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1 Team

LEAR is part of the GRAVIR/IMAG laboratory, a Joint Research Unit of INRIA, the Centre National de Recherche
Scienti�que (CNRS), the Institut National Polytechnique de Grenoble (INPG) and the UniversitØ Joseph Fourier
(UJF). LEAR was created of�cially on 1st July 2003, but this report summarizes the activities of its members
throughout all of 2003.

Head of project team

Cordelia Schmid [CR, INRIA]

Vice-head of project team

Bill Triggs [CR, CNRS]

Administrative assistant

Anne Pasteur

Faculty member

Roger Mohr [Professor, ENSIMAG]

Technical staff

Michael Sdika [09/2003-09/2004]

Post-doctoral fellow

Jianguo Zhang [INRIA scholarship, 12/2003-11/2004]

PhD students

Ankur Agarwal [INRIA scholarship]

Charles Bouveyron [MENESR scholarship, starting 09/2003]

Guillaume Bouchard [INRIA scholarship]

Navneet Dalal [INRIA scholarship]

Gyuri Dorkó [INRIA scholarship]
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Student interns

Peter Carbonetto [master, 10/2003-06/2004]

Christine Dratva [DEA IVR, 04/2003-08/2003]

Radek Filip [DEA IVR, 04/2003-06/2003]

Remy Bernard [DEA IVR, 04/2003-06/2003]

Salil Jain [DEA IVR, 06/2003-08/2005, French Embassy scholarship]

Shakti Kamal [third year IIT Delhi, 06/2003-11/2003]

Nipun Kwatra [third year IIT Delhi, 05/2003-07/2003, INRIA-IIT scholarship]

Visiting scientist

FrØdØric Jurie [CR, CNRS, 09/2003-08/2004]

Visiting engineer

Marius Malciu [Pandora Studio, 06/2003-08/2003]

2 Overall objectives

LEAR’s main focus of research is learning based approaches to visual object recognition and scene
interpretation, particularly for image retrieval and video indexing. Understanding the content of ev-
eryday images and videos is one of the most challenging problems in computer vision. The extent to
which we can do this is currently limited, but we believe that very signi�cant advances will be made
over the next few years by combining emerging statistical learning techniques with state of the art
image descriptors. This �eld is also close to a major threshold of applicability: even partial solutions
are likely to enable many new applications.

LEAR’s main research areas are:

� Image description. Many ef�cient lighting and viewpoint invariant image descriptors are now
available, such as for example af�ne-invariant interest points. Our current research aims to
extend these techniques to describe textures, to de�ne more powerful similarity and saliency
measures and to characterize 2D and 3D shape information.

� Learning. Our research on machine learning and statistical modelling is mainly aimed at im-
proving their applicability to visual recognition and computer vision. It includes both the selec-
tion, evaluation and adaptation of existing methods, and the development of new ones designed
to take vision speci�c constraints into account. Particular challenges include: dealing with the
huge amounts of data that image and video collections contain; handling large rich natural class
hierarchies rather than just simple yes/no classi�ers; and capturing enough information about
the domain to allow generalization from just a few images, rather than from large carefully
marked-up training databases.
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� Recognition. Visual object recognition requires the construction of exploitable visual mod-
els for both particular objects and object categories. Achieving good invariance to viewpoint,
lighting, occlusion and background is challenging even for exactly known rigid objects, and
these dif�culties are greatly compounded when reliable generalization across object categories
is needed. Our research combines advanced image description techniques with learning for
good invariance and generalization. Currently the selection and coupling of image descriptors
and learning techniques is done by hand, and one signi�cant challenge is the automation of this
process, for example using automatic feature selection and statistically-based validation diag-
nostics.

3 Scienti�c foundations

3.1 Image description

We believe that the extraction of robust image descriptors is a critical component of any visual recog-
nition system, and even though many ef�cient descriptors are already available, further research is
clearly needed in this area. One can go a certain distance using simplistic descriptors, but their un-
reliability and lack of invariance puts a heavy burden on the learning method and the training data
and ultimately limits the performance that can be achieved. Better descriptors allow simpler learning
methods to be used and produce better separation of classes, potentially allowing generalization from
just a few examples instead of requiring large, carefully engineered training databases.

The kinds of descriptors that we advocate have a certain number of basic properties:

� Locality and redundancy: For resistance to changes of background and occlusions, reduced
sensitivity to changes of viewpoint and variable intra-class geometry, and robustness against
individual feature extraction failures, descriptors should have relatively small spatial support,
but there should be many of them in each image. Schemes based on collections of image patches
or fragments are more robust and better adapted to object-level queries than global whole-image
descriptors.

