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_The Primate's Visual System is Deep
[ ———— - |

& The recognition of everyday objects is a very fast process.

» The recognition of common objects is essentially “feed forward.”
» But not all of vision is feed forward.

@ Much of the visual system (all of it?) is the result of learning
» How much prior structure is there?

W& If the visual system is deep and learned, what is the learning algorithm?

» What learning algorithm can train neural netd as
“deep” as the visual system (10 layers?).

» Unsupervised vs Supervised learning

» What is the loss function?

» What is the organizing principle?

» Broader question (Hinton): what is the learning
algorithm of the neo-cortex?

Yann LeCun * New York University
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“The Traditional “Shallow” Architecture for Recognition

Pre-processing / . -
—®| Trainable Classifier |—%

Feature Extraction

/

this part 1s mostly hand-crafted

Internal Representation

& The raw input is pre-processed through a hand-crafted feature extractor
& The trainable classifier is often generic (task independent)

& The most common Machine Learning architecture: the Kernel Machine
» kernel machines are shallow

Yann LeCun * New York University



Most Common Architecture Today:

. Fixed Dense Features + Spatial Pooling + Kernel Classifier
M“&j“_ . S—— -

. Spatial Kernel
Filters > —>

Pooling Machine

& It's shallow
& The features are not learned

& But it's the only architecture that can work with 30 training samples/class

Yann LeCun * New York University



"The Most Common Recognition Architecture Today:

_Fixed Dense Features + Spatial Pooling + Kernel Classifier
TR RR—- |

“Simple cells”
“Complex cells”

Kernel
-  ——
| Machine
spatial pooling/subsampling;
Filter Bank : :
pyramidal pooling
geometric blurr
& It's shallow VQ+histograms

& The features are not learned

& But it's the only architecture that can work with 30 training samples/class
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- “Deep” Learning: Learning Internal Representations

S ———————— |

Trainable Trainable
Trainable
Feature |— — - Feature > —>
Classifier
Extractor Extractor

Learned Internal Representation

@ Deep Learning: learning a hierarchy of internal representations

& From low-level features to mid-level invariant representations, to

object identities
& Representations are increasingly invariant as we go up the layers

& using multiple stages solves the specificity/invariance dilemma

Yann LeCun
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Multi-stage Hubel Wlesel Archltecture

m‘,{,) —

Classifier —»

Spat1al

Bank Pooling Bank Pooling

& Stacking multiple simple cell / complex cell layer pairs
& We can't build the second layer features by hand!

@ Neocognitron [Fukushima 1971-1982]
» simple unsupervised/competitive feature learning

& Convolutional Nets [LeCun 1988-2007]
» fully supervised feature learning

@ HMAX & friends [Poggio's group 2002-2006, Lowe 2006]
» no real feature learning (just storing templates)

Yann LeCun * New York University




& We can approximate any function as close as we want with shallow

architecture. Why would we need deep ones?

y=3Y aK(X, X y=FW'FW"X))

III
L]

» kernel machines and 2-layer neural net are “universa

& Deep learning machines
y=FW" FW L F(..FOW".X)..))

@ Deep machines are more efficient for representing certain classes of

functions, particularly those involved in visual recognition
» they can represent more complex functions with less

“hardware”
@ We need an efficient parameterization of the class of functions that

we need to build intelligent machines (the ‘“Al-set”)

Yann LeCun
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Why would Deep Architectures be more efficient?
TRARSN A | B —

& A deep architecture trades space for time

» more layers (more sequential computation),
» but less hardware (less parallel computation).
» Depth-Breadth tradoff

& Examplel: N-bit parity
» requires N-1 XOR gates in a tree of depth log(N).

» requires an exponential number of gates of we restrict ourselves to
2 layers (DNF formula with exponential number of minterms).

& Example2: circuit for addition of 2 N-bit binary numbers
» Requires O(N) gates, and O(N) layers using N one-bit adders with
ripple carry propagation.

