Graphical Models ?

Slide courtesy: Dhruv Batra
What this class is about?

• Making **global** predictions from **local** observations

 Inference

• Learning such models from large quantities of data

 Learning
Motivation

• Consider the example of medical diagnosis

Slide inspired by PGM course, Daphne Koller
Motivation

- A very different example: image segmentation

 Millions of pixels
 Colours / features

Pixel labels
\{building, grass, cow, sky\}

e.g., [He et al., 2004; Shotton et al., 2006; Gould et al., 2009]

Slide inspired by PGM course, Daphne Koller
Motivation

• What do these two problems have in common?

Slide inspired by PGM course, Daphne Koller
Motivation

• What do these two problems have in common?

 – Many variables

 – Uncertainty about the correct answer

Graphical Models (or Probabilistic Graphical Models) provide a framework to address these problems

Slide inspired by PGM course, Daphne Koller
(Probabilistic) Graphical Models

• First, it is a model: a declarative representation
• Can also define the model
 – with domain knowledge
 – from data

Slide inspired by PGM course, Daphne Koller
(Probabilistic) Graphical Models

• Why probabilistic?
• To model uncertainty
• Uncertainty due to:
 – Partial knowledge of state of the world
 – Noisy observations
 – Phenomena not observed by the model
 – Inherent stochasticity
(Probabilistic) Graphical Models

• Probability theory provides
 – Standalone representation with clear semantics
 – Reasoning patterns (conditioning, decision making)
 – Learning methods
(Probabilistic) Graphical Models

• Why graphical?
• Intersection of ideas from probability theory and computer science
 – To represent large number of variables

Predisposing factors
Symptoms
Test results

Millions of pixels
Colours / features

Random variables \(Y_1, \ldots, Y_n \)

Goal: capture uncertainty through joint distribution \(P(Y_1, \ldots, Y_n) \)

Slide inspired by PGM course, Daphne Koller
(Probabilistic) Graphical Models
(Probabilistic) Graphical Model

• Examples

Bayesian network (directed graph) Markov network (undirected graph)

Figure courtesy: D. Koller
(Probabilistic) Graphical Model

• Examples

Diagnosis network: Pradhan et al., UAI’94

Segmentation network (Courtesy D. Koller)
(Probabilistic) Graphical Model

• Intuitive & compact data structure

• Efficient reasoning through general-purpose algorithms

• Sparse parameterization
 – Through expert knowledge, or
 – Learning from data

Slide inspired by PGM course, Daphne Koller
(Probabilistic) Graphical Model

- Many many applications
 - Medical diagnosis
 - Fault diagnosis
 - Natural language processing
 - Traffic analysis
 - Social network models
 - Message decoding
 - Computer vision: segmentation, 3D, pose estimation
 - Speech recognition
 - Robot localization & mapping
Image segmentation

Image
No graphical model
With graphical model

Sturgess et al., 2009
Multi-sensor integration: Traffic

• Learn from historical data to make predictions

Slide courtesy: Eric Horvitz, MSR
Stock market
Going global: Local ambiguity

- Text recognition

Smyth et al., 1994

Slide courtesy: Dhruv Batra
Going global: Local ambiguity

- Textual information extraction

 e.g., Mrs. Green spoke today in New York. Green chairs the financial committee.
Overview of the course

• Representation
 – How do we store $P(Y_1, \ldots Y_n)$
 – Directed and undirected (model implications/assumptions)

• Inference
 – Answer questions with the model
 – Exact and approximate (marginal/most probable estimate)

• Learning
 – What model is right for data
 – Parameters and structure
First, a recap of basics
Graphs

• Concepts
 – Definition of G
 – Vertices/Nodes
 – Edges
 – Directed vs Undirected
 – Neighbours vs Parent/Child
 – Degree vs In/Out degree
 – Walk vs Path vs Cycle
Graphs
Special graphs

• Trees: undirected graph, no cycles
• Spanning tree: Same set of vertices, but subset of edges, connected and no cycles
Directed acyclic graphs (DAGs)
Interpreting Probability

• What does $P(A)$ mean?

• Frequentist view
 – Limit $N \to \infty$, $\#(A \text{ is true})/N$
 – i.e., limiting frequency of a repeating non-deterministic event

• Bayesian view
 – $P(A)$ is your belief about A
Joint distribution

• 3 variables
 – Intelligence (I)
 – Difficulty (D)
 – Grade (G)

• Independent parameters?