� Salience: Fragments are not very useful unless they can be extracted automatically and found
again in other images. Hence, rather than using general fragments, we focus on local descriptors
based at particularly salient points � �keypoints� or �points of interest�. This gives a sparser
and hence more ef�cient representation, and one that can be constructed automatically in a
preprocessing step. To be useful, such points must be accurately relocalizable in other images,
with respect to both position and scale.

� Photometric and geometric invariance: The interest points and their descriptors should have
an appropriate degree of invariance to changes of illumination and variations of local image
geometry induced by changes of viewpoint, viewing distance, and local intra-class variability.
In practice, geometric invariance is usually approximated by invariance to Euclidean, similarity
or af�ne transforms of the local image.

� Informativeness: Notwithstanding all of the above types of invariance, the descriptors should
be informative in the sense that they are rich sources of information about image content that can
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easily be exploited in scene characterization and object recognition tasks. Images contain a lot
of variety, so this requires relatively high dimensionality. Just as importantly, the useful infor-
mation should be manifest, not hidden in obscure high-order correlations between coef�cients.
Image formation is essentially a spatial process, so in practice this favours descriptors that code
relative position information manifestly (e.g. context-style descriptors rather than moments or
Fourier descriptors).

Our current research in this area is focused on creating detectors and descriptors that are better
adapted to particular kinds of imagery, incorporating spatial neighbourhood and region constraints to
improve informativeness, and extending the scheme to cover different kinds of locality.

3.2 Learning

We are interested in learning and statistics mainly as technologies for attacking dif�cult vision prob-
lems, so we take an eclectic approach, using a wide variety of techniques ranging from classical sta-
tistical generative and discriminative models to modern kernel, margin and boosting based machines.
Parameter-rich models and limited training data are the norm in vision, so over�tting needs to be
controlled by various types of regularization, model and feature selection, and dimensionality reduc-
tion methods, after being measured using methods such as cross-validation, information criteria and
capacity bounds. Visual descriptors tend to be high dimensional and they typically contain some
redundancy, so we often preprocess data using techniques such as PCA and its nonlinear variants,
ICA, and LLE/Isomap, to reduce it to a more manageable dimensionality. To capture the shapes of
complex probability distributions over high dimensional descriptor spaces, we either �t mixture mod-
els and similar structured semi-parametric probability models, or reduce them to histograms using
vector quantization techniques such as K-means. Missing data is common owing to unknown class
labels, feature detection failures, occlusions and intra-class variability, so we often need to use com-
pletion techniques such as Expectation Maximization. On the discriminative side, machine learning
techniques such as Support Vector Machines, Relevance Vector Machines, and Boosting, are used to
produce �exible classi�ers and regression methods based on visual descriptors. Visual categories have
a rich nested structure, so techniques that handle large numbers of classes and nested classes are es-
pecially interesting to us. Images contain huge amounts of data, so we need to use algorithms suited
to large-scale learning problems, and it is expensive and tedious to label large numbers of training
images, so unsupervised, semi-supervised and transductive learning methods are of particular interest.
Weakly labelled data is also common � for example one may be told that a training image contains
an object of some class, but not where the object is in the image � and variants of unsupervised,
correlational, and co- learning are useful for handling this.

We keep up to date on learning technology by maintaining active links with both the statistics com-
munity, most notably via collaborations with the INRIA projects MISTIS and SELECT (formerly IS2),
and the machine learning one, most notably via the EU project LAVA and the Network of Excellence
PASCAL.

3.3 Recognition

The current state of progress in visual recognition shows clearly that combining advanced image de-
scriptors with modern learning and statistical modelling techniques has the potential to produce very
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signi�cant advances. We believe that taken together and tightly integrated, these techniques have the
potential to to make visual recognition a widespread technology.

The kind of process that we advocate makes full use of the unusual robustness and richness of our
image description methods (see §3.1) to provide a vocabulary of base features that already goes a long
way towards characterizing the category being recognized. The �nal learning based classi�er is thus
mainly responsible for extending the model to larger amounts of intra-class variation and gross changes
of aspect or viewpoint, and for capturing the subtler higher order correlations that are needed to �ne
tune the base performance. That said, our approach is not simply feature extraction then learning:
the integration is actually much tighter than this. Nearly every stage of our descriptor chain uses
learning and statistical modelling in a fundamental way, to generate or select robust invariant features,
to squeeze out redundancy and bring out informativeness. Similarly, to maximize their performance,
the �nal learning methods use descriptor comparison metrics (kernels, reference densities, structural
models) that are intimately based on the statistical properties and invariances (or lack thereof) of the
learned descriptors.

4 Application domains

A solution to the general object recognition problem will enable a wide range of applications including
defense, health care, human-computer interaction, image retrieval and data mining, industrial and per-
sonal robotics, manufacturing, scienti�c image analysis, space exploration, surveillance and security,
and transportation. In fact, with the ever expanding array of image sources, some form of automatic
object recognition technology must eventually be an integral part of every information system. Even
partial solutions are likely to enable many applications.