» Requires lots of gates (some polynomial in N) if we restrict
ourselves to two layers (e.g. Disjunctive Normal Form).

» Bad news: almost all boolean functions have a DNF formula with
an exponential number of minterms O(2”~N).....

Yann LeCun
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Strategies (after Hinton 2007)

& Defeatism: since no good parameterization of the Al-set is available, let's
parameterize a much smaller set for each specific task through careful

engineering (preprocessing, kernel....).

& Denial: kernel machines can approximate anything we want, and the VC-

bounds guarantee generalization. Why would we need anything else?
» unfortunately, kernel machines with common kernels can only

represent a tiny subset of functions efficiently
@ Optimism: Let's look for learning models that can be applied to the
largest possible subset of the Al-set, while requiring the smallest amount

of task-specific knowledge for each task.

» There is a parameterization of the Al-set with neurons.

» Is there an efficient parameterization of the Al-set with computer
technology?

@ Today, the ML community oscillates between defeatism and denial.

Yann LeCun
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&@ Supervised Convolutional nets work

very well for:
» handwriting recognition(winner on
MNIST)
» face detection

» object recognition with few classes
and lots of training samples
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\ Spervised Deep Learning works well with lots of samples

@ On recognition tasks with lots of training samples, deep supervised

architecture outperform shallow architectures in speed and accuracy

& Handwriting Recognition: conv. nets hold the record

» raw MNIST: 0.62% for convolutional nets [Ranzato 07]
» raw MNIST: 1.40% for SVMs [Cortes 92]
» distorted MNIST: 0.40% for conv nets [Simard 03, Ranzato 06]

» distorted MNIST: 0.67% for SVMs [Bordes 07]
& Object Recognition: beats SVMs

» small NORB: 6.0% for conv nets [Huang 05]
» small NORB: 11.6% for SVM [Huang 05]
» big NORB: 7.8% for conv nets [Huang 06]
» big NORB: 43.3% for SVM [Huang 06]

& Face Detection: beats Viola-Jones
» [Vaillant 93,94 ][ Garcia & Delakis PAMI 05][Osadchy JMLR 07]

Yann LeCun
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Unsupervised Learning of Deep Feature Hierarchies
[ ——— R RO

& On recognition tasks with few labeled samples, deep supervised

architectures don't do so well

» a purely supervised convolutional net gets only 20% correct on
Caltech-101 with 30 training samples/class

@ We need unsupervised learning methods that

can learn invariant feature hierarchies

@ “Deep Belief Networks” [Hinton 2003]

»train each stage unsupervised one after
the other.

»if necessary, refine with backprop

Yann LeCun
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_The Basic Idea for Training Deep Feature Hierarchies .

& Stage k measures the ‘“‘compatibity’’ between features at level k-1 (Zy._1)

and features at level k (Zy).
» compatibility = -log likelihood = energy = E(Zk-1,Zk, Wk)

& Inference: Find the Z's that minimize the total energy.

& The stages are trained one after the other
» the input to stage k+1 is the feature vector of stage k.

“compatibility”’ “compatibility”

h

LEVEL 2
FEATURES 72

INPUT Y LEVEL 1
FEATURES 71
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- Unsupervised Feature Learning as Density Estimation

@ Energy function:
» E(Y,W) = MINz E(Y,Z,W) or E(Y,W) = -log SUMz exp[-E(Y,Z,W)]
»Y: input
» Z: “feature” vector, representation, latent variables

» W: parameters of the model (to be learned)
» Maximum A Posteriori approximation or marginalization over Z

&@ Density function P(YIW)
» Learn W so as to maximize the likelihood of the training data

e—BE(Y,W) HE

fy 6_5E(Q:W)

PY|W) =

Parameters W

h

FEATURES Z

INPUTY
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_Unsupervised Feature Learning: Encoder/Decoder Architecture

R — ———————————.- |

@ Learns a probability density

function of the training data
& Generates Features in the process

@ The feature space is akin to an
embedding of the manifold

containing regions of high- FEATURES

(CODE)
Z

density of data.

