Discrete Inference and Learning Lecture 4

MVA 2020 – 2021

http://thoth.inrialpes.fr/~alahari/disinflearn

Slides based on material from Nikos Komodakis, M. Pawan Kumar

Outline

- Previous classes
 - Graph cuts, Belief propagation and variants
 - (Inference)
- Today
 - Quick recap of the course
 - Learning parameters

Before moving on...

Project suggestions (also sent by email)

- Implement BP on trees, then graph, extend to TRW, compare
- Implement graph cut + extension (Ishikawa, other multi-label) or variation of implementation + small application
- Complex application of graph cut, requiring modelling (e.g., sequence of images)
- Geometric scene labelling with graph cuts
- Joint modelling of two labelling problems (e.g., segmentation + detection)
- Implement fast primal-dual algorithm + evaluate
- Implement deformable parts model for object detection
- ...
- Or your own (but check with us first)
- Select projects before 25th January and email us (<u>karteek.alahari@inria.fr</u>, <u>guillaume.charpiat@inria.fr</u>)

Projects

- Choose projects before 25/1 (Monday!)
- Presentations on 31/3
 - In English or French
 - 15min, including questions
- Report due on 30/3

Recap

- What inference algorithm would you use for
 - a graph with only chains
 - 2-label problem ?
 - Multi-label problem ?
 - Tree structured graph
 - 2 label problem ?
 - Multi-label problem ?

Recap

- Basics: problem formulation
 - Energy Function
 - MAP Estimation
 - Computing min-marginals
 - Reparameterization
- Solutions
 - Belief Propagation and related methods [Lecture 3]
 - Graph cuts [Lecture 2]

Outline

- Recap of the course
- Learning parameters

Conditional Random Fields (CRFs)

- Ubiquitous in computer vision
 - segmentation stereo matching optical flow image restoration image completion object detection/localization
- and beyond

. . .

- medical imaging, computer graphics, digital communications, physics...
- Really powerful formulation

Conditional Random Fields (CRFs)

- Key task: inference/optimization for CRFs/MRFs
- Extensive research for more than 20 years
- Lots of progress
- Many state-of-the-art methods:
 - Graph-cut based algorithms
 - Message-passing methods
 - LP relaxations
 - Dual Decomposition

```
•
```

MAP inference for CRFs/MRFs

- Hypergraph $G = (\mathcal{V}, \mathcal{C})$
 - Nodes $\,\mathcal{V}\,$
 - Hyperedges/cliques ${\cal C}$

• High-order MRF energy minimization problem

$$MRF_{G}(\mathbf{U}, \mathbf{H}) \equiv \min_{\mathbf{x}} \sum_{q \in \mathcal{V}} U_{q}(x_{q}) + \sum_{c \in \mathcal{C}} H_{c}(\mathbf{x}_{c})$$

unary potential high-order potential (one per node) (one per clique)

- But how do we choose the CRF potentials?
- Through training
 - Parameterize potentials by **w**
 - Use training data to <u>learn</u> correct **w**
- Characteristic example of structured output learning [Taskar], [Tsochantaridis, Joachims]
- Equally, if not more, important than MAP inference
 - Better optimize correct energy (even approximately)
 - Than optimize wrong energy exactly

Outline

- Supervised Learning
- Probabilistic Methods
- Loss-based Methods
- Results

Is this an urban or rural area?

Input: **d**

Output: **x** ∈ {-1,+1}

Is this scan healthy or unhealthy?

Input: **d**

Output: **x** ∈ {-1,+1}

Labeling X = x Label set $L = \{-1,+1\}$

Which city is this?

Input: d

Output: **x** ∈ {1,2,...,h}

What type of tumor does this scan contain?

Input: **d** Output: $x \in \{1, 2, ..., h\}$

Object Detection

Where is the object in the image?

Input: **d**

Output: $\mathbf{x} \in \{\text{Pixels}\}$

Object Detection

Where is the rupture in the scan?

Input: **d**

Output: $\mathbf{x} \in \{\text{Pixels}\}$

Object Detection

Labeling **X** = **x** Label set **L** = {1, 2, ..., h}

What is the semantic class of each pixel?

Input: d

Output: $\mathbf{x} \in \{1, 2, \dots, h\}^{|Pixels|}$

What is the muscle group of each pixel?