Our project’s main application domain is image and video indexing. This is an area with huge
potential. For example, it is estimated that 96% of all data currently generated by humanity is personal
images and home videos1 . Currently, we are working on developing indexing techniques for camera
equipped handheld devices such as personal digital assistants, on object-level structuring and index-
ing of feature �lm videos, and on applying our techniques to surveillance in the context of military
applications.

A personal visual assistant is a portable device equipped with a camera that can identify the
category or instance of an object that it sees, and supply the user with associated information. A
software prototype is being developed within the European project LAVA to test and validate our
algorithms.

Object-level video structuring organizes the content of a video in terms of the objects and actions
in it, and thus allows the user to browse and access the video in terms of semantically meaningful units.
Given a set of actors, scenes or actions, the method can �nd other locations in the video where that
combination of entities occurred. The software for these tools is being developed within the European
project VIBES.

Surveillance requires the detection and recognition of objects. In our case, a military application,
the camera is static and the detection is therefore relatively straightforward. The subsequent recogni-
tion should then differentiate between different types of vehicles.

1http://www.sims.berkeley.edu/research/projects/how-much-info/summary.html
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5 Software

5.1 Software for computing local invariant features

Contributed by: Cordelia Schmid, Michael Sdika, Gyuri Dorko, Krystian Mikolajczyk [Oxford].

The local feature extraction programs developed during the PhD of K. Mikolajczyk [Mik02] have
been improved, and executables are available on our web page http://www.inrialpes.fr/
lear/downloads.html. The different detectors and descriptors were compared in our evaluation
of interest points and regions [6]. The images used in this evaluation are also available on the web at
http://www.inrialpes.fr/movi/people/Mikolajczyk/Database.

6 New results

6.1 Image description

Contributed by: Cordelia Schmid, Michael Sdika, FrØdØric Jurie, Bill Triggs, Remy Bernard,
Krystian Mikolajczyk [Oxford], Andrew Zisserman [Oxford], Fred Rothganger [UIUC], Jean Ponce
[UIUC].

Keywords: photometric invariants, grey-level descriptors, shape features, performance
evaluation.

6.1.1 Af�ne-invariant descriptors

We have developed scale- and af�ne-invariant salient point detectors [4, 6] that give excellent perfor-
mance for recognizing both speci�c objects and scenes, and texture and object classes [5, 7].

Scale invariance is obtained by searching for maxima in scale-space. Different functions can be
used to construct the scale-space, for example the Laplacian and the Hessian. A combination of Harris
interest points computed in scale-space with a scale selection based on the Laplacian has shown very
good performance. However, in the presence of signi�cant viewpoint changes, scale invariance alone
no longer suf�ces for reliable recognition, and an extension to af�ne invariance is necessary. This
is obtained by running an iterative af�ne warping procedure that reduces the interest point’s second-
moment matrix to normal form. For each point we then obtain an associated af�ne-invariant region on
which a conventional descriptor can be computed (see �gure 1). A performance evaluation has shown
that the points and their regions can be detected repeatedly in the presence of signi�cant scale changes
(up to a factor 4) and af�ne deformations (viewing angle changes of up to 70 degrees).

Various other approaches for detecting af�ne-invariant interest points or regions have been devel-
oped at Leuven, Oxford and Prague universities, the Leuven detectors combining points and edges
as well as extracting intensity maxima, the Prague one extracting maximally stable connected com-
ponents. We are currently collaborating with Leuven, Oxford and Prague on a comparison of these

[Mik02] K. MIKOLAJCZYK, Detection of local features invariant to affine transformations, PdD Thesis, INPG, July 2002.
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Figure 1: Our af�ne-invariant regions recover the same photometric information despite large changes
of viewpoint, and hence allow rich viewpoint-invariant descriptors to be calculated. Here the method
is used for wide-baseline image matching. Only the regions matched between the two images are
displayed.

approaches. The preliminary results show that the different detectors yield complementary informa-
tion. This comparison will be published, and we will also make the executables, the test images and
the evaluation procedure available on the web.

6.1.2 Performance evaluation of local descriptors

Given a set of stably-detected local image regions, we can calculate local image descriptors based on
them and use these for matching and recognition. The descriptors should be distinctive and at the
same time robust to both changes in the illumination and viewing conditions and inaccuracies of the
region detector. Many different descriptors have been proposed in the literature, but it is currently
unclear which are the most appropriate for particular problems and how their performance depends on
the detector. To help to clarify this, we have evaluated the pairing of several different descriptors with
several different interest point detectors [19].

Our evaluation was carried out for different image types of transformations, using detection/dropout
rates as the main quality criterion. By varying the value of the similarity threshold for declaring a match
between two descriptors, we generate ROC (receiver operating characteristic) curves of the trade-off
between the average detection rate for query images and the false positive rate across the test database
(which in our case contains 1000 images and about 300 000 interest points).

