Graphical Models
Discrete Inference and Learning
Lecture 1

MVA
2021 – 2022

http://thoth.inrialpes.fr/~alahari/disinflearn

Slides based on material from Stephen Gould, Pushmeet Kohli, Nikos Komodakis, M. Pawan Kumar, Carsten Rother, Daphne Koller, Dhruv Batra
Graphical Models ?

Slide courtesy: Dhruv Batra
What this class is about?

• Making **global** predictions from **local** observations

 Inference

• Learning such models from large quantities of data

 Learning
Motivation

• Consider the example of medical diagnosis
Motivation

• A very different example: image segmentation

![Image of a cow in a field with pixel labels]

- Millions of pixels
- Colours / features
- Pixel labels
 - {building, grass, cow, sky}

e.g., [He et al., 2004; Shotton et al., 2006; Gould et al., 2009]

Slide inspired by PGM course, Daphne Koller
Motivation

• What do these two problems have in common?
Motivation

• What do these two problems have in common?
 – Many variables
 – Uncertainty about the correct answer

Graphical Models (or Probabilistic Graphical Models) provide a framework to address these problems

Slide inspired by PGM course, Daphne Koller
(Probabilistic) Graphical Models

• First, it is a model: a declarative representation
• Can also define the model
 – with domain knowledge
 – from data
(Probabilistic) Graphical Models

• Why probabilistic?
• To model uncertainty
• Uncertainty due to:
 – Partial knowledge of state of the world
 – Noisy observations
 – Phenomena not observed by the model
 – Inherent stochasticity
(Probabilistic) Graphical Models

• Probability theory provides
 – Standalone representation with clear semantics
 – Reasoning patterns (conditioning, decision making)
 – Learning methods

Slide inspired by PGM course, Daphne Koller
(Probabilistic) Graphical Models

• Why graphical?
• Intersection of ideas from probability theory and computer science
 – To represent large number of variables

 Predisposing factors
 Symptoms
 Test results

 Millions of pixels
 Colours / features

Random variables \(Y_1, Y_2, \ldots, Y_n \)

Goal: capture uncertainty through joint distribution \(P(Y_1,\ldots,Y_n) \)

Slide inspired by PGM course, Daphne Koller
(Probabilistic) Graphical Models

Graphical Models
- Directed
 - Directed Factor Graph
- Bayesian Networks
 - Dynamic Bayesian networks
 - Influence diagrams
 - Markov chain
 - LDS
- Discrete
- Continuous
- Motion models
- Clustering

Undirected Graphs
- Chain Graphs
- Undirected
 - Markov network
 - Decomposable (tree)
 - Pairwise
 - Clique
 - Junction tree
 - Gumbel, Poisson (count)

Directed Graphs
- Factor Graphs
(Probabilistic) Graphical Model

• Examples

Bayesian network (directed graph)

Markov network (undirected graph)

Figure courtesy: D. Koller
(Probabilistic) Graphical Model

• Examples

Segmentation network (Courtesy D. Koller)

Diagnosis network: Pradhan et al., UAI’94
(Probabilistic) Graphical Model

• Intuitive & compact data structure

• Efficient reasoning through general-purpose algorithms

• Sparse parameterization
 – Through expert knowledge, or
 – Learning from data

Slide inspired by PGM course, Daphne Koller
(Probabilistic) Graphical Model

• Many many applications
 – Medical diagnosis
 – Fault diagnosis
 – Natural language processing
 – Traffic analysis
 – Social network models
 – Message decoding
 – Computer vision: segmentation, 3D, pose estimation
 – Speech recognition
 – Robot localization & mapping

Slide courtesy: PGM course, Daphne Koller
Image segmentation

Image
No graphical model
With graphical model

Sturgess et al., 2009
Multi-sensor integration: Traffic

• Learn from historical data to make predictions
Stock market

Google Inc (NASDAQ:GOOG)

744.00 +41.13 (5.85%)
Real-time: 10:43AM EST
NASDAQ real-time data - Disclaimer
Currency in USD

Compare: Enter ticker here Add Dow Jones Nasdaq BIDU YNDX BCOR MSFT YHOO

Zoom: 1d 5d 1m 2m 5m YTD 1y 5y 10y All
Jan 18, 2013 - Jan 23, 2013 +32.07 (4.51%)

Volume (thous / 2min)

2011 2012

Events
Add GOOG to my calendars

Slide courtesy: Dhruv Batra
Going global: Local ambiguity

• Text recognition

Smyth et al., 1994

Slide courtesy: Dhruv Batra
Going global: Local ambiguity

- Textual information extraction

 e.g., Mrs. Green spoke today in New York. Green chairs the financial committee.