Input: d

Output:
$$\mathbf{x} \in \{1, 2, \dots, h\}^{|Pixels|}$$

Labeling **X** = **x** Label set **L** = {1, 2, ..., h}

Labeling X = x Label set $L = \{1, 2, ..., h\}$

- Stereo matching:
 - Z: left, right image
 - X: disparity map

Goal of training:

estimate proper

W

- Denoising:
 - Z: noisy input image

Goal of training:

estimate proper

• X: denoised output image

- Object detection:
 - Z: input image
 - X: position of object parts

Goal of training:

estimate proper

W

 $f = \underset{\mathbf{x}}{\operatorname{argmin}} \operatorname{MRF}_{G}(\mathbf{x}; \mathbf{u}, \mathbf{h})$

$$\begin{aligned} \text{CRF training (some further notation)} \\ \text{MRF}_{G}(\mathbf{x}; \mathbf{u}^{k}, \mathbf{h}^{k}) &= \sum_{p} u_{p}^{k}(x_{p}) + \sum_{c} h_{c}^{k}(\mathbf{x}_{c}) \\ u_{p}^{k}(x_{p}) &= \mathbf{w}^{T} g_{p}(x_{p}, \mathbf{z}^{k}), \ h_{c}^{k}(\mathbf{x}_{c}) &= \mathbf{w}^{T} g_{c}(\mathbf{x}_{c}, \mathbf{z}^{k}) \\ \hline \mathbf{vector valued feature functions}} \end{aligned}$$
$$\\ \text{MRF}_{G}(\mathbf{x}; \mathbf{w}, \mathbf{z}^{k}) &= \mathbf{w}^{T} \left(\sum_{p} g_{p}(x_{p}, \mathbf{z}^{k}) + \sum_{c} g_{c}(\mathbf{x}_{c}, \mathbf{z}^{k}) \right) = \mathbf{w}^{T} g(\mathbf{x}, \mathbf{z}^{k}) \end{aligned}$$

Learning formulations

Risk minimization

$$\hat{\mathbf{x}}^{k} = \arg\min_{\mathbf{x}} \operatorname{MRF}_{G}(\mathbf{x}; \mathbf{w}, \mathbf{z}^{k})$$
$$\min_{\mathbf{w}} \sum_{k=1}^{K} \Delta\left(\mathbf{x}^{k}, \hat{\mathbf{x}}^{k}\right)$$

K training samples $\{(\mathbf{x}^k, \mathbf{z}^k)\}_{k=1}^K$

Regularized Risk minimization

$$\begin{split} \mathbf{\hat{x}}^{k} &= \arg\min_{\mathbf{x}} \mathrm{MRF}_{G}(\mathbf{x}; \mathbf{w}, \mathbf{z}^{k}) \\ & \bigwedge_{\mathbf{w}} R(\mathbf{w}) + \sum_{k=1}^{K} \Delta\left(\mathbf{x}^{k}, \mathbf{\hat{x}}^{k}\right) \\ & \downarrow \\ R(\mathbf{w}) &= ||\mathbf{w}||^{2}, \ ||\mathbf{w}||_{1}, \ \text{etc.} \end{split}$$

Regularized Risk minimization

Choice 1: Hinge loss

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k=1}^{K} L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w})$$

$$L_G\left(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}\right) = \mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) - \min_{\mathbf{x}} \left(\mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) \right)$$

- Upper bounds $\Delta(.)$
- Leads to max-margin learning

$$\mathrm{MRF}_{G}(\mathbf{x}^{k};\mathbf{w},\mathbf{z}^{k}) \leq \mathrm{MRF}_{G}(\mathbf{x};\mathbf{w},\mathbf{z}^{k}) - \Delta(\mathbf{x},\mathbf{x}^{k}) + \xi_{k}$$

energy of ground truth

any other energy desired slack margin

subject to the constraints:

$$\operatorname{MRF}_{G}(\mathbf{x}^{k};\mathbf{w},\mathbf{z}^{k}) \leq \operatorname{MRF}_{G}(\mathbf{x};\mathbf{w},\mathbf{z}^{k}) - \Delta(\mathbf{x},\mathbf{x}^{k}) + \xi_{k}$$

energy of ground truth

any other energy desired slack margin

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k} \xi_k$$

subject to the constraints:

$$\mathrm{MRF}_{G}(\mathbf{x}^{k};\mathbf{w},\mathbf{z}^{k}) \leq \mathrm{MRF}_{G}(\mathbf{x};\mathbf{w},\mathbf{z}^{k}) - \Delta(\mathbf{x},\mathbf{x}^{k}) + \xi_{k}$$

energy of ground truth

any other energy desired slack margin

Choice 2: logistic loss

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k=1}^{K} L_G\left(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}\right)$$