& Learning Algorithms:

DECODER
ENCODER

» contrastive divergence

» constraints on the information Y

content of the features BV W e~ BE(Y,W)
(Y. W) [ e—BE(wW)
Jy

Yann LeCun
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The Deep Encoder/Decoder Architecture

@ Each stage is composed of [Hinton 2005, Bengio 2006, LeCun 2006]

» an encoder that produces a feature vector from the input

» a decoder that reconstruct the input from the feature vector
¢ (Restricted Boltzmann Machines are a special case)

& Each stage is trained one after the other
» the input to stage k+1 is the feature vector of stage k.

RECONSTRUCTION ERROR

DECODER
ENCODER

RECONSTRUCTION ERROR

DECODER
ENCODER
LEVEL 1 LEVEL 2

FEATURES FEATURES

INPUTY

Yann LeCun
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& Decoder:
» Linear

&@ Optional encoders of

different types:

» None

» Linear

» Linear-Sigmoid-Scaling
» Linear-Sigmoid-Linear

@ Optional sparsity penalty
» None, L1, Log Student-T

& Feature Vector Z

» continuous
» binary stochastic
» discrete (e.g. 1-of-N)

Yann LeCun

*. General Encoder/Decoder Architecture

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

DECODER
ENCODER

ZYZargminZE(Y,Z, W)

Sparsity

FEATURES
(CODE)

Z

E(Y,W)=min E(Y,Z,W)
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‘Non-Linear Dimensionality Reduction with DBNs
[ —— S

& [Hinton and Salakhutdinov, Science 2006]..__

Yann LeCun
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Pretraining Unrolling Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the "data” for training the next RBM in the stack. After the pretraining, the RBMs are
"unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.




& [Hinton and Salakhutdinov, Science 2006]

Fig. 2. (A) Top to bottom: A N
Random samples of curves from '
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by “logistic PCA” (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions

by the 30-dimensional autoen- ‘_
coder; reconstructions by 30- 'q
dimensional logistic PCA and

standard PCA. The average
squared errors for the last three . ‘ ; F !
rows are 3.00, 8.01, and 13.87. |

(C) Top to bottom: Random 4

samples from the test data set;

reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

Yann LeCun
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& Probabilistic View:

» Produce a probability density AP(YIW)
function that:

» has high value in regions of
high sample density
» has low value everywhere else
_
Y

(integral = 1).

@ Energy-Based View:
» produce an energy function A
E(Y,W) that: E(Y,W)
» has low value in regions of high
sample density

» has high(er) value everywhere
else

\/

<

Yann LeCun
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Energy <-> Probability

-

e~ BE(Y,W) P(YIW)
e
Y

Ay w)

E(Y,W) x —log P(Y|W)

\/

Y
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Training an Energy-Based Model to Approximate a Density

RN ————— ——————

Maximizing P(YIW) on training samples A
make this big P(Y) l

make this small

Minimizing -log P(Y,W) on training samples  j

|
Y
E(Y) l
1 —BE(y, W
L(Y,W):E(Y,W)—Fglog/faﬁ( | 4 *** A

y \ »
| S

make this small make this big

Yann LeCun




& Gradient of the negative log-likelihood loss for one sample Y:

OL(Y, W) OE(Y,W OF(y, W
(1) _ OBCLW) _ [ py ) 22 )
oW oW ” oW
Y
& Gradient descent: AE(Y)
OL(Y, W) l
AT
Pushes down on the Pulls up on the Ay ' >~
energy of the samples  energy of low-energy Y's

I

OE(Y, W) OE(y, W)
W — W | P(ylW
[ n /y (y|W) P
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. The Normalization problem

& The “Intractable Partition Function Problem” a.k.a. the

Normalization Problem

» Give high probability (or low energy) to training samples
» Give low probability (or high energy) to everything else
» There are too many “everything else”!

