = P(y|<) to
input distribution P, = P(x|¢)?

WENIEYCR P(v 1 €) =D O(v| X =x)P(X =x]¢&)
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Estimating P,:

More robust approach: find input distribution that
minimizes KL-divergence between observed and
predicted output distributions

P, =argmin, D(P, || 0" P)




Summary of algorithm

Training:
e |Learn channel transition matrix Q from labeled data

Testing:
 For each test patch I:
— Estimate output distribution P(y|¢)

— Obtain contextual prior P(x|¢) by statistical inversion
— Find x; by MAP rule

x; =arg max, O(y; | x)P(x|&;)




Implementation: Feature extraction

* Three types of image features

Position  Texture (SIFT) Color

Similar to Verbeek & Triggs (2007)




Implementation: Feature extraction

* Observation model 1: Quantizer

— Observation y is a tuple of discrete quantizer labels for
each feature

— Channel transition matrix is estimated by Naive Bayes

* Observation model 2: Classifier
— Observation y is the output of an SVM classifier

— Channel transition matrix is the confusion matrix of the
classifier on a validation dataset




Context representation

» Orderless context function: ¢ Is the histogram of
observation labels in a neighborhood of region |

» Estimating P(y|&): k nearest neighbors (k=500)




Context representation

» Orderless context function: ¢ Is the histogram of
observation labels in a neighborhood of region |

» Estimating P(y|&): k nearest neighbors (k=500)
e Context size

Neighborhood size 1




Context representation

» Orderless context function: ¢ Is the histogram of
observation labels in a neighborhood of region |

» Estimating P(y|&): k nearest neighbors (k=500)
e Context size

Neighborhood size 2




Effect of context size
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Image-level context

 When neighborhood radius becomes large enough
to encompass the whole image, all regions in that
Image share the same context

ne estimate of P(y|¢) Is given by the histogram of
pservation labels in the image

Nis reduces to pLSA!

P(y[&) =2 0(r| X =x)P(X =x|¢)

Context (£ ) = document index
Label (x) = topic

Observation (y) = word




Enriching the context function

e Context £ can depend not only on the observations
In a local neighborhood, but also on estimated labels
In that neighborhood

e An Initial estimate of labels can come from the
Image-level context

e Denoising can be applied repeatedly with improved
contextual estimates — similar to ICM




Datasets

MSRC dataset (Shotton et al. 2006)
— 594 images, 21 classes

Geometric context dataset (Hoiem et al. 2005)
— 300 images, 7 classes




Context vs. local model

Quantizer
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Per-image improvements

Final rates

Initial rates
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Initial rates: local quantizer model
Final rates: combined context, neighborhood size 2




Examples on MSRC dataset

Ground truth Initial labels Final labels contextual priors
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Examples on geometric context dataset

Ground truth

Initial labels
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A few fallures
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Summary

e Contextual region classification as denoising

— Image observations can be regarded as a systematically
“corrupted” version of the underlying class labels

— All we need to know Is the mapping converting labels to
observations (local likelihood)

— Can denoise the output of any black-box local classifier
provided we know its confusion matrix

 An empirical Bayes approach

— A spatially varying prior over class labels is obtained from
the unlabeled test data by statistical inversion

— No specific assumptions about the distribution of the label
sequence

— No need to learn a contextual model from training data




Current limitations

e The transition matrix has to be estimated from
labeled training data

— Use EM to simultaneously estimate transition matrix and
contextual prior?

e Estimation of contextual probabillities Is very slow

— Use fast approximate nearest neighbors or context
hashing




