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2. Overall Objectives

2.1. Introduction
LEAR’s main focus is learning based approaches to visual object recognition and scene interpretation,
particularly for object category detection, image retrieval, video indexing and the analysis of humans and their
movements. Understanding the content of everyday images and videos is one of the fundamental challenges of
computer vision, and we believe that significant advances will be made over the next few years by combining
state-of-the-art image analysis tools with emerging machine learning and statistical modeling techniques.

LEAR’s main research areas are:

• Robust image descriptors and large-scale search. Many efficient lighting and viewpoint invari-
ant image descriptors are now available, such as affine-invariant interest points and histogram of
oriented gradient appearance descriptors. Our research aims at extending these techniques to obtain
better characterizations of visual object classes, for example based on 3D object category repre-
sentations, and at defining more powerful measures for visual salience, similarity, correspondence
and spatial relations. Furthermore, to search in large image datasets we aim at developing efficient
correspondence and search algorithms.

• Statistical modeling and machine learning for visual recognition. Our work on statistical model-
ing and machine learning is aimed mainly at developing techniques to improve visual recognition.
This includes both the selection, evaluation and adaptation of existing methods, and the development
of new ones designed to take vision specific constraints into account. Particular challenges include:
(i) the need to deal with the huge volumes of data that image and video collections contain; (ii) the
need to handle “noisy” training data, i.e., to combine vision with textual data; and (iii) the need
to capture enough domain information to allow generalization from just a few images rather than
having to build large, carefully marked-up training databases.

• Visual category recognition. Visual category recognition requires the construction of exploitable
visual models of particular objects and of categories. Achieving good invariance to viewpoint, light-
ing, occlusion and background is challenging even for exactly known rigid objects, and these diffi-
culties are compounded when reliable generalization across object categories is needed. Our research
combines advanced image descriptors with learning to provide good invariance and generalization.
Currently the selection and coupling of image descriptors and learning techniques is largely done
by hand, and one significant challenge is the automation of this process, for example using auto-
matic feature selection and statistically-based validation. Another option is to use complementary
information, such as text, to improve the modeling and learning process.

• Recognizing humans and their actions. Humans and their activities are one of the most frequent
and interesting subjects in images and videos, but also one of the hardest to analyze owing to the
complexity of the human form, clothing and movements. Our research aims at developing robust
descriptors to characterize humans and their movements. This includes methods for identifying
humans as well as their pose in still images as well as videos. Furthermore, we investigate appropriate
descriptors for capturing the temporal motion information characteristic for human actions. Video,
furthermore, permits to easily acquire large quantities of data often associated with text obtained
from transcripts. Methods will use this data to automatically learn actions despite the noisy labels.

2.2. Highlights of the Year
• Excellent results at TrecVid MED. This year we participated for the second time in the Multimedia

Event Detection (MED) track of TrecVid, one of the major benchmarks in automatic video analysis.
In this task 25 event categories (from “making a sandwich” to “attempting a bicycle trick”) have to
be detected in a video corpus of 4,000 hours. We ranked first out of 13 participants on the ad-hoc
event category task, and 2-nd out of 17 participants for the pre-specified event category task.
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• ERC advanced grant. In 2012 Cordelia Schmid was awarded an ERC advanced grant for the
ALLEGRO project on Active Large-scale LEarninG for visual RecOgnition. The aim of ALLEGRO
is to automatically learn from large quantities of data with weak labels. In 2012 C. Schmid was also
nominated IEEE fellow.

• INRIA Visual Recognition and Machine Learning Summer School. This year we co-organized
the third edition of the INRIA Visual Recognition and Machine Learning Summer School in
Grenoble. It attracted a total of 182 participants (48 from France, 94 from Europe and 40 from
America and Asia).

3. Scientific Foundations

3.1. Image features and descriptors and robust correspondence
Reliable image features are a crucial component of any visual recognition system. Despite much progress,
research is still needed in this area. Elementary features and descriptors suffice for a few applications, but
their lack of robustness and invariance puts a heavy burden on the learning method and the training data,
ultimately limiting the performance that can be achieved. More sophisticated descriptors allow better inter-
class separation and hence simpler learning methods, potentially enabling generalization from just a few
examples and avoiding the need for large, carefully engineered training databases.

The feature and descriptor families that we advocate typically share several basic properties:

• Locality and redundancy: For resistance to variable intra-class geometry, occlusions, changes
of viewpoint and background, and individual feature extraction failures, descriptors should have
relatively small spatial support and there should be many of them in each image. Schemes based
on collections of image patches or fragments are more robust and better adapted to object-level
queries than global whole-image descriptors. A typical scheme thus selects an appropriate set of
image fragments, calculates robust appearance descriptors over each of these, and uses the resulting
collection of descriptors as a characterization of the image or object (a “bag-of-features” approach –
see below).

• Photometric and geometric invariance: Features and descriptors must be sufficiently invariant to
changes of illumination and image quantization and to variations of local image geometry induced
by changes of viewpoint, viewing distance, image sampling and by local intra-class variability. In
practice, for local features geometric invariance is usually approximated by invariance to Euclidean,
similarity or affine transforms of the local image.

• Repeatability and salience: Fragments are not very useful unless they can be extracted reliably
and found again in other images. Rather than using dense sets of fragments, we often focus on
local descriptors based at particularly salient points – “keypoints” or “points of interest”. This
gives a sparser and thus potentially more efficient representation, and one that can be constructed
automatically in a preprocessing step. To be useful, such points must be accurately relocalizable in
other images, with respect to both position and scale.

• Informativeness: Notwithstanding the above forms of robustness, descriptors must also be infor-
mative in the sense that they are rich sources of information about image content that can easily
be exploited in scene characterization and object recognition tasks. Images contain a lot of variety
so high dimensional descriptions are required. The useful information should also be manifest, not
hidden in fine details or obscure high-order correlations. In particular, image formation is essentially
a spatial process, so relative position information needs to be made explicit, e.g. using local feature
or context style descriptors.
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Partly owing to our own investigations, features and descriptors with some or all of these properties have
become popular choices for visual correspondence and recognition, particularly when large changes of
viewpoint may occur. One notable success to which we contributed is the rise of “bag-of-features” methods
for visual object recognition. These characterize images by their (suitably quantized or parametrized) global
distributions of local descriptors in descriptor space. The representation evolved from texton based methods
in texture analysis. Despite the fact that it does not (explicitly) encode much spatial structure, it turns out to be
surprisingly powerful for recognizing more structural object categories.