» The normalization constant of probabilistic models is a sum
over too many terms.

» Making the energies of everthing else large is very hard

Yann LeCun
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_The Intractable Partition Function Problem
[ ——

& Example: Image Denoising

& Learning:

» push down on the energy of training samples
» push up on the energy of everything else

Ay

V<
}Y)
<

o—BE(Y.W)

P(Yﬂ ”) — [y c—BE(y,W)

Yann LeCun
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Lhe Two Biggest Challenges in Machine Learning

& 1. The ““Intractable Partition Function Problem”’

» Complicated probability distributions in high dimensional spaces are
difficult to normalize

- —BE(Y.W)
E':T/\f\ v PY,W) = ._[;J,e_'BE(y’LV)

>

» Example: what is the PDF of natural images?
» Question: how do we get around this problem?

@ 2. The “Deep Learning Problem”
» Complex tasks (vision, audition, natural language understanding....)
require appropriate internal representations.

» With most current approaches to learning, the internal
representation (and the similarity metric on it) are assumed to be
given (or hand-engineered).

» Question: how do we learning internal representations?

Yann LeCun

t New York University
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_Contrastive Divergence Trick [Hinton 2000]

[ —————

@ push down on the energy of the training

sample Y

@ Pick a sample of low energy Y' near the

» this digs a trench in the energy

training sample, and pull up its energy -
Y'T
surface around the training samples

DE(Y,W)  OE(Y',W)
ow T aw

Pushes do.vw-w on the energy pulls up on the energy Y’
of the training sample Y

W —W—n

Yann LeCun
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_Contrastive Divergence Trick [Hinton 2000]

[ —————

@ push down on the energy of the training

sample Y

@ Pick a sample of low energy Y' near the

training sample, and pull up its energy

» this digs a trench in the energy
surface around the training samples

DE(Y,W)  OE(Y',W)
ow T aw

Pushes do.vw-w on the energy pulls up on the energy Y’
of the training sample Y

W —W—n

Yann LeCun

t New York University
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j Problems with Contrastive Divergence in High Dimension
[ ——— ==

& Contrastive Divergence is a “boutique” way of making the energy

surface non-flat

& If the energy surface is highly flexible and high-dimensional, there are

simply too many points whose energy needs to be pulled up.
& It becomes very difficult to make it non-flat.
@ We need a more ‘“wholesale” way of making the energy surface non-flat.

@ The main idea of this talk: restricting the information content of the

code makes the energy surface non-flat.

& Information restriction through sparsification

Yann LeCun * New York University




& Decoder:
» Linear

&@ Optional encoders of

different types:

» None

» Linear

» Linear-Sigmoid-Scaling
» Linear-Sigmoid-Linear

@ Optional sparsity penalty
» None, L1, Log Student-T

& Feature Vector Z

» continuous
» binary stochastic
» discrete (e.g. 1-of-N)

Yann LeCun

_General Encoder/Decoder Architecture with a sparsity term

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

DECODER
ENCODER

ZYZargminZE(Y,Z, W)

Sparsity

FEATURES
(CODE)

Z

E(Y,W)=min E(Y,Z,W)

t New York University



Main New Idea in This Talk!

& Contrastive divergence doesn't work too

well when the dimension of the input is very RECONSTRUCTION ENERGY

DECODER
ENCODER

content in the feature vector Z Z =argmin E(Y ,Z,W)
» by making it sparse
» by making it low dimensional
» by making it binary
» by making it noisy

Yann LeCun

FEATURES
(CODE)
Z

large (> a few hundred)

» because the space of “everything else”
is too large

@ We need a more efficient way to ensure that

the energy surface takes the right shape

» with a groove around the manifold
containing the training samples

@ Main Idea: Restrict the information

E(Y,W)=min E(Y,Z,W)

[Ranzato et al. AI-Stats 2007]

t New York University
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@ If the information content of the feature
vector is limited (e.g. by imposing sparsity
constraints), the energy MUST be large in

most of the space.