<table>
<thead>
<tr>
<th>I</th>
<th>D</th>
<th>G</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i^0</td>
<td>d^0</td>
<td>g^1</td>
<td>0.126</td>
</tr>
<tr>
<td>i^0</td>
<td>d^0</td>
<td>g^2</td>
<td>0.168</td>
</tr>
<tr>
<td>i^0</td>
<td>d^0</td>
<td>g^3</td>
<td>0.126</td>
</tr>
<tr>
<td>i^0</td>
<td>d^1</td>
<td>g^1</td>
<td>0.009</td>
</tr>
<tr>
<td>i^0</td>
<td>d^1</td>
<td>g^2</td>
<td>0.045</td>
</tr>
<tr>
<td>i^0</td>
<td>d^1</td>
<td>g^3</td>
<td>0.126</td>
</tr>
<tr>
<td>i^1</td>
<td>d^0</td>
<td>g^1</td>
<td>0.252</td>
</tr>
<tr>
<td>i^1</td>
<td>d^0</td>
<td>g^2</td>
<td>0.0224</td>
</tr>
<tr>
<td>i^1</td>
<td>d^0</td>
<td>g^3</td>
<td>0.0056</td>
</tr>
<tr>
<td>i^1</td>
<td>d^1</td>
<td>g^1</td>
<td>0.06</td>
</tr>
<tr>
<td>i^1</td>
<td>d^1</td>
<td>g^2</td>
<td>0.036</td>
</tr>
<tr>
<td>i^1</td>
<td>d^1</td>
<td>g^3</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Example courtesy: PGM course, Daphne Koller
Conditioning

- Condition on g^1

Example courtesy: PGM course, Daphne Koller
Conditioning

• $\text{P}(Y = y \mid X = x)$

• Informally,
 – What do you believe about $Y=y$ when I tell you $X=x$?

• $\text{P}(\text{France wins Euro 2020})$?

• What if I tell you:
 – France won the world cup 2018
 – Hasn’t had catastrophic results since 😊
Conditioning: Reduction

• Condition on g^1

<table>
<thead>
<tr>
<th>I</th>
<th>D</th>
<th>G</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i^0</td>
<td>d^0</td>
<td>g^1</td>
<td>0.126</td>
</tr>
<tr>
<td>i^0</td>
<td>d^1</td>
<td>g^1</td>
<td>0.009</td>
</tr>
<tr>
<td>i^1</td>
<td>d^0</td>
<td>g^1</td>
<td>0.252</td>
</tr>
<tr>
<td>i^1</td>
<td>d^1</td>
<td>g^1</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Example courtesy: PGM course, Daphne Koller
Conditioning: Renormalization

Unnormalized measure

Example courtesy: PGM course, Daphne Koller
Conditional probability distribution

- Example $P(G \mid I, D)$

<table>
<thead>
<tr>
<th></th>
<th>g^1</th>
<th>g^2</th>
<th>g^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>i^0, d^0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>i^0, d^1</td>
<td>0.05</td>
<td>0.25</td>
<td>0.7</td>
</tr>
<tr>
<td>i^1, d^0</td>
<td>0.9</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>i^1, d^1</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Example courtesy: PGM course, Daphne Koller
Conditional probability distribution

\[p(x, y \mid Z = z) = \frac{p(x, y, z)}{p(z)} \]

Slide courtesy: Erik Sudderth
Marginalization

\[P(I,D) \quad \text{Marginalize } I \]

Example courtesy: PGM course, Daphne Koller
Marginalization

• Events
 – \(P(A) = P(A \text{ and } B) + P(A \text{ and } \neg B) \)

• Random variables
 – \(P(X = x) = \sum_{y} P(X = x, Y = y) \)
Marginalization

\[p(x, y) = \sum_{z \in \mathcal{Z}} p(x, y, z) \]

\[p(x) = \sum_{y \in \mathcal{Y}} p(x, y) \]

Slide courtesy: Erik Sudderth
Factors

• A factor $\Phi(Y_1,\ldots,Y_k)$

\[\Phi: \text{Val}(Y_1,\ldots,Y_k) \rightarrow R\]