Our current research on local features is focused on creating detectors and descriptors that are better
adapted to describe object classes, on incorporating spatial neighborhood and region constraints to improve
informativeness relative to the bag-of-features approach, and on extending the scheme to cover different kinds
of locality. Current research also includes the development and evaluation of local descriptors for video, and
associated detectors for spatio-temporal content.

3.2. Statistical modeling and machine learning for image analysis
We are interested in learning and statistics mainly as technologies for attacking difficult vision problems, so we
take an eclectic approach, using a broad spectrum of techniques ranging from classical statistical generative
and discriminative models to modern kernel, margin and boosting based approaches. Hereafter we enumerate
a set of approaches that address some problems encountered in this context.

• Parameter-rich models and limited training data are the norm in vision, so overfitting needs to be es-
timated by cross-validation, information criteria or capacity bounds and controlled by regularization,
model and feature selection.

• Visual descriptors tend to be high dimensional and redundant, so we often preprocess data to reduce
it to more manageable terms using dimensionality reduction techniques including PCA and its non-
linear variants, latent structure methods such as Probabilistic Latent Semantic Analysis (PLSA) and
Latent Dirichlet Allocation (LDA), and manifold methods such as Isomap/LLE.

• To capture the shapes of complex probability distributions over high dimensional descriptor spaces,
we either fit mixture models and similar structured semi-parametric probability models, or reduce
them to histograms using vector quantization techniques such as K-means or latent semantic
structure models.

• Missing data is common owing to unknown class labels, feature detection failures, occlusions and
intra-class variability, so we need to use data completion techniques based on variational methods,
belief propagation or MCMC sampling.

• Weakly labeled data is also common – for example one may be told that a training image contains
an object of some class, but not where the object is in the image – and variants of unsupervised,
semi-supervised and co-training are useful for handling this. In general, it is expensive and tedious
to label large numbers of training images so less supervised data mining style methods are an area
that needs to be developed.

• On the discriminative side, machine learning techniques such as Support Vector Machines, Rele-
vance Vector Machines, and Boosting, are used to produce flexible classifiers and regression methods
based on visual descriptors.

• Visual categories have a rich nested structure, so techniques that handle large numbers of classes and
nested classes are especially interesting to us.

• Images and videos contain huge amounts of data, so we need to use algorithms suited to large-scale
learning problems.

3.3. Visual recognition and content analysis
Current progress in visual recognition shows that combining advanced image descriptors with modern learning
and statistical modeling techniques is producing significant advances. We believe that, taken together and
tightly integrated, these techniques have the potential to make visual recognition a mainstream technology
that is regularly used in applications ranging from visual navigation through image and video databases to
human-computer interfaces and smart rooms.
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The recognition strategies that we advocate make full use of the robustness of our invariant image features
and the richness of the corresponding descriptors to provide a vocabulary of base features that already goes
a long way towards characterizing the category being recognized. Trying to learn everything from scratch
using simpler, non-invariant features would require far too much data: good learning cannot easily make up
for bad features. The final classifier is thus responsible “only” for extending the base results to larger amounts
of intra-class and viewpoint variation and for capturing higher-order correlations that are needed to fine tune
the performance.

That said, learning is not restricted to the classifier and feature sets can not be designed in isolation.
We advocate an end-to-end engineering approach in which each stage of the processing chain combines
learning with well-informed design and exploitation of statistical and structural domain models. Each stage is
thoroughly tested to quantify and optimize its performance, thus generating or selecting robust and informative
features, descriptors and comparison metrics, squeezing out redundancy and bringing out informativeness.

4. Application Domains

4.1. Application Domains
A solution to the general problem of visual recognition and scene understanding will enable a wide variety of
applications in areas including human-computer interaction, retrieval and data mining, medical and scientific
image analysis, manufacturing, transportation, personal and industrial robotics, and surveillance and security.
With the ever expanding array of image and video sources, visual recognition technology is likely to become
an integral part of many information systems. A complete solution to the recognition problem is unlikely
in the near future, but partial solutions in these areas enable many applications. LEAR’s research focuses
on developing basic methods and general purpose solutions rather than on a specific application area.
Nevertheless, we have applied our methods in several different contexts.

Semantic-level image and video access. This is an area with considerable potential for future expansion
owing to the huge amount of visual data that is archived. Besides the many commercial image and video
archives, it has been estimated that as much as 96% of the new data generated by humanity is in the form
of personal videos and images1, and there are also applications centering on on-line treatment of images
from camera equipped mobile devices (e.g. navigation aids, recognizing and answering queries about a
product seen in a store). Technologies such as MPEG-7 provide a framework for this, but they will not
become generally useful until the required mark-up can be supplied automatically. The base technology that
needs to be developed is efficient, reliable recognition and hyperlinking of semantic-level domain categories
(people, particular individuals, scene type, generic classes such as vehicles or types of animals, actions such
as football goals, etc). In a collaboration with Xerox Research Center Europe, supported by a CIFRE grant
from ANRT, we study cross-modal retrieval of images given text queries, and vice-versa. In the context of
the Microsoft-INRIA collaboration we concentrate on retrieval and auto-annotation of videos by combining
textual information (scripts accompanying videos) with video descriptors. In the EU FP7 project AXES we
will further mature such video annotation techniques, and apply them to large archives in collaboration with
partners such as the BBC, Deutsche Welle, and the Netherlands Institute for Sound and Vision.

Visual (example based) search. The essential requirement here is robust correspondence between observed
images and reference ones, despite large differences in viewpoint or malicious attacks of the images. The
reference database is typically large, requiring efficient indexing of visual appearance. Visual search is a key
component of many applications. One application is navigation through image and video datasets, which is
essential due to the growing number of digital capture devices used by industry and individuals. Another
application that currently receives significant attention is copyright protection. Indeed, many images and
videos covered by copyright are illegally copied on the Internet, in particular on peer-to-peer networks or on the
so-called user-generated content sites such as Flickr, YouTube or DailyMotion. Another type of application is

1http://www.sims.berkeley.edu/research/projects/how-much-info/summary.html

http://www.sims.berkeley.edu/research/projects/how-much-info/summary.html
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the detection of specific content from images and videos, which can, for example, be used for finding product
related information given an image of the product. Transfer of such techniques is the goal of the start-up
MilPix, to which our current technologies for image search are licensed. In a collaboration with Technosens
we transfer face recognition technology, which they exploit to identify users of a system and adapt the interface
to the user.

Automated object detection. Many applications require the reliable detection and localization of one or a few
object classes. Examples are pedestrian detection for automatic vehicle control, airplane detection for military
applications and car detection for traffic control. Object detection has often to be performed in less common
imaging modalities such as infrared and under significant processing constraints. The main challenges are the
relatively poor image resolution, the small size of the object regions and the changeable appearance of the
objects. Our industrial project with MBDA is on detecting objects under such conditions in infrared images.