» pulling down on the energy of the
training samples will necessarily make
a groove

& The volume of the space over which the
energy is low is limited by the entropy of

the feature vector
» Input vectors are reconstructed from
feature vectors.

» If few feature configurations are
possible, few input vectors can be
reconstructed properly

Yann LeCun

e Main Insight [Ranzato et al. 2007 ]

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

DECODER
ENCODER

Z =argmin E(Y ,Z,W)

FEATURES
(CODE)
Z

E(Y,W)=min E(Y,Z,W)

t New York University



_Why sparsity puts an upper bound on the partition function

@ Imagine the code has no restriction on it

» The energy (or reconstruction error) can be zero everywhere,
because every Y can be perfectly reconstructed. The energy is
flat, and the partition function is unbounded

& Now imagine that the code is binary (Z=0 or Z=1), and that the

reconstruction cost is quadratic E(Y) = l[lY-Dec(Z)I*2

» Only two input vectors can be perfectly reconstructed:
» YO=Dec(0) and Y1=Dec(1).
» All other vectors have a higher reconstruction error

& The corresponding probabilistic model lias a bounded partition
function: E(Y)
e—EY)

f e~

P(Y) =

>
YO Yl Y

Yann LeCun
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. Restricting the Information Content of the Code
D ——————— e ———

@ Restricting the information content of the code alleviates the need to

push up of the energy of everything.

@ Hence, we can happily use a simple loss function that simply pulls

down on the energy of the training samples.

& We do not need a contrastive term that pulls up on the energy

everywhere else.

Yann LeCun

t New York University



/ Encoder/Decoder Architecture: PCA

Mﬁm“ === ‘LMM

& PCA:

» linear encoder and decoder
» no sparsity

RECONSTRUCTION ENERGY
E(Y,W) = llY-W'WYII"2

. . FEATURES
» low-dimensional code Z LINEAR
- (CODE)
» E(Y) = |]Y-W'WY]|? DECODER
Z

LINEAR
ENCODER

Yann LeCun
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@ Restricted Boltzmann Machines:

» [Hinton et al. 2005]

» symmetric encoder/decoder

» E(Y,Z,W)=-Y'WZ

» Z: binary stochastic vector

» Learning: contrastive
Divergence

» It seems that the energy
surface becomes non flat
because Z is binary and noisy
(not just because of
contrastive divergence).

FEATURES
(CODE)

Z

& Sampling is expensive Y

P(Z =11Y ,W)=1/(1+exp(B ), W Y,
P(Y=UZ,W)=1/(1+exp(B), W, Z
Yann LeCun E(Y’W):_I/BIOg ZZ eXp _BE( ’Z’W))
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& K-Means:

» no encoder, linear decoder
» Z is a one-of-N binary code
> E(Y) = []Y-ZW]]|?

FEATURES
(CODE)

Z

& Sparse Overcomplete Bases:

» [Olshausen & Field]

» no encoder

» linear decoder

» log Student-T sparsity

& Learned Basis Pursuit
» [Chen & Donoho]
» no encoder

» linear decoder E(Y,W)=min E(Y,Z,W)
» L1 sparsity

Y Z =argmin E(Y ,Z,W)

@ Problem: computing Z from Y involves running a minimization algorithm

Yann LeCun

t New York University



Sparse Features with ‘“‘Predictable Basis Pursuit”

& Linear Decoder with normalized
RECONSTRUCTION ENERGY

E(Y,W) = min_z E(Y,Z,W)

& But the encoder learns to

“predicts’ the optimal feature Z_Y =argmin E (Y,Z, W)
codes

basis functions

Sparsity

FEATURES
(CODE)