• Scope = \{\(Y_1,\ldots,Y_k\}\}
Factors

• Example: $P(D, I, G)$

<table>
<thead>
<tr>
<th>I</th>
<th>D</th>
<th>G</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i₀</td>
<td>d₀</td>
<td>g¹</td>
<td>0.126</td>
</tr>
<tr>
<td>i₀</td>
<td>d₀</td>
<td>g²</td>
<td>0.168</td>
</tr>
<tr>
<td>i₀</td>
<td>d₀</td>
<td>g³</td>
<td>0.126</td>
</tr>
<tr>
<td>i₀</td>
<td>d¹</td>
<td>g¹</td>
<td>0.009</td>
</tr>
<tr>
<td>i₀</td>
<td>d¹</td>
<td>g²</td>
<td>0.045</td>
</tr>
<tr>
<td>i₀</td>
<td>d¹</td>
<td>g³</td>
<td>0.126</td>
</tr>
<tr>
<td>i¹</td>
<td>d₀</td>
<td>g¹</td>
<td>0.252</td>
</tr>
<tr>
<td>i¹</td>
<td>d₀</td>
<td>g²</td>
<td>0.0224</td>
</tr>
<tr>
<td>i¹</td>
<td>d₀</td>
<td>g³</td>
<td>0.0056</td>
</tr>
<tr>
<td>i¹</td>
<td>d¹</td>
<td>g¹</td>
<td>0.06</td>
</tr>
<tr>
<td>i¹</td>
<td>d¹</td>
<td>g²</td>
<td>0.036</td>
</tr>
<tr>
<td>i¹</td>
<td>d¹</td>
<td>g³</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Example courtesy: PGM course, Daphne Koller
Factors

- Example: $P(D, I, g^1)$

<table>
<thead>
<tr>
<th>I</th>
<th>D</th>
<th>G</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i^0</td>
<td>d^0</td>
<td>g^1</td>
<td>0.126</td>
</tr>
<tr>
<td>i^0</td>
<td>d^1</td>
<td>g^1</td>
<td>0.009</td>
</tr>
<tr>
<td>i^1</td>
<td>d^0</td>
<td>g^1</td>
<td>0.252</td>
</tr>
<tr>
<td>i^1</td>
<td>d^1</td>
<td>g^1</td>
<td>0.06</td>
</tr>
</tbody>
</table>

What is the scope here?

Example courtesy: PGM course, Daphne Koller
General factors

• Not necessarily for probabilities

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^0</td>
<td>b^0</td>
<td>30</td>
</tr>
<tr>
<td>a^0</td>
<td>b^1</td>
<td>5</td>
</tr>
<tr>
<td>a^1</td>
<td>b^0</td>
<td>1</td>
</tr>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>10</td>
</tr>
</tbody>
</table>

Example courtesy: PGM course, Daphne Koller
Factor product

Example courtesy: PGM course, Daphne Koller
Factor marginalization

![Factor marginalization diagram](image)

<table>
<thead>
<tr>
<th>a^1</th>
<th>b^1</th>
<th>c^1</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>c^2</td>
<td>0.35</td>
</tr>
<tr>
<td>a^1</td>
<td>b^2</td>
<td>c^1</td>
<td>0.08</td>
</tr>
<tr>
<td>a^1</td>
<td>b^2</td>
<td>c^2</td>
<td>0.16</td>
</tr>
<tr>
<td>a^2</td>
<td>b^1</td>
<td>c^1</td>
<td>0.05</td>
</tr>
<tr>
<td>a^2</td>
<td>b^1</td>
<td>c^2</td>
<td>0.07</td>
</tr>
<tr>
<td>a^2</td>
<td>b^2</td>
<td>c^1</td>
<td>0</td>
</tr>
<tr>
<td>a^2</td>
<td>b^2</td>
<td>c^2</td>
<td>0</td>
</tr>
<tr>
<td>a^3</td>
<td>b^1</td>
<td>c^1</td>
<td>0.15</td>
</tr>
<tr>
<td>a^3</td>
<td>b^1</td>
<td>c^2</td>
<td>0.21</td>
</tr>
<tr>
<td>a^3</td>
<td>b^2</td>
<td>c^1</td>
<td>0.09</td>
</tr>
<tr>
<td>a^3</td>
<td>b^2</td>
<td>c^2</td>
<td>0.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a^1</th>
<th>c^1</th>
<th>0.33</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^1</td>
<td>c^2</td>
<td>0.51</td>
</tr>
<tr>
<td>a^2</td>
<td>c^1</td>
<td>0.05</td>
</tr>
<tr>
<td>a^2</td>
<td>c^2</td>
<td>0.07</td>
</tr>
<tr>
<td>a^3</td>
<td>c^1</td>
<td>0.24</td>
</tr>
<tr>
<td>a^3</td>
<td>c^2</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Example courtesy: PGM course, Daphne Koller
Factor reduction