We compared SIFT descriptors, steerable �lters, differential invariants, complex �lters, moment
invariants and image cross-correlation for various different types of interest points. We �nd that the
relative ranking of the descriptors does not depend on the underlying point detector used, and that SIFT
descriptors uniformly perform best. Their success can be explained by their robustness against local-
ization errors and small geometric distortions. Steerable �lters come second, and can be considered a
good choice if a lower-dimensional descriptor is needed.

Some typical results for a signi�cant viewpoint change between the query and database image are
shown in �gure 2, using the af�ne-invariant Harris-Laplace detector. The SIFT descriptors are clearly
the most robust, but note that the differences between descriptors are less important than the improve-
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ment produced by enforcing af�ne invariance: SIFT descriptors computed with only scale-invariant
Harris-Laplace regions (‘HL SIFT’ in the �gure) perform worse than any of the af�ne descriptors
shown here, as the underlying regions are not invariant enough to be redetected reliably. Steerable
�lters come second, but they perform signi�cantly worse than SIFT descriptors here.

Figure 2: Descriptor evaluation for a camera viewpoint change of 60
�, using af�ne-invariant Harris

regions. HL sift is the SIFT descriptor computed for scale-invariant Harris regions.

We are working on improving the current descriptors and have so far developed a descriptor based
on spin images, a rotationally invariant version of the SIFT descriptor, and extended SIFT to higher
order derivatives. A comparison with existing approaches will evaluate the increase in performance.

6.1.3 Shape features

The descriptors presented in the previous two sections are based on the grey-level image information.
Local invariant features based on such information have proven to be very successful for matching
and recognition of speci�c textured objects. Unfortunately, for many objects the only reliable recog-
nition cues are edges or shape, and texture cannot be used as the primary descriptor. In particular, for
category-level recognition, edge and shape are often the only reliable common features between dif-
ferent instances of the category. To cover this case, we have recently developed two different types of
scale-invariant edge descriptors. The �rst characterizes the type of edge pixels by the edge information
in their neighbourhoods [20]. The second extracts local shape structures.

Edge features are edge pixels around which a scale-invariant region is estimated based on the
Laplacian of the grey-level image. Each edge region is described by the distribution of relative posi-
tions and orientations of its surrounding edges. Partial descriptors allow object-based features to be
obtained, even if the feature is on an object boundary.

In contrast, local shape features do not centre the region on an edge pixel, but instead extract in�u-
ence regions that capture the local structure (shape) of the contour image. Our approach detects local
shape convexities by local scale-space maximization of a robust concentricity measure, the entropy of
radial gradient orientations in an annulus whose radius is de�ned by the scale. This is robust to clutter
inside the annulus, occlusions, and spurious edge detections.
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For both types of descriptors, the object is recognized in new images by a series of steps that
apply progressively tighter geometric restrictions. Figure 3 shows some results on bicycles, a largely
�transparent� object category that is dif�cult to handle by conventional methods. In this example, the
object model is learnt from a single image and is correctly detected in the presence of signi�cant scale
changes. The left column shows the results for edge features and the right column for local shape
features.

Figure 3: Detection of object categories based on shape features. Left column: edge features, right
column: local shape features. Top row: features extracted for the training image, bottom row: detection
results.

6.1.4 Multi-view description

It is well-established that a set of images of a rigid 3D object can be used for object recognition.
However, purely image based representations are not optimal as a great deal of redundant information
must be stored and they do not provide a 3D model that can be used for veri�cation. In this work,
we build a 3D model from the images and use it for recognition [22]. We use the af�ne-invariant
patches introduced in section 6.1.1 to represent local surface appearance, and select promising matches
between pairs of images or an object model and an image. We then use the geometric multi-view
consistency constraints studied in the structure-from-motion literature to represent the global object
structure, retain correct matches, and discard incorrect ones. Our experiments show that rigid object
models can be acquired automatically from a few images (�gure 4), and then used effectively for
recognition tasks (�gure 5).
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Figure4: Model gallery:sampleinput imagesandrenderingsof thecorrespondingmodels.

Figure5: Objectrecognitionexperiments.Thetop row shows themodelpatchesthatwerematchedto
theimages,andthebottomrow shows themodelsrecognized,renderedin theirestimatedposes.Note
thattheteddybearin theleftmostcolumnis in aposeradicallydifferentfrom thoseusedto acquireits
model,andthatthereis a signi�cant amountof clutterandocclusionin eachimage.

6.2 Learning

Contributed by: Bill Triggs,GuillaumeBouchard,CordeliaSchmid,CharlesBouveyron,Peter
Carbonetto,NipunKwatra.

Keywords: Discriminative-generative learning,Gaussianmixturemodels,SupportVector
Machines,semi-supervisedlearning,datareduction.