5. Software

5.1. Face recognition
Participants: Guillaume Fortier [correspondant], Jakob Verbeek.

In a collaboration with Technosens (a start-up based in Grenoble) we are developing an efficient face
recognition library. During 18 months Guillaume Fortier, financed by INRIA’s technology transfer program,
had streamlined code developed by different former team members on various platforms. This encompasses
detection of characteristic points on the face (eyes, nose, mouth), computing appearance features on these
points, and learning metrics on the face descriptors that are useful for face verification (faces of the same
person are close, faces of different people are far away). See http://lear.inrialpes.fr/~fortier/software.php.

5.2. Large-scale image classification
Participants: Matthijs Douze [correspondant], Zaid Harchaoui, Florent Perronnin [XRCE], Cordelia Schmid.

JSGD is the implementation of a Stochastic Gradient Descent algorithm used to train linear multiclass
classifiers. It is biased towards large classification problems (many classes, many examples, high dimensional
data). It can be used to reproduce the results from [19] on the ImageNet large scale classification challenge. It
uses several optimization techniques, both algorithmic (scale factors to spare vector multiplications, vector
compression with product quantizers) and technical (vector operations, multithreading, improved cache
locality). It has Python and Matlab interfaces. It is distributed under a Cecill licence. Project page: http://
lear.inrialpes.fr/src/jsgd.

5.3. Fisher vector image representation
Participants: Matthijs Douze [correspondant], Hervé Jégou [TEXMEX Team INRIA Rennes], Cordelia
Schmid.

We developed a package that computes Fisher vectors on sparse or dense local SIFT features. The dense
feature extraction was optimized, so that they can be computed in real time on video data. The implementation
was used for several publications [6], [16] and in our submisssion to the Trecvid 2012 MED task [31]. We
provide a binary version of the local descriptor implementation, and the Fisher implementation is integrated
in the Yael library, with Python and Matlab interface, see http://lear.inrialpes.fr/src/inria_fisher.

5.4. Video descriptors
Participants: Dan Oneata, Cordelia Schmid [correspondant], Heng Wang.

http://lear.inrialpes.fr/~fortier/software.php
http://lear.inrialpes.fr/src/jsgd
http://lear.inrialpes.fr/src/jsgd
http://lear.inrialpes.fr/src/inria_fisher
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We have developed and made on-line available software for video description based on dense trajectories and
motion boundary histograms [28]. The trajectories capture the local motion information of the video. A state-
of-the-art optical flow algorithm enables a robust and efficient extraction of the dense trajectories. Descriptors
are aligned with the trajectories and based on motion boundary histograms (MBH) which are robust to camera
motion. This year we have further developed this software to increase its scalability to large datasets. On the
one hand we explored the effect of sub-sampling the video input both spatially and temporally, and evaluated
the impact on the quality of the descriptors. On the other hand we avoid writing the raw MBH descriptors to
disk, but rather aggregate them directly into a signature for the complete video using Fisher vectors, or bag-
of-word descriptors. This allowed us to use these descriptors on the 4,000 hour video dataset of the TrecVid
2012 MED task.

6. New Results
6.1. Visual recognition in images
6.1.1. Correlation-Based Burstiness for Logo Retrieval

Participants: Matthijs Douze, Jerome Revaud, Cordelia Schmid.

Detecting logos in photos is challenging. A reason is that logos locally resemble patterns frequently seen in
random images. In [21] we propose to learn a statistical model for the distribution of incorrect detections
output by an image matching algorithm. It results in a novel scoring criterion in which the weight of correlated
keypoint matches is reduced, penalizing irrelevant logo detections. In experiments on two very different logo
retrieval benchmarks, our approach largely improves over the standard matching criterion as well as other
state-of-the-art approaches.

Figure 1. Illustration of a logo detected by our method.

6.1.2. Towards Good Practice in Large-Scale Learning for Image Classification
Participants: Zeynep Akata, Zaid Harchaoui, Florent Perronnin [XRCE], Cordelia Schmid.

In [19] we propose a benchmark of several objective functions for large-scale image classification: we compare
the one-vs-rest, multiclass, ranking and weighted average ranking SVMs. Using stochastic gradient descent
optimization, we can scale the learning to millions of images and thousands of classes. Our experimental
evaluation shows that ranking based algorithms do not outperform a one-vs-rest strategy and that the gap
between the different algorithms reduces in case of high-dimensional data. We also show that for one-vs-
rest, learning through cross-validation the optimal degree of imbalance between the positive and the negative
samples can have a significant impact. Furthermore, early stopping can be used as an effective regularization
strategy when training with stochastic gradient algorithms. Following these “good practices”, we were able
to improve the state-of-the-art on a large subset of 10K classes and 9M of images of ImageNet from 16.7%
accuracy to 19.1%. Some qualitative results can be seen in Figure 2.
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(a) Star Anise (92.45%) (b) Geyser (85.45%) (c) Pulp Magazine (83.01%) (d) Carrycot (81.48%)

(e) European gallinule (15.00%) (f) Sea Snake (10.00 %) (g) Paintbrush (4.68 %) (h) Mountain Tent (0.00%)

Figure 4. ImageNet10K results. ImageNet10K contains more than 9 million images from 10179 classes. The classes are ranked according
to their Top-5 classification accuracy. (a-b) are among the first 20 in this ranked list. (e-h) are among the leaf nodes that are classified with
an accuracy of 15, 10, 5 and 0%. Obtained using 10K dim Fisher Vectors and classifiers trained using SGD One-vs-Rest.

while rebalancing the data had little impact on the 130K-
dim FV on ILSVRC 2010, it has a significant impact on
ImageNet10K. This is not in contradiction with our pre-
vious statement that different objective functions perform
similarly on high-dimensional features. We believe this is
because there is no such thing as “high-dimensional” fea-
tures. Features are only high-dimensional with respect to
the complexity of the problem and especially the number
of classes. While 130K-dim is high-dimensional with re-
spect to the 1K categories of ILSVRC 2010, this is not high-
dimensional anymore with respect to the 10K categories of
ImageNet10K.
Timings for ImageNet10K and 130K-dim FVs. For the
computation we used a small cluster of machines with 16
CPUs and 32GB of RAM. The feature extraction (including
SIFT description and FV computation) took approx. 250
CPU days, the learning of the w-OVR SVM approx. 400
CPU days and the learning of the WAR SVM approx. 500
CPU days. Note that w-OVR performs slightly better than
WAR and is much easier to parallelize since the classifiers
can be learned independently.
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Figure 2. ImageNet10K results (top-1 accuracy in %) obtained with w-OVR and 130K-dim Fisher vectors. (a-d)
Sample classes among the best performing ones. (e-h) Sample classes among the worst performing ones.

