Incremental Learning for Scene Understanding

Karteek Alahari: karteek.alahari@inria.fr
Cordelia Schmid: cordelia.schmid@inria.fr
http://thoth.inria.fr

Location of the internship: The internship will be in the Thoth team at Inria Grenoble, and will be co-supervised by Karteek Alahari (Inria researcher) and Cordelia Schmid (Inria Research Director). The team is specialized in computer vision, in particular visual recognition.

Topic: In the context of learning a network-based representation of data, there is a growing need to perform incremental updates. This problem manifests itself in two scenarios: when additional data samples of existing classes or new data from unseen classes becomes available. Despite their success for several computer vision problems, CNNs are ill-equipped for such incremental learning [2, 4]. For example, adapting the original model trained on a set of classes to additionally represent samples from new classes, in the absence of the initial training data, leads to a phenomenon called “catastrophic forgetting” [1, 3]. This phenomenon is an abrupt degradation of performance on the original set of classes, when the training objective is adapted to the new classes. Our recent work [5] is a first step to address this issue. We proposed an approach for learning object detectors incrementally, with an optimization function to balance the interplay between predictions on the new classes and a new distillation loss which minimizes the discrepancy between responses for old classes from the original and the updated networks. This work now needs to be generalized to other end-to-end frameworks, beyond object detection, such as cross-modal learning. Furthermore, the incremental learning problem for the other challenging scenario with additional samples from known classes needs to be addressed.

Skills and profile: The student must have solid programming skills as well as solid mathematics knowledge (especially linear algebra and statistics). Knowledge of deep learning tools is a strong plus.

References