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>c^1</td>
<td>0.25</td>
</tr>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>c^2</td>
<td>0.35</td>
</tr>
<tr>
<td>a^1</td>
<td>b^2</td>
<td>c^1</td>
<td>0.08</td>
</tr>
<tr>
<td>a^2</td>
<td>b^1</td>
<td>c^1</td>
<td>0.05</td>
</tr>
<tr>
<td>a^2</td>
<td>b^1</td>
<td>c^2</td>
<td>0.07</td>
</tr>
<tr>
<td>a^2</td>
<td>b^2</td>
<td>c^1</td>
<td>0</td>
</tr>
<tr>
<td>a^2</td>
<td>b^2</td>
<td>c^2</td>
<td>0</td>
</tr>
<tr>
<td>a^3</td>
<td>b^1</td>
<td>c^1</td>
<td>0.15</td>
</tr>
<tr>
<td>a^3</td>
<td>b^1</td>
<td>c^2</td>
<td>0.21</td>
</tr>
<tr>
<td>a^3</td>
<td>b^2</td>
<td>c^1</td>
<td>0.09</td>
</tr>
<tr>
<td>a^3</td>
<td>b^2</td>
<td>c^2</td>
<td>0.18</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>c^1</td>
<td>0.25</td>
</tr>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>c^1</td>
<td>0.08</td>
</tr>
<tr>
<td>a^2</td>
<td>b^1</td>
<td>c^1</td>
<td>0.05</td>
</tr>
<tr>
<td>a^2</td>
<td>b^2</td>
<td>c^1</td>
<td>0</td>
</tr>
<tr>
<td>a^3</td>
<td>b^1</td>
<td>c^1</td>
<td>0.15</td>
</tr>
<tr>
<td>a^3</td>
<td>b^2</td>
<td>c^1</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Why factors?

- Building blocks for defining distributions in high-dimensional spaces
- Set of basic operations for manipulating these distributions
Independent random variables

\[P(x,y) = p(x,y) = p(x)p(y) \]
for all \(x \in \mathcal{X}, y \in \mathcal{Y} \)

Slide courtesy: Erik Sudderth
Marginal independence

- **Sets** of variables X, Y

- X is independent of Y
 - Shorthand: $P \perp (X \perp Y)$

- **Proposition**: P satisfies $(X \perp Y)$ if and only if
 - $P(X=x, Y=y) = P(X=x) P(Y=y), \quad \forall x \in \text{Val}(X), y \in \text{Val}(Y)$
Conditional independence

- **Sets** of variables X, Y, Z

- X is independent of Y given Z if
 - Shorthand: $P \models (X \perp Y \mid Z)$
 - For $P \models (X \perp Y \mid \emptyset)$, write $P \models (X \perp Y)$

- **Proposition:** P satisfies $(X \perp Y \mid Z)$ if and only if
 - $P(X,Y|Z) = P(X|Z) P(Y|Z), \quad \forall x \in \text{Val}(X), y \in \text{Val}(Y), z \in \text{Val}(Z)$
Bayes Rule

• Simple yet profound
• Concepts
 – Likelihood
 • How much does a certain hypothesis explain the data?
 – Prior
 • What do you believe before seeing any data?
 – Posterior
 • What do we believe after seeing the data?
Bayesian Networks

• DAGs
 – nodes represent variables in the Bayesian sense
 – edges represent conditional dependencies

• Example
 – Suppose that we know the following:
 • The flu causes sinus inflammation
 • Allergies cause sinus inflammation
 • Sinus inflammation causes a runny nose
 • Sinus inflammation causes headaches
 – How are these connected?
Bayesian Networks

• Example
Bayesian Networks

• A general Bayes net
 – Set of random variables
 – DAG: encodes independence assumptions
 – Conditional probability trees
 – Joint distribution

\[P(Y_1, \ldots, Y_n) = \prod_{i=1}^{n} P(Y_i | \text{Pa}_{Y_i}) \]
Bayesian Networks

• A general Bayes net
 – How many parameters?
 • Discrete variables Y_1, \ldots, Y_n
 • Graph: Defines parents of Y_i, i.e., (Pa_{Y_i})
 • CPTs: $P(Y_i | Pa_{Y_i})$

Slide courtesy: Dhruv Batra
Markov nets

- Set of random variables

- Undirected graph
 - Encodes independence assumptions

- Factors

Comparison to Bayesian Nets?
Pairwise MRFs

• Composed of pairwise factors
 – A function of two variables
 – Can also have unary terms

• Example

Slide courtesy: Dhruv Batra
Markov Nets: Computing probabilities

- Can only compute ratio of probabilities directly

- Need to normalize with a **partition function**
 - Hard! (sum over all possible assignments)

- In Bayesian Nets, can do by multiplying CPTs

Slide courtesy: Dhruv Batra
Markov nets \leftrightarrow Factorization

• Given an undirected graph H over variables $Y=\{Y_1, \ldots, Y_n\}$

• A distribution P factorizes over H if there exist
 – Subsets of variables $S^i \subseteq Y$ s.t. S^i are fully-connected in H
 – Non-negative potentials (factors) $\Phi_1(S^1), \ldots, \Phi_m(S^m)$: clique potentials
 – Such that

\[
P(Y_1, \ldots, Y_n) = \frac{1}{Z} \prod_{i=1}^{m} \Phi_i(S^i)
\]
Conditional Markov Random Fields