6.1.3. Discriminative Spatial Saliency for Image Classification
Participants: Frédéric Jurie [Université de Caen], Cordelia Schmid, Gaurav Sharma.

In many visual classification tasks the spatial distribution of discriminative information is (i) non uniform e.g.
“person reading” can be distinguished from “taking a photo” based on the area around the arms i.e. ignoring the
legs, and (ii) has intra class variations e.g. different readers may hold the books differently. Motivated by these
observations, we propose in [22] to learn the discriminative spatial saliency of images while simultaneously
learning a max-margin classifier for a given visual classification task. Using the saliency maps to weight the
corresponding visual features improves the discriminative power of the image representation. We treat the
saliency maps as latent variables and allow them to adapt to the image content to maximize the classification
score, while regularizing the change in the saliency maps. See Figure 3 for an illustration. Our experimental
results on three challenging datasets, for (i) human action classification, (ii) fine grained classification, and
(iii) scene classification, demonstrate the effectiveness and wide applicability of the method.

Figure 3. (a) The images are represented by concatenation of cell bag-of-features weighted by the image saliency
maps. (b) We propose to use a block coordinate descent algorithm for learning our model. As in a latent SVM, we
optimize in one step the weight vector w keeping the saliency maps of the positive images fixed, and in the other

step we optimize the saliency keeping w fixed.

6.1.4. Tree-structured CRF Models for Interactive Image Labeling
Participants: Gabriela Csurka [XRCE], Thomas Mensink, Jakob Verbeek.
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In [8] we propose structured prediction models for image labeling that explicitly take into account dependen-
cies among image labels. In our tree structured models, image labels are nodes, and edges encode dependency
relations. To allow for more complex dependencies, we combine labels in a single node, and use mixtures of
trees. Our models are more expressive than independent predictors, and lead to more accurate label predic-
tions. The gain becomes more significant in an interactive scenario where a user provides the value of some of
the image labels at test time. Such an interactive scenario offers an interesting trade-off between label accuracy
and manual labeling effort. The structured models are used to decide which labels should be set by the user,
and transfer the user input to more accurate predictions on other image labels. We also apply our models to
attribute-based image classification, where attribute predictions of a test image are mapped to class probabili-
ties by means of a given attribute-class mapping. Experimental results on three publicly available benchmark
data sets show that in all scenarios our structured models lead to more accurate predictions, and leverage user
input much more effectively than state-of-the-art independent models.

6.1.5. Metric Learning for Large Scale Image Classification: Generalizing to new classes at
near-zero cost
Participants: Gabriela Csurka [XRCE], Thomas Mensink, Florent Perronnin [XRCE], Jakob Verbeek.

In [18], [27] we consider the task of large scale image classification in open ended datasets. Many real-life
datasets are open-ended and dynamic: new images are continuously added to existing classes, new classes
appear over time and the semantics of existing classes might evolve too. In order to be able to handle
new images and new classes at near-zero cost we consider two distance based classifiers, the k-nearest
neighbor (k-NN) and nearest class mean (NCM) classifiers. For the NCM classifier we introduce a new metric
learning approach, which has advantageous properties over the classical Fisher Discriminant Analysis. We
also introduce an extension of the NCM classifier to allow for richer class representations, using multiple
centroids per class. Experiments on the ImageNet 2010 challenge dataset, which contains over one million
training images of thousand classes, show that, surprisingly, the NCM classifier compares favorably to the
more flexible k-NN classifier. Moreover, the NCM performance is comparable to that of linear SVMs which
obtain current state-of-the-art performance. Experimentally we study the generalization performance to classes
that were not used to learn the metrics. Using a metric learned on 1,000 classes, we show results for the
ImageNet-10K dataset which contains 10,000 classes, and obtain performance that is competitive with the
current state-of-the-art, while being orders of magnitude faster. Furthermore, we show how a zero-shot class
prior based on the ImageNet hierarchy can improve performance when few training images are available. See
Figure 4 for an illustration.

6.2. Learning and statistical models
6.2.1. Image categorization using Fisher kernels of non-iid image models

Participants: Ramazan Cinbis, Cordelia Schmid, Jakob Verbeek.

Bag of visual words treat images as an orderless sets of local regions and represent them by visual word
frequency histograms. Implicitly, regions are assumed to be identically and independently distributed (iid),
which is a very poor assumption from a modeling perspective; see Figure 5 for an illustration. In [13],
we introduce non-iid models by treating the parameters of bag-of-word models as latent variables which
are integrated out, rendering all local regions dependent. Using the Fisher kernel we encode an image by
the gradient of the data log-likelihood with respect to hyper-parameters that control priors on the model
parameters. In fact, our models naturally generate transformations similar to taking square-roots, providing
an explanation of why such non-linear transformations have proven successful. Using variational inference we
extend the basic model to include Gaussian mixtures over local descriptors, and latent topic models to capture
the co-occurrence structure of visual words, both improving performance. Our models yields state-of-the-art
image categorization performance using linear classifiers, without using non-linear kernels, or (approximate)
explicit embeddings thereof, e.g. by taking the square-root of the features.
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Figure 4. Examples of three classes, and the five most similar classes for each according to the standard `2 metric
and our learned Mahalanobis metric.

Figure 5. Illustration of why local image patches are not independent: we can easily guess the image content in the
masked areas.
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6.2.2. Conditional gradient algorithms for machine learning
Participants: Zaid Harchaoui, Anatoli Juditsky [UJF], Arkadi Nemirovski [Georgia Tech].

In [17] we consider convex optimization problems arising in machine learning in high-dimensional settings.
For several important learning problems, such as e.g. noisy matrix completion, state-of-the-art optimization
approaches such as composite minimization algorithms are difficult to apply and do not scale up to large
datasets. We study three conditional gradient-type algorithms, suitable for large-scale problems, and derive
their finite-time convergence guarantees. Promising experimental results are presented on two large-scale real-
world datasets.

6.2.3. Large-scale classification with trace-norm regularization
Participants: Matthijs Douze, Miro Dudik [Microsoft Research], Zaid Harchaoui, Jérôme Malick [BiPoP
Team INRIA Grenoble], Mattis Paulin [ETHZ].

