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The problemThe problem

• Our goal: Improving a purely local model without 
prior learning of contextual interactions

Image Ground truth

Local model Contextual model
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A minimalistic approach to contextA minimalistic approach to context

• Key question: Can we get useful contextual 
information about the class labels from the 
unlabeled test data – with minimal prior 
assumptions?

• Key insight: The structure of the unknown label 
sequence is indirectly revealed through the 
statistical redundancy of the observation 
sequence
– A contextual model of the observations can 

be turned into a contextual model of the class 
labels



MethodologyMethodology
• Empirical Bayes methods (Robbins 1956): 

obtain a prior directly from the data instead of 
committing to it in advance
– No parametric contextual model
– No need to learn context from training data

• Compound decision theory (Robbins 1951): 
solve a series of decision problems that share a 
common statistical structure

• Universal denoising (Weissman et al. 2005)



Region classification as Region classification as denoisingdenoising

• The elements of the label sequence x are 
independently corrupted by the noisy channel Q to 
obtain the observation sequence y
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Region classification as Region classification as denoisingdenoising

• The elements of the label sequence x are 
independently corrupted by the noisy channel Q to 
obtain the observation sequence y

• Our goal is to design a denoising procedure to 
estimate x given Q and y
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Compound decision approachCompound decision approach

• Optimal decision rule:

• Simplification 1: replace whole sequence with local 
neighborhood (sliding window rule)

• Simplification 2: define a context function ξ
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Channel transition matrix
Assumed known (i.e. learned 

at training time)

yP(        |ξi )context ξi x

Estimating the contextual priorEstimating the contextual prior
• Decision rule: 
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Probability of unobserved 
clean symbol given 
observed context 

• We need an estimate of P(x |ξi), but we only have
direct access to P(y|ξi)



Statistical inversionStatistical inversion

• How to go from output distribution Py = P(y|ξ) to 
input distribution Px = P(x|ξ)?

• We have

• Estimating Px:

• More robust approach: find input distribution that 
minimizes KL-divergence between observed and 
predicted output distributions
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Summary of algorithmSummary of algorithm

Training: 
• Learn channel transition matrix Q from labeled data

Testing:
• For each test patch i:

– Estimate output distribution P(y|ξi) 
– Obtain contextual prior P(x|ξi) by statistical inversion
– Find xi by MAP rule 
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Implementation: Feature extractionImplementation: Feature extraction

• Three types of image features

Position

(u,v)
Texture (SIFT) Color

Similar to Verbeek & Triggs (2007)



Implementation: Feature extractionImplementation: Feature extraction

• Observation model 1: Quantizer
– Observation y is a tuple of discrete quantizer labels for 

each feature 
– Channel transition matrix is estimated by Naive Bayes

• Observation model 2: Classifier
– Observation y is the output of an SVM classifier 
– Channel transition matrix is the confusion matrix of the 

classifier on a validation dataset



Context representationContext representation

• Orderless context function: ξi  is the histogram of 
observation labels in a neighborhood of region i

• Estimating P(y|ξi): k nearest neighbors (k=500)



Context representationContext representation

• Orderless context function: ξi  is the histogram of 
observation labels in a neighborhood of region i
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• Context size
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Context representationContext representation

• Orderless context function: ξi  is the histogram of 
observation labels in a neighborhood of region i

• Estimating P(y|ξi): k nearest neighbors (k=500)
• Context size

Neighborhood size 2



Effect of context sizeEffect of context size



ImageImage--level contextlevel context

• When neighborhood radius becomes large enough 
to encompass the whole image, all regions in that 
image share the same context

• The estimate of P(y |ξ) is given by the histogram of 
observation labels in the image

• This reduces to pLSA!
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Enriching the context functionEnriching the context function

• Context ξ can depend not only on the observations 
in a local neighborhood, but also on estimated labels 
in that neighborhood

• An initial estimate of labels can come from the 
image-level context

• Denoising can be applied repeatedly with improved 
contextual estimates – similar to ICM



• MSRC dataset (Shotton et al. 2006)
– 594 images, 21 classes

• Geometric context dataset (Hoiem et al. 2005)
– 300 images, 7 classes

DatasetsDatasets



Context vs. local modelContext vs. local model



PerPer--image improvementsimage improvements

Initial rates: local quantizer model
Final rates: combined context, neighborhood size 2



Examples on MSRC datasetExamples on MSRC dataset



Examples on geometric context datasetExamples on geometric context dataset



A few failuresA few failures



SummarySummary

• Contextual region classification as denoising
– Image observations can be regarded as a systematically 

“corrupted” version of the underlying class labels
– All we need to know is the mapping converting labels to 

observations (local likelihood)
– Can denoise the output of any black-box local classifier 

provided we know its confusion matrix

• An empirical Bayes approach
– A spatially varying prior over class labels is obtained from 

the unlabeled test data by statistical inversion
– No specific assumptions about the distribution of the label 

sequence
– No need to learn a contextual model from training data



Current limitationsCurrent limitations

• The transition matrix has to be estimated from 
labeled training data
– Use EM to simultaneously estimate transition matrix and 

contextual prior?

• Estimation of contextual probabilities is very slow
– Use fast approximate nearest neighbors or context 

hashing