Can be shown to lead to maximum likelihood learning

Max-margin vs Maximum-likelihood

Max-margin vs Maximum-likelihood

Solving the learning formulations

Maximum-likelihood learning

$$\min_{\mathbf{w}} \frac{\mu}{2} ||\mathbf{w}||^2 + \sum_{k=1}^{K} L_G\left(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}\right)$$

$$L_G \left(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w} \right) = \mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) + \log \sum_{\mathbf{x}} e^{-\mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k)}$$
partition function

- Differentiable & convex
- Global optimum via gradient descent, for example

Maximum-likelihood learning

$$\min_{\mathbf{w}} \frac{\mu}{2} ||\mathbf{w}||^2 + \sum_{k=1}^{K} L_G\left(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}\right)$$

$$L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}) = \mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) + \log \sum_{\mathbf{x}} e^{-\mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k)}$$

gradient
$$\longrightarrow \nabla_{\mathbf{w}} = \mathbf{w} + \sum_{k} \left(g(\mathbf{x}^{k}, \mathbf{z}^{k}) - \sum_{\mathbf{x}} p(\mathbf{x}|w, \mathbf{z}^{k}) g(\mathbf{x}, \mathbf{z}^{k}) \right)$$

Recall that: $\operatorname{MRF}_{G}(\mathbf{x}; \mathbf{w}, \mathbf{z}^{k}) = \mathbf{w}^{T} g(\mathbf{x}, \mathbf{z}^{k})$

Maximum-likelihood learning

$$\min_{\mathbf{w}} \frac{\mu}{2} ||\mathbf{w}||^2 + \sum_{k=1}^{K} L_G\left(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}\right)$$

$$L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}) = \mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) + \log \sum_{\mathbf{x}} e^{-\mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k)}$$

gradient
$$\longrightarrow \nabla_{\mathbf{w}} = \mathbf{w} + \sum_{k} \left(g(\mathbf{x}^{k}, \mathbf{z}^{k}) - \sum_{\mathbf{x}} p(\mathbf{x}|w, \mathbf{z}^{k}) g(\mathbf{x}, \mathbf{z}^{k}) \right)$$

- Requires MRF probabilistic inference
- **NP-hard** (exponentially many **x**): approximation via loopy-BP ?

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k=1}^{K} L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w})$$

$$L_G\left(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}\right) = \mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) - \min_{\mathbf{x}} \left(\mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) \right)$$

- Convex but non-differentiable
- Global optimum via subgradient method

Lemma. Let $f(\cdot) = \max_{m=1,...,M} f_m(\cdot)$, with $f_m(\cdot)$ convex and differentiable. A subgradient of f at \mathbf{y} is given by $\nabla f_{\hat{m}}(\mathbf{y})$, where \hat{m} is any index for which $f(\mathbf{y}) = f_{\hat{m}}(\mathbf{y})$.

Lemma. Let $f(\cdot) = \max_{m=1,...,M} f_m(\cdot)$, with $f_m(\cdot)$ convex and differentiable. A subgradient of f at \mathbf{y} is given by $\nabla f_{\hat{m}}(\mathbf{y})$, where \hat{m} is any index for which $f(\mathbf{y}) = f_{\hat{m}}(\mathbf{y})$.

Lemma. Let $f(\cdot) = \max_{m=1,...,M} f_m(\cdot)$, with $f_m(\cdot)$ convex and differentiable. A subgradient of f at \mathbf{y} is given by $\nabla f_{\hat{m}}(\mathbf{y})$, where \hat{m} is any index for which $f(\mathbf{y}) = f_{\hat{m}}(\mathbf{y})$.

subgradient of
$$L_G = g(\mathbf{x}^k, \mathbf{z}^k) - g(\mathbf{\hat{x}}^k, \mathbf{z}^k)$$

 $\mathbf{\hat{x}}^k = \arg\min_{\mathbf{x}} \left(\operatorname{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) \right)$

Max-margin learning (UNCONSTRAINED) $\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k=1}^{K} L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w})$

 $L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}) = \mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) - \min_{\mathbf{x}} \left(\mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) \right)$