In [16] we introduce a new scalable learning algorithm for large-scale multi-class image classification, based
on the multinomial logistic loss and the trace-norm regularization penalty. Reframing the challenging non-
smooth optimization problem into a surrogate infinite-dimensional optimization problem with a regular `1-
regularization penalty, we propose a simple and provably efficient accelerated coordinate descent algorithm.
Furthermore, we show how to perform efficient matrix computations in the compressed domain for quantized
dense visual features, scaling up to 100,000s examples, 1,000s-dimensional features, and 100s of categories.
Promising experimental results on the “Fungus”, “Ungulate”, and “Vehicles” subsets of ImageNet are pre-
sented, where we show that our approach performs significantly better than state-of-the-art approaches for
Fisher vectors with 16 Gaussians.

6.2.4. Tree-walk kernels for computer vision
Participants: Francis Bach [INRIA SIERRA team], Zaid Harchaoui.

In [25] we propose a family of positive-definite kernels between images, allowing to compute image similarity
measures respectively in terms of color and of shape. The kernels consists in matching subtree-patterns called
"tree-walks" of graphs extracted from the images, e.g. the segmentation graphs for color similarity and graphs
of the discretized shapes or the point clouds in general for shape similarity. In both cases, we are able to design
computationally efficient kernels which can be computed in polynomial-time in the size of the graphs, by
leveraging specific properties of the graphs at hand such as planarity for segmentation graphs or factorizability
of the associated graphical model for point clouds. Our kernels can be used by any kernel-based learning
method, and hence we present experimental results for supervised and semi-supervised classification as well
as clustering of natural images and supervised classification of handwritten digits and Chinese characters from
few training examples.

6.2.5. Lifted coordinate descent for learning with trace-norm regularization
Participants: Miro Dudik [Microsoft Research], Zaid Harchaoui, Jérôme Malick [BiPoP Team INRIA
Grenoble].

In [14] we consider the minimization of a smooth loss with trace-norm regularization, which is a natural
objective in multi-class and multi-task learning. Even though the problem is convex, existing approaches rely
on optimizing a non-convex variational bound, which is not guaranteed to converge, or repeatedly perform
singular-value decomposition, which prevents scaling beyond moderate matrix sizes. We lift the non-smooth
convex problem into an infinitely dimensional smooth problem and apply coordinate descent to solve it. We
prove that our approach converges to the optimum, and is competitive or outperforms the state of the art.

6.3. Recognition in video
6.3.1. Large-scale multi-media event detection in video

Participants: Matthijs Douze, Zaid Harchaoui, Dan Oneata, Danila Potapov, Jerome Revaud, Cordelia
Schmid, Jochen Schwenninger [Fraunhofer Institute, Bonn], Jakob Verbeek, Heng Wang.
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This year we participated in the TrecVid Multimedia Event Detection (MED) task. The goal is to detect events
categories (such as “birthday party”, or “changing a vehicle tire”) in a large collection of around 100,000
videos with a total duration of around 4,000 hours. To this end we implemented an efficient system based
on our recently developed MBH video descriptor (see Section 5.4) , SIFT descriptors and, MFCC audio
descriptors (contributed by Fraunhofer Institute). All these low-level descriptors are encoded using the Fisher
vector representation (see Section 5.3). In addition we implemented an optical character recognition (OCR)
system to extract textual features from the video. The system is described in a forthcoming paper [31], and
ranked first and second in two evaluations among the 17 systems submitted by different international teams
participating to the task. See Figure 6 for an illustration.

Figure 6. Illustration of videos retrieved for two event categories. From left to right, we show for each a frame from
(i) the top ranked video, (ii,iii) the first negative video, and the postive just before, and (iv) the last positive video.

6.3.2. Learning Object Class Detectors from Weakly Annotated Video
Participants: Javier Civera, Vittorio Ferrari, Christian Leistner, Alessandro Prest, Cordelia Schmid.

Object detectors are typically trained on a large set of still images annotated by bounding-boxes. In [20] we
introduce an approach for learning object detectors from real-world web videos known only to contain objects
of a target class. We propose a fully automatic pipeline that localizes objects in a set of videos of the class and
learns a detector for it. The approach extracts candidate spatio-temporal tubes based on motion segmentation
and then selects one tube per video jointly over all videos. See Figure 7 for an illustration. To compare to the
state of the art, we test our detector on still images, i.e., Pascal VOC 2007. We observe that frames extracted
from web videos can differ significantly in terms of quality to still images taken by a good camera. Thus, we
formulate the learning from videos as a domain adaptation task. We show that training from a combination of
weakly annotated videos and fully annotated still images using domain adaptation improves the performance
of a detector trained from still images alone.

6.3.3. Recognizing activities with cluster-trees of tracklets
Participants: Adrien Gaidon, Zaid Harchaoui, Cordelia Schmid.

In [15] we address the problem of recognizing complex activities, such as pole vaulting, which are charac-
terized by the composition of a large and variable number of different spatio-temporal parts. We represent a
video as a hierarchy of mid-level motion components. This hierarchy is a data-driven decomposition specific
to each video. We introduce a divisive clustering algorithm that can efficiently extract a hierarchy over a large
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Figure 7. Yellow boxes represent tubes extracted by our method on the YouTube-Objects dataset. Blue boxes
indicate the automatically selected tubes.

number of local trajectories. We use this structure to represent a video as an unordered binary tree. This tree is
modeled by nested histograms of local motion features, see Figure 8. We provide an efficient positive definite
kernel that computes the structural and visual similarity of two tree decompositions by relying on models of
their edges. Contrary to most approaches based on action decompositions, we propose to use the full hier-
archical action structure instead of selecting a small fixed number of parts. We present experimental results
on two recent challenging benchmarks that focus on complex activities and show that our kernel on per-video
hierarchies allows to efficiently discriminate between complex activities sharing common action parts. Our ap-
proach improves over the state of the art, including unstructured activity models, baselines using other motion
decomposition algorithms, graph matching, and latent models explicitly selecting a fixed number of parts.

6.3.4. Action Detection with Actom Sequence Models
Participants: Adrien Gaidon, Zaid Harchaoui, Cordelia Schmid.

We address the problem of detecting actions, such as drinking or opening a door, in hours of challenging
video data. In [26] we propose a model based on a sequence of atomic action units, termed "actoms", that
are semantically meaningful and characteristic for the action. Our Actom Sequence Model (ASM) represents
the temporal structure of actions as a sequence of histograms of actom-anchored visual features, see Figure 9
for an illutration. Our representation, which can be seen as a temporally structured extension of the bag-of-
features, is flexible, sparse, and discriminative. Training requires the annotation of actoms for action examples.
At test time, actoms are detected automatically based on a non-parametric model of the distribution of actoms,
which also acts as a prior on an action’s temporal structure. We present experimental results on two recent
benchmarks for temporal action detection: "Coffee and Cigarettes" and the "DLSB" dataset. We also adapt
our approach to a classification by detection set-up and demonstrate its applicability on the challenging
"Hollywood 2" dataset. We show that our ASM method outperforms the current state of the art in temporal
action detection, as well as baselines that detect actions with a sliding window method combined with bag-of-
features.
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Figure 8. Illustration of tracklets found in a video and their hierarchical decomposition.