- Also known as: Markov networks, undirected graphical models, MRFs
- Note: Not making a distinction between CRFs and MRFs
- \(X \in \mathcal{X} \) : observed random variables
- \(Y = (Y_1, \ldots, Y_n) \in \mathcal{Y} \) : output random variables
- \(Y_c \) are subset of variables for clique \(c \subseteq \{1, \ldots, n\} \)
- Define a factored probability distribution

\[
P(Y \mid X) = \frac{1}{Z(X)} \prod_c \psi_c(Y_c; X)
\]

Partition function \(= \sum_{Y \in \mathcal{Y}} \prod_c \psi_c(Y_c; X) \)

Exponential number of configurations!
MRFs / CRFs

- Several applications, e.g., computer vision

Low-level vision problems

Interactive figure-ground segmentation [Boykov and Jolly, 2001; Boykov and Funka-Lea, 2006]
Surface context [Hoiem et al., 2005]
Semantic labeling [He et al., 2004; Shotton et al., 2006; Gould et al., 2009]
Stereo matching [Kolmogorov and Zabih, 2001; Scharstein and Szeliski, 2002]
Image denoising [Felzenszwalb and Huttenlocher 2004]
MRFs / CRFs

• Several applications, e.g., computer vision

High-level vision problems
MRFs / CRFs

- Several applications, e.g., medical imaging
MRFs / CRFs

• Inherent in all these problems are graphical models
Maximum a posteriori (MAP) inference

\[y^* = \arg\max_{y \in \mathcal{Y}} P(y | x) \]

\[= \arg\max_{y \in \mathcal{Y}} \frac{1}{Z(x)} \prod_{c} \psi_c(y_c; x) \]

\[= \arg\max_{y \in \mathcal{Y}} \log \left(\frac{1}{Z(x)} \prod_{c} \psi_c(y_c; x) \right) \]

\[= \arg\max_{y \in \mathcal{Y}} \sum_{c} \log \psi_c(y_c; x) - \log Z(x) \]

\[= \arg\max_{y \in \mathcal{Y}} \sum_{c} \log \psi_c(y_c; x) - E(y; x) \]
Maximum a posteriori (MAP) inference

\[y^* = \arg\max_{y \in \mathcal{Y}} P(y \mid x) = \arg\max_{y \in \mathcal{Y}} \sum_c \log \Psi_c(Y_c; X) \]

\[= \arg\min_{y \in \mathcal{Y}} E(y; x) \]

MAP inference ↔ Energy minimization

The energy function is

\[E(Y; X) = \sum_c \psi_c(Y_c; X) \]

where \[\psi_c(\cdot) = -\log \Psi_c(\cdot) \] Clique potential
Clique potentials

- Defines a mapping from an assignment of random variables to a real number

\[\psi_c : \mathcal{Y}_c \times \mathcal{X} \rightarrow \mathbb{R} \]

- Encodes a preference for assignments to the random variables (lower is better)

- Parameterized as \(\psi_c(y_c; x) = \mathbf{w}_c^T \phi_c(y_c; x) \)
Clique potentials

- Arity

\[
E(y; x) = \sum_c \psi_c(y_c; x)
\]

\[
= \sum_{i \in V} \psi^U_i (y_i; x) + \sum_{ij \in E} \psi^P_{ij} (y_i, y_j; x) + \sum_{c \in C} \psi^H_c (y_c; x).
\]

- Unary
- Pairwise
- Higher-order
Clique potentials

- Arity

4-connected, \mathcal{N}_4

8-connected, \mathcal{N}_8
Reason 1: Texture modelling

Training images

Test image

Test image (60% Noise)

Result MRF 4-connected (neighbours)

Result MRF 4-connected

Result MRF 9-connected (7 attractive; 2 repulsive)
Reason 2: Discretization artefacts

4-connected Euclidean

8-connected Euclidean

higher-connectivity can model true Euclidean length

[Boykov et al. ’03; ’05]
Graphical representation

• Example

\[E(y) = \psi(y_1, y_2) + \psi(y_2, y_3) + \psi(y_3, y_4) + \psi(y_4, y_1) \]
Graphical representation

- Example

\[E(y) = \sum_{i,j} \psi(y_i, y_j) \]
Graphical representation

• Example

\[E(y) = \psi(y_1, y_2, y_3, y_4) \]