Subgradient algorithm

Repeat

- 1. compute global minimizers $\hat{\mathbf{x}}^k$ at current \mathbf{w}
- 2. compute **total subgradient** at current \mathbf{w}
- 3. update w by taking a step in the negative total subgradient direction

until convergence

total subgr. = subgradient_w[
$$R(\mathbf{w})$$
] + $\sum_k (g(\mathbf{x}^k, \mathbf{z}^k) - g(\hat{\mathbf{x}}^k, \mathbf{z}^k))$

Max-margin learning (UNCONSTRAINED) $\min R(\mathbf{w}) + \sum_{k} L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w})$

 $L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}) = \mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) - \left[\min_{\mathbf{x}} \left(\mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) \right) \right]$

k=1

Stochastic subgradient algorithm

Repeat

1. pick k at random

direction

until convergence

- 2. compute global minimizer $\hat{\mathbf{x}}^k$ at current w
- 3. compute partial subgradient at current w
- 4. update \mathbf{w} by taking a step in the negative partial subgradient

MRF-MAP estimation per iteration (unfortunately NP-hard)

partial subgradient = subgradient_w[$R(\mathbf{w})$] + $g(\mathbf{x}^k, \mathbf{z}^k) - g(\mathbf{\hat{x}}^k, \mathbf{z}^k)$

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k} \xi_k$$

subject to the constraints:

$$\mathrm{MRF}_{G}(\mathbf{x}^{k};\mathbf{w},\mathbf{z}^{k}) \leq \mathrm{MRF}_{G}(\mathbf{x};\mathbf{w},\mathbf{z}^{k}) - \Delta(\mathbf{x},\mathbf{x}^{k}) + \xi_{k}$$

$$\min_{\mathbf{w}} \frac{\mu}{2} ||\mathbf{w}||^2 + \sum_k \xi_k$$

subject to the constraints:

$$\mathrm{MRF}_{G}(\mathbf{x}^{k};\mathbf{w},\mathbf{z}^{k}) \leq \mathrm{MRF}_{G}(\mathbf{x};\mathbf{w},\mathbf{z}^{k}) - \Delta(\mathbf{x},\mathbf{x}^{k}) + \xi_{k}$$

linear in \mathbf{w}

- Quadratic program (great!)
- But exponentially many constraints (not so great)

- What if we use only a small number of constraints?
 - Resulting QP can be solved
 - But solution may be infeasible
- **Constraint generation** to the rescue
 - only few constraints active at optimal solution !!
 (variables much fewer than constraints)
 - Given the active constraints, rest can be ignored
 - Then let us try to find them!

Constraint generation

- 1. Start with some constraints
- 2. Solve QP
- 3. Check if solution is feasible w.r.t. to **all** constraints
- 4. If yes, we are done!
- If not, pick a violated constraint and add it to the current set of constraints. Repeat from step 2.
 (optionally, we can also remove inactive constraints)

Constraint generation

- **Key issue:** we must always be able to find a violated constraint if one exists
- Recall the constraints for max-margin learning $MRF_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq MRF_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) + \xi_k$
- To find violated constraint, we therefore need to compute:

$$\hat{\mathbf{x}}^k = \arg\min_{\mathbf{x}} \left(\operatorname{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) \right)$$

(just like subgradient method!)

Constraint generation

- 1. Initialize set of constraints *C* to empty
- 2. Solve QP using current constraints *C* and obtain new (w,ξ)
- 3. Compute global minimizers $\hat{\mathbf{x}}^k$ at current \mathbf{w}
- 4. For each k, if the following constraint is violated then add it to set C: $MRF_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq MRF_G(\hat{\mathbf{x}}^k; \mathbf{w}, \mathbf{z}^k) - \Delta(\hat{\mathbf{x}}^k, \mathbf{x}^k) + \xi_k$
- 5. If no new constraint was added then terminate. Otherwise go to step 2.

MRF-MAP estimation **per sample** (unfortunately **NP-hard**)

$$\min_{\mathbf{w}} \frac{\mu}{2} ||\mathbf{w}||^2 + \sum_k \xi_k$$

subject to the constraints:

 $\operatorname{MRF}_{G}(\mathbf{x}^{k}; \mathbf{w}, \mathbf{z}^{k}) \leq \operatorname{MRF}_{G}(\mathbf{x}; \mathbf{w}, \mathbf{z}^{k}) - \Delta(\mathbf{x}, \mathbf{x}^{k}) + \xi_{k}$

- Alternatively, we can solve above QP in the dual domain
- dual variables \leftrightarrow primal constraints
- Too many variables, but most of them zero at optimal solution
- Use a working-set method (essentially dual to constraint generation)