Figure 9. Illustration of the "Actom" video representation, see text for details.
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6.3.5. Action recognition by dense trajectories
Participants: Alexander Kläser, Cheng-Lin Liu [Chinese Academy of Sciences], Cordelia Schmid, Heng
Wang [Chinese Academy of Sciences].

In [28] we introduce a video representation based on dense trajectories and motion boundary descriptors.
Trajectories capture the local motion information of the video. A state-of-the-art optical flow algorithm
enables a robust and efficient extraction of the dense trajectories. As descriptors we extract features aligned
with the trajectories to characterize shape (point coordinates), appearance (histograms of oriented gradients)
and motion (histograms of optical flow). Additionally, we introduce a descriptor based on motion boundary
histograms (MBH) (see the visualization in Figure 10), which is shown to consistently outperform other state-
of-the-art descriptors, in particular on real-world videos that contain a significant amount of camera motion.
We evaluate our video representation in the context of action classification on nine datasets, namely KTH,
YouTube,Hollywood2, UCF sports, IXMAS, UIUC, Olympic Sports, UCF50 and HMDB51. On all datasets
our approach outperforms current state-of-the-art results.

Figure 10. Illustration of the information captured by HOG, HOF, and MBH descriptors. Gradient/flow orientation
is indicated by color (hue) and magnitude by saturation. The optical flow (top, middle) shows constant motion in

the background, which is due to the camera movements. The motion boundaries (right) encode the relative motion
between the person and the background.

7. Bilateral Contracts and Grants with Industry

7.1. Start-up Milpix
Participants: Hervé Jégou [INRIA Rennes], Cordelia Schmid.

In 2007, the start-up company MILPIX has been created by a former PhD student of the LEAR team,
Christopher Bourez. The start-up exploits the technology developed by the LEAR team. Its focus is on large-
scale indexing of images for industrial applications. Two software libraries were licensed to the start-up:
BIGIMBAZ and OBSIDIAN.

7.2. MBDA Aerospatiale
Participants: Albert Gordo, Michael Guerzhoy, Frédéric Jurie [University of Caen], Cordelia Schmid.
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The collaboration with the Aerospatiale section of MBDA has been on-going for several years: MBDA
has funded the PhD of Yves Dufurnaud (1999-2001), a study summarizing the state-of-the-art on
recognition (2004), a one year transfer contract on matching and tracking (11/2005-11/2006) as well as
the PhD of Hedi Harzallah (2007-2010). In September 2010 started a new three-year contract on object
localization and pose estimation.

7.3. MSR-INRIA joint lab: scientific image and video mining
Participants: Anoop Cherian, Adrien Gaidon, Zaid Harchaoui, Yang Hua, Cordelia Schmid.

This collaborative project, starting September 2008, brings together the WILLOW and LEAR project-teams
with researchers at Microsoft Research Cambridge and elsewhere. It builds on several ideas articulated in
the “2020 Science” report, including the importance of data mining and machine learning in computational
science. Rather than focusing only on natural sciences, however, we propose here to expand the breadth of
e-science to include humanities and social sciences. The project focuses on fundamental computer science
research in computer vision and machine learning, and its application to archeology, cultural heritage
preservation, environmental science, and sociology. Adrien Gaidon was funded by this project.

7.4. Xerox Research Center Europe
Participants: Zeynep Akata, Zaid Harchaoui, Thomas Mensink, Cordelia Schmid, Jakob Verbeek.

In a collaborative project with Xerox, staring October 2009, we work on cross-modal information retrieval. The
challenge is to perform information retrieval and document classification in databases that contain documents
in different modalities, such as texts, images, or videos, and documents that contain a combination of these.
The PhD student Thomas Mensink was supported by a CIFRE grant obtained from the ANRT for the period
10/09 – 09/12. A second three-year collaborative project on large scale visual recognition started in 2011. The
PhD student Zeynep Akata is supported by a CIFRE grant obtained from the ANRT for the period 01/11 –
01/14.

7.5. Technosens
Participants: Guillaume Fortier, Cordelia Schmid, Jakob Verbeek.

In October 2010 we started an 18 month collaboration with Technosens (a start-up based in Grenoble) in
applying robust face recognition for application in personalized user interfaces. During 18 months an engineer
financed by INRIA’s technology transfer program, implemented and evaluated our face recognition system on
Technosens hardware. Additional development aimed at dealing with hard real-world conditions.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. QUAERO Project

Participants: Mohamed Ayari, Matthijs Douze, Dan Oneata, Danila Potapov, Alessandro Prest, Jerome
Revaud, Cordelia Schmid, Franck Thollard, Heng Wang.

Quaero is a French-German search engine project supported by OSEO. It runs from 2008 to 2013 and includes
many academic and industrial partners, such as INRIA, CNRS, the universities of Karlsruhe and Aachen as
well as LTU, Exalead and INA. LEAR/INRIA is involved in the tasks of automatic image annotation, image
clustering as well as large-scale image and video search. See http://www.quaero.org for more details.

8.1.2. ANR Project Qcompere
Participants: Guillaume Fortier, Cordelia Schmid, Jakob Verbeek.

http://www.quaero.org
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This three-and-a-half year project started in November 2010. It is aimed at identifying people in video using
both audio (using speech and speaker recognition) and visual data in challenging footage such as news
broadcasts, or movies. The partners of this project are the CNRS laboratories LIMSI and LIG, the university
of Caen, INRIA’s LEAR team, as well as two industrial partners Yacast and Vecsys Research.

8.1.3. ANR Project Physionomie
Participants: Frédéric Jurie [University of Caen], Jakob Verbeek.

Face recognition is nowadays an important technology in many applications ranging from tagging people in
photo albums, to surveillance, and law enforcement. In this 3-year project (2013–2016) the goal is to broaden
the scope of usefulness of face recognition to situations where high quality images are available in a dataset
of known individuals, which have to be identified in relatively poor quality surveillance footage. To this end
we will develop methods that can compare faces despite an asymmetry in the imaging conditions, as well as
methods that can help searching for people based on facial attributes (old/young, male/female, etc.). The tools
will be evaluated by law-enforcement professionals. The participants of this project are: Morpho, SensorIT,
Université de Caen, Université de Strasbourg, Fondation pour la Recherche Stratégique, Préfecture de Police,
Service des Technologies et des Systèmes d’Information de la Sécurité Intérieure, and LEAR.