Z

& L1 Sparsity penalty

& Encoder of different types

» Linear
» Linear-Sigmoid-Scaling
» Linear-Sigmoid-Linear

@ The decoder+sparsity is identical

to Chen & Donoho's basis pursuit

E(Y,W)=min E(Y,Z,W)

Yann LeCun

t New York University



& Decoder:
» Linear |ly—®z[s+a,|z]|;

@ Encoders of different types:

» None

» Linear

» Linear-Sigmoid-Scaling
» Linear-Sigmoid-Linear

& Sparsity penalty
» L1

& Main Idea:

» find basis functions such
that the coefficients that
reconstruct any vector can
be predicted by the
encoder.

Yann LeCun

Encoder/Decoder: Predictable Basis Pursuit

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

DECODER
ENCODER

Z =argmin E(Y ,Z,W)

Sparsity

FEATURES
(CODE)

Z

E(Y,W)=min E(Y,Z,W)

t New York University



. Training The Predictable Basis Pursuit Model

@ Algorithm: Energy of decoder

@ 1. find the code Z
that minimizes the
reconstruction error
AND is close to the
encoder output

@ 2. Update the
weights of the
decoder to decrease
the reconstruction
error

@ 3. Update the
weights of the
encoder to decrease
the prediction error

(reconstruction error) 4

Sparsity

DECODER

ENCODER

¥
Y
> IEEmE

Energy of encoder

Liy,z,®,¥)=y-ozlh+a [zl +eclz-¥(y)[3 .
(prediction error)

Yann LeCun

t New York University



p—— e — Linear (L)

’ Encoder Architectures

| R |

& L.: Linear

@ FD: Linear + Sigmoid + Gain + Bias

@ FL: Linear + Sigmoid + Linear

Z'=MY+b

Non-Linear — Individual gains (FD)
Non-Linear — 2 Layer NN (FL)

iale

|

?0 ooo OOOTT

Z'=0(MY+b,)xdiag(g)+b, Z'=M,o(M,Y +b,)+b
=, 1 1 2

Yann LeCun

t New York University
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Decoder Basis Functions on MNIST

| SSSSEEECE .

Yann LeCun
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Classification Error Rate on MNIST
m—ﬁ—sﬁﬁﬁm’_l_ — =

& Supervised Linear Classifier trained on 200 trained sparse features

. 10 Samples 100 Samples 1000 Samples
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Classification Error Rate on MNIST
Mﬁaﬁ‘m

& Supervised Linear Classifier trained on 200 trained sparse features

10 samples

[ RAW: trzin + Raw nixels
A RAW et 10 + . - , . +PCA S
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_Learned Features on natural patches: V1-like receptive fields

[ S—— IR—|

Yann LeCun

t New York University



—————— — — —

Learned Features: V1-like receptive fields

@ 12x12 filters

@ 1024 filters

Yann LeCun * New York University



_Using Predictable Basis Pursuit Features for Recognition
| TR ——— e ——

& 96 filters on 9x9 patches trained with PBP
» with Linear-Sigmoid-Gain Encoder

& Recognition:

» Normalized_Image -> Learned_Filters -> Rectification ->
Local_Normalization -> Spatial_Pooling -> PCA -> Linear_Classifier

» What is the effect of rectification and normalization?

welghts $-0,9275 - 0,256585

Yann LeCun




Caltech-101 Recognition Rate
meiliik\gww

weights 10,9275 - 0,2628

@ [96_Filters->Rectification]->Pooling->PCA->Linear_Classifier

» [Filters->Sigmoid] 16%
» [Filters->Absolute_Value] 51%
» [Local_Norm->Filters->Absolute_Value] 56%
» [Local_Norm->Filters->Absolute_Value->Local_Norm] 58%

& Multi-Scale Filters->Rectification->Pooling->PCA->Linear_Classifier
» LN->Gabor_Filters->Rectif->LN (Pinto&diCarlo 08) 59%