8.2. European Initiatives
8.2.1. FP7 European Project AXES

Participants: Ramazan Cinbis, Matthijs Douze, Zaid Harchaoui, Dan Oneata, Danila Potapov, Cordelia
Schmid, Jakob Verbeek.

This 4-year project started in January 2011. Its goal is to develop and evaluate tools to analyze and navigate
large video archives, eg. from broadcasting services. The partners of the project are ERCIM, Univ. of
Leuven, Univ. of Oxford, LEAR, Dublin City Univ., Fraunhofer Institute, Univ. of Twente, BBC, Netherlands
Institute of Sound and Vision, Deutsche Welle, Technicolor, EADS, Univ. of Rotterdam. See http://www.axes-
project.eu/ for more information.

8.2.2. FP7 European Network of Excellence PASCAL 2
Participants: Zeynep Akata, Adrien Gaidon, Zaid Harchaoui, Thomas Mensink, Cordelia Schmid, Jakob
Verbeek.

PASCAL (Pattern Analysis, Statistical Modeling and Computational Learning) is a 7th framework EU
Network of Excellence that started in March 2008 for five years. It has established a distributed institute
that brings together researchers and students across Europe, and is now reaching out to countries all over the
world. PASCAL is developing the expertise and scientific results that will help create new technologies such as
intelligent interfaces and adaptive cognitive systems. To achieve this, it supports and encourages collaboration
between experts in machine learning, statistics and optimization. It also promotes the use of machine learning
in many relevant application domains such as machine vision.

8.2.3. ERC Advanced grant Allegro
Participant: Cordelia Schmid.

The ERC advanced grant ALLEGRO will start beginning of 2013 for a duration of five year. The aim
of ALLEGRO is to automatically learn from large quantities of data with weak labels. A massive and
ever growing amount of digital image and video content is available today. It often comes with additional
information, such as text, audio or other meta-data, that forms a rather sparse and noisy, yet rich and
diverse source of annotation, ideally suited to emerging weakly supervised and active machine learning
technology. The ALLEGRO project will take visual recognition to the next level by using this largely untapped
source of data to automatically learn visual models. We will develop approaches capable of autonomously
exploring evolving data collections, selecting the relevant information, and determining the visual models
most appropriate for different object, scene, and activity categories. An emphasis will be put on learning visual
models from video, a particularly rich source of information, and on the representation of human activities,
one of today’s most challenging problems in computer vision.

http://www.axes-project.eu/
http://www.axes-project.eu/
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8.3. International Initiatives
8.3.1. INRIA Associate Teams

• Hyperion: Large-scale statistical learning for visual recognition, 2012–2014
Despite the ever-increasing number of large annotated image and video datasets, designing princi-
pled and scalable statistical learning approaches from such big computer vision datasets remains a
major scientific challenge. In this associate team we collaborate with two teams of University of Cal-
ifornia Berkeley, headed respectively by Prof. Jitendra Malik and Prof. Nourredine El Karoui. It will
allow the three teams to effectively combine their respective strengths in areas such as large-scale
learning theory and algorithms, high-level feature design for computer vision, and high-dimensional
statistical learning theory. It will result in significant progress in domains such as large-scale image
classification, weakly-supervised learning for classification into attributes, and transfer learning.

8.3.2. INRIA International Partners
• Microsoft Research NY: Zaid Harchaoui has been collaborating since the fall 2010 with Miro

Dudik, formerly from Yahoo! Research (until Spring 2012), and now in the recently setup Microsoft
Research New York lab, on lifted coordinate descent algorithms for large-scale learning. This
collaboration lead to several published papers, including an oral presentation at CVPR 2012. Zaid
Harchaoui has visited Microsoft Research NY for one week in the fall 2012. We intend to pursue
this fruitful collaboration in the coming years.

• UC Berkeley: This collaboration between Bin Yu, Jack Gallant, Yuval Benjamini (UC Berkeley),
Ben Willmore (Oxford University) and Julien Mairal (INRIA LEAR) aims to discover the function-
alities of areas of the visual cortex. We have introduced an image representation for area V4, adapting
tools from computer vision to neuroscience data. The collaboration started when Julien Mairal was a
post-doctoral researcher at UC Berkeley and is still ongoing, involving a student from UC Berkeley
working on the extension of the current image model to videos.

• UC Berkeley, Institut Curie: In a collaboration between Jean-Philippe Vert, Elsa Bernard (Institut
Curie), Laurent Jacob (UC Berkeley) and Julien Mairal (INRIA LEAR) we aim to develop novel
efficient optimization techniques for identification and quantification of isoforms from RNA-Seq
data. Elsa Bernard was a master student between April and August 2012. She was co-advised by
Jean-Philippe Vert, Laurent Jacob and Julien Mairal. Elsa Bernard has now started her PhD at Institut
Curie and the collaboration is still ongoing.

• ETH Zürich: We collaborate with V. Ferrari, junior professor at ETH Zürich, and recently appointed
as assistant professor at University of Edinburgh. V. Ferrari and C. Schmid co-supervised a PhD
student (A. Prest) on the subject of automatic learning of objects in images and videos [3], [9], [20].
A. Prest was bi-localized between ETH Zürich and INRIA Grenoble.

8.3.3. Participation In International Programs
• France-Berkeley fund: The LEAR team was awarded a grant from the France-Berkeley fund for

the project with Pr. Jitendra Malik (EECS, UC Berkeley) on "Large-scale learning for image and
video interpretation". The award amounts to 10,000 USD for a period of one year. The funds are
meant to support scientific and scholarly exchanges and collaboration between the two teams.

9. Dissemination

9.1. Scientific Animation
• Conference, workshop, and summer school organization:

– Z. Harchaoui: Co-organizer of the ICML 2012 Workshop on New Trends in RKHS and
kernel-based methods, July 2012.
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– Z. Harchaoui: Co-organizer of the Optimization and Statistical Learning workshop, Les
Houches, January 2013.

– C. Schmid: Co-organizer of the INRIA Visual Recognition and Machine Learning Summer
School, Grenoble, July 2012. Attracted a total of 182 participants (48 from France, 94 from
Europe and 40 from America and Asia).

– C. Schmid: Co-organizer IPAM workshop Large Scale Multimedia Search, January 9–13,
2012.

• Editorial boards:
– C. Schmid: International Journal of Computer Vision, since 2004.
– C. Schmid: Foundations and Trends in Computer Graphics and Vision, since 2005.
– J. Verbeek: Image and Vision Computing Journal, since 2011.

• General chair:
– C. Schmid: CVPR ’15.

• Program chair:
– C. Schmid: ECCV ’12.

• Area chair:
– J. Verbeek: BMVC ’12, ECCV ’12
– C. Schmid: NIPS ’12, CVPR ’13, ICCV ’13

• Program committees:
– AISTATS 2012: Z. Harchaoui.
– BMVC 2012: T. Mensink.
– CVPR 2012: Z. Harchaoui, T. Mensink, C. Schmid, J. Verbeek.
– ECCV 2012: M. Douze, T. Mensink, J. Verbeek.
– ICML 2013: Z. Harchaoui, J. Mairal.
– NIPS 2012: Z. Harchaoui, J. Verbeek.
– WACV 2013: R. Cinbis.
– NIPS computational biology workshop 2012: J. Mairal.

• Prizes:
– C. Schmid was nominated IEEE Fellow, 2012.
– Best paper award of Pattern Recognition journal in 2009 for the paper Description of

interest regions with local binary patterns. M. Heikkila, M. Pietikainen, C. Schmid. Pattern
Recognition Volume 42, Issue 3, March 2009, Pages 425-436, http://hal.inria.fr/inria-
00548650/en.

– We participated in the Multimedia Event Detection track of TrecVid 2012, one of the major
benchmarks in automatic video analysis. We ranked 2-nd out of 17 participants for the pre-
specified event category task, and first out of 13 participants on the ad-hoc event category
task.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Courses taught by team members in 2012:
• Z. Harchaoui, Kernel-based methods for statistical machine learning, 18h, M2, Grenoble University,

France.
• Z. Harchaoui, Tutorial on large-scale learning, 1h, ENS-INRIA Visual Recognition and Machine

Learning Summer School 2012, Grenoble, France.
• J. Revaud and M. Douze, Multimedia Databases, 18h, M2, ENSIMAG, France.
• C. Schmid, Object recognition and computer vision, 10h, M2, ENS ULM, France.
• C. Schmid and J. Verbeek, Machine Learning & Category Representation, 18h, M2, ENSIMAG,

France.
• C. Schmid, Tutorial on image search and classification, 3h, INRIA Visual Recognition and Machine

Learning Summer School 2012, Grenoble, France.

http://hal.inria.fr/inria-00548650/en
http://hal.inria.fr/inria-00548650/en
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9.2.2. Supervision
PhD theses defended in 2012:

• A. Gaidon, Structured Models for Action Recognition in Real-world Videos - Modèles Struc-
turés pour la Reconnaissance d’Actions dans des Vidéos Réalistes [1], Université de Grenoble,
25/10/2012, advisers: Z. Harchaoui and C. Schmid.

• T. Mensink, Apprentissage de Modèles pour la Classification et la Recherche d’Images [2], Univer-
sité de Grenoble, 26/10/2012, advisers: J. Verbeek, G. Csurka, and C. Schmid.

• A. Prest, Weakly supervised methods for learning actions and objects [3], ETHZ, 4/9/2012, advisers:
V. Ferrari, and C. Schmid.

• G. Sharma, Semantic description of humans in images, Université de Caen, 17/12/2012, advisers
C. Schmid and F. Jurie.

9.2.3. Juries
Participation in PhD defense juries:

• J. Verbeek, jury member of PhD committee for N. Elfiky, Computer Vision Centre, Barcelona, Spain,
June 2012.

• C. Schmid, jury member of PhD committee for S. Bak, Université of Sophia-Antipolis, July 2012.

• C. Schmid, jury member of PhD committee for O. Duchenne, ENS Cachan, November 2012.

• C. Schmid, jury member of PhD committee for A. Joulin, ENS Cachan, December 2012.

9.3. Invited presentations
• Z. Akata: Seminar at Computer Vision and Machine Learning group, Institute of Science and

Technology, Vienna, Austria, December 2012.

• A. Gaidon: Presentation at MSR-INRIA CVML workshop, Microsoft Research, Cambridge, UK,
April, 2012.

• A. Gaidon: Seminar at ETH Zürich, Switzerland, April, 2012.

• A. Gaidon: Seminar at Xerox Research Center Europe (XRCE), Meylan, France, May, 2012.

• Z. Harchaoui: Seminar at Gatsby Neuroscience Unit, UCL, London, March 2012.

• Z. Harchaoui: Presentation at International Symposium in Mathematical Programming, Berlin,
August 2012.

• Z. Harchaoui: Seminar at UC Berkeley, September 2012.

• Z. Harchaoui: Presentation at ECML/PKDD Discovery Challenge, Bristol, September 2012.

• Z. Harchaoui: Seminar at Visual Geometry group, Oxford University, October 2012.

• J. Mairal: Seminar at Parietal team, Neurospin, CEA - INRIA, Saclay, France, November 2012.

• J. Mairal: Seminar at Institut Curie, Paris, France, November 2012.

• J. Mairal: Seminar at Willow and Sierra teams, INRIA, Paris, France, November 2012.

• J. Mairal: Seminar at EPFL, Lausanne, Switzerland, November 2012.

• T. Mensink: Seminar at Computer Vision and Machine Learning group, Institute of Science and
Technology, Vienna, Austria, March 2012.

• C. Schmid: Workshop on Large Scale Multimedia Search, Los Angeles, January 2012.

• C. Schmid: Seminar at New York University, May 2012.

• C. Schmid: Seminar at Google, Zürich, May 2012.

• C. Schmid: Seminar at ETHZ, Zürich, May 2012.
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• C. Schmid: Keynote speaker at ACM International Conference on Multimedia Retrieval (ICMR),
Hong Kong, June 2012.

• C. Schmid: Keynote speaker at the International Symposium on Visual Computing, Crete, July 2012.

• C. Schmid: Tutorial on modern features at ECCV 2012, Florence, October 2012.

• C. Schmid: First international workshop on visual analysis and geo-localizaton of large-scale
imagery in conjunction with ECCV’12, Florence, October 2012.

• C. Schmid: Keynote speaker at GdR ISIS, Le Touquet, November 2012.

• C. Schmid: Seminar at UC Berkeley, December 2012.

• J. Verbeek: Seminar at TEXMEX group, INRIA, Rennes, France, April 2012.

• J. Verbeek: Seminar at Computer Vision and Machine Learning group, Institute of Science and
Technology, Vienna, Austria, June 2012.

• J. Verbeek: Seminar at Computer Vision Centre, Barcelona, Spain, June 2012.

9.4. Popularization
• C. Schmid will present in 2013 the research area of visual recognition to a group of school teachers

as well as to a class of high school students.
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