@ Unsupervised Convolutional Net

» Filt->Sigm->Pooling->Filt->Sigm->Pooling->Classifier 54%
@ Supervised Convolutional Net

» Filt->Sigm->Pooling->Filt->Sigm->Pooling->Classifier 20%

& HMAX (Serre -> Mutch&Lowe 06)
» Filt->Sigm->Pooling->Filt->Sigm->Pooling->Classifier 56%

Yann LeCun

t New York University



mﬁﬁﬁEZb:

_Learning Invariant Features [Ranzato et al CYPR 07]

B—

& Separating the ‘“what” from the ‘“where”

RECONSTRUCTION ERROR RECONSTRUCTION ERROR

DECODER DECODER

INVARIANT
FEATURES
(CODE)

Z

FEATURES
(CODE)
Z

TRANSFORMATION
PARAMETERS U

ENCODER
ENCODER

INPUTY INPUTY

Standard Feature Extractor Invariant Feature Extractor

Yann LeCun

t New York University



@ Learning Shift Invariant Features

& image->filters->pooling->switches->bases->reconstruction

(a) (b) (c) encoder shift-invariant decoder (d)
filteghan

input
image

feature

feature

maps

UOI)INIJSUOIIT

convolutions max : switch ™Maps convolutions
pooling tf ----------- t ------ upsampliﬁ
ransformation
encoder ecoder

parameters

Yann LeCun

t New York University
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Shift Invariant Global Features on MNIST

M_,

@ Learning 50 Shift Invariant Global Features on MNIST:

» 50 filters of size 20x20 movable in a 28x28 frame (81 positions)
» movable strokes!

Yann LeCun * New York University



_Example of Reconstruction

el Rconirucios a

& Any character can be reconstructed as a

linear combination of a small number of

basis functions.

ORIGINAL RECONS-
DIGIT TRUCTION

ACTIVATED DECODER

"
BASIS FUNCTIONS |

(in feed-back layer)

I
|l

|
L

red squares: decoder bases

t New York University

Yann LeCun



Sparse Enc/Dec on Object Images

& 9x9 filters at the first level

LB sl 1NN b N
Al ENFANFal 2 i3
o= AN F o™
MRS kT I AT

& 9x9 filters at the second level (like V4?)
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- Recognition Rate on Caltech 101

& 54% on Caltech-101 (only 20% with purely supervised backprop)

w. chair

ewer 65 %

backg mrrorund

—_—

Great Satisfaction

1 479,

Yann LeCun

t New York University
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AGR: Learning Applied to Ground Robotics

=

SIS SRE— R ———— —

¥ Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).

¥ Our team (NYU/Net-Scale Technologies

Inc.) is one of 8 participants funded by
DARPA

@ All teams received identical robots and can
only modify the software (not the hardware)

¥ The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

Yann LeCun * New York University




Long Range Vision: Distance Normalization

¥ Pre-processing (125 ms)

* Ground plane estimation

* Horizon leveling

Conversion to YUV + local
contrast normalization

* Scale invariant pyramid of

29

12,3m to IHF, =scale: 1,0

1.4

_m 5,8m to 17,6m, scalet 5,0
iy
_m_ 4,1m to 11,3m, scalet &,7

net@SCALE Page 58

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional Net Architecture

4 Operates on 12x25 YUV windows from the pyramid

Logistic regression 100 features -> 5 classes
100 features per

3x12x25 input window m

Convolutions with 6x5 kernels

Pooling/subsampling with 1x4 kernels

Convolutions with 7x6 kernels

20-36 pixels tall,

36-500 pixels wide
net(®SCALE page 59

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional
Net Architecture

100@25x121

o, | e

CONVOLUTIONS (6x5)

20@30x125

20@30x484

3@36x484

YUYV input

net(®)SCALE o e 60

Technologies, Inc.

NEW YORK UNIVERSITY



Long Range Vision: 5 categories

Online Learning (52 ms)

* Label windows using stereo information — 5 classes

super-ground ground footline obstacle super-obstacle

net@SCALE Page 61

Technologies, Inc.

NEW YORK UNIVERSITY



Trainable Feature Extraction

4 “Deep belief net” approach to unsupervised feature learning

4 Two stages are trained in sequence

@ each stage has a layer of convolutional filters and a layer of
horizontal feature pooling.

@ Naturally shift invariant in the horizontal direction

dFilters of the convolutional net are trained so that the input can
be reconstructed from the features
@ 20 filters at the first stage (layers 1 and 2)
@ 300 filters at the second stage (layers 3 and 4)

4 Scale invariance comes from pyramid. NN EELEF
@ for near-to-far generalization i!ii!i!uuﬁ

0 o O
1 0 A 56 4
119 1 v 5
1 5 s 6
I 3 30 G |
1 5 5 P 5 5 o 5 O
150 0 1
1

net@SCAL Page 62 NEW YORK UNIVERSITY

oooooooo gies, Inc.




Long Range Vision: the Classitier

Online Learning (52 ms)

* Train a logistic regression on every frame, with cross entropy loss function

D_(RIY) Minimize 4 5 categories are learned
A Loss 4 750 samples of each class
Y=F(WX): 5x1 T are kept in a ring buffer:
short term memory.
Logistic .
. W 4 Learning “snaps” to new
Regression . .
environment in about 10
Weights frames
X: 100x1 _ _ _
4 Weights are trained with
Feature Extractor (CNN) stochastic gradient descent
T 4 Regularization by decay to
R: 5x1 default weights
Pyramid Window Input: Label from Stereo
3x12x25
QSCALE Page 63 NEW YORK UNIVERSITY

Technologies, Inc.



Long Range Vision Results

net(>)SCALE page 64

Technologies, Inc.

NEW YORK UNIVERSITY



Long Range Vision Results

net(SCALE



Long Range Vision Results

Stereo Labels Classifier Output

nputimage. _ Stereolgbels | .  Classifier Oufput.

net(SCALE



net(3>)SCALE
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» Vehicle Map (Hyperbolic Polar map)
Legend {jpm Cost Map - = - RGB Map

() Goal " (FastOD T - (FarOD Only)
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

Uncertain

Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen

r FarOD Stereo:
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Vehicle Map (Hyperbolic Polar map)

Legend %Eﬁﬂ} Cost Map

"I Goal "™ (FastOD

Path Planning 25m & FarQD
= Trajectories /
Traversible 15m

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen 5m

-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)
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Vehicle Map (Hyperbolic Polar map)

Legend fgom Cost Map RGB Map
(") Goal "M (FastOD (FarOD Only)

Path Planning 25m
= Trajectories
Traversible 15m

& FarQD

Uncertain
; Om
Quasi-Lethal
M Lethal
B Bumper/Stuck
B Unseen B FastoOD

-10m

S Ly W

FarOD Stereo: Input labels to Neural Network




+ Vehicle Map (Hyperbolic Polar map)
Legend fljifw,ﬁ'{ Cost Map

i 1Goal
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

RGE Map

"M (FastOD - (FarOD Only)

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
B Unseen 5m

-50m
-100m
-200m

2

- FarOD Stereo: Input labels to N

“ NEW YORK UNIVERSITY
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+ Vehicle Map (Hyperbolic Polar map)
Legend %ﬁ@'ﬁt Cost Map

i 1 Goal "™ (FastOD
Path Planning 25m

= Trajectories
Traversible 15m

Uncertain
Quasi-Lethal
M Lethal

M Bumper/Stuck
M Unseen Sm

-5m
-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)

1 e mg 8
. B e k" sl

FarOD Stereo: Input labels to Neural Network
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Videos

’

c#2008 Europa Technologies

net@SCALE Page 73 NEW YORK UNIVERSITY
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