Slide courtesy: PGM course, Daphne Koller
Overview of the course

• Representation
 – How do we store $P(Y_1, \ldots, Y_n)$
 – Directed and undirected (model implications/assumptions)

• Inference
 – Answer questions with the model
 – Exact and approximate (marginal/most probable estimate)

• Learning
 – What model is right for data
 – Parameters and structure
First, a recap of basics
Graphs

• Concepts
 – Definition of G
 – Vertices/Nodes
 – Edges
 – Directed vs Undirected
 – Neighbours vs Parent/Child
 – Degree vs In/Out degree
 – Walk vs Path vs Cycle
Graphs
Special graphs

• Trees: undirected graph, no cycles
• Spanning tree: Same set of vertices, but subset of edges, connected and no cycles

Slide courtesy: D. Batra
Directed acyclic graphs (DAGs)
Interpreting Probability

• What does $P(A)$ mean?
 • Frequentist view
 – Limit $N \to \infty$, $\#(A \text{ is true})/N$
 – i.e., limiting frequency of a repeating non-deterministic event
 • Bayesian view
 – $P(A)$ is your belief about A

Slide courtesy: D. Batra
Joint distribution

• 3 variables
 – Intelligence (I)
 – Difficulty (D)
 – Grade (G)

• Independent parameters?

<table>
<thead>
<tr>
<th>I</th>
<th>D</th>
<th>G</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i₀</td>
<td>d₀</td>
<td>g₁</td>
<td>0.126</td>
</tr>
<tr>
<td>i₀</td>
<td>d₀</td>
<td>g₂</td>
<td>0.168</td>
</tr>
<tr>
<td>i₀</td>
<td>d₀</td>
<td>g₃</td>
<td>0.126</td>
</tr>
<tr>
<td>i₀</td>
<td>d¹</td>
<td>g₁</td>
<td>0.009</td>
</tr>
<tr>
<td>i₀</td>
<td>d¹</td>
<td>g₂</td>
<td>0.045</td>
</tr>
<tr>
<td>i₀</td>
<td>d¹</td>
<td>g₃</td>
<td>0.126</td>
</tr>
<tr>
<td>i¹</td>
<td>d₀</td>
<td>g₁</td>
<td>0.252</td>
</tr>
<tr>
<td>i¹</td>
<td>d₀</td>
<td>g₂</td>
<td>0.0224</td>
</tr>
<tr>
<td>i¹</td>
<td>d₀</td>
<td>g₃</td>
<td>0.0056</td>
</tr>
<tr>
<td>i¹</td>
<td>d¹</td>
<td>g₁</td>
<td>0.06</td>
</tr>
<tr>
<td>i¹</td>
<td>d¹</td>
<td>g₂</td>
<td>0.036</td>
</tr>
<tr>
<td>i¹</td>
<td>d¹</td>
<td>g₃</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Example courtesy: PGM course, Daphne Koller
Conditioning

• Condition on g^1

Example courtesy: PGM course, Daphne Koller
Conditioning

- $P(Y = y \mid X = x)$
- Informally, What do you believe about $Y=y$ when I tell you $X=x$?

- $P($France wins a football tournament in 2021$)$?
- What if I tell you:
 - France won the world cup 2018
 - Hasn’t had catastrophic results since 😊
Conditioning: Reduction

- Condition on g^1

Example courtesy: PGM course, Daphne Koller
Conditioning: Renormalization

Unnormalized measure

Example courtesy: PGM course, Daphne Koller
Conditional probability distribution

- Example $P(G \mid I, D)$

<table>
<thead>
<tr>
<th></th>
<th>g^1</th>
<th>g^2</th>
<th>g^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>i^0, d^0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>i^0, d^1</td>
<td>0.05</td>
<td>0.25</td>
<td>0.7</td>
</tr>
<tr>
<td>i^1, d^0</td>
<td>0.9</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>i^1, d^1</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Example courtesy: PGM course, Daphne Koller
Conditional probability distribution

\[p(x, y \mid Z = z) = \frac{p(x, y, z)}{p(z)} \]
Marginalization

\[P(I,D) \]

Marginalize I

<table>
<thead>
<tr>
<th>I</th>
<th>D</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i^0)</td>
<td>(d^0)</td>
<td>0.282</td>
</tr>
<tr>
<td>(i^0)</td>
<td>(d^1)</td>
<td>0.02</td>
</tr>
<tr>
<td>(i^1)</td>
<td>(d^0)</td>
<td>0.564</td>
</tr>
<tr>
<td>(i^1)</td>
<td>(d^1)</td>
<td>0.134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^0)</td>
<td>0.846</td>
</tr>
<tr>
<td>(d^1)</td>
<td>0.154</td>
</tr>
</tbody>
</table>

Example courtesy: PGM course, Daphne Koller
Marginalization

• Events
 – \(P(A) = P(A \text{ and } B) + P(A \text{ and not } B) \)

• Random variables
 – \(P(X = x) = \sum_{y} P(X = x, Y = y) \)
Marginalization

\[p(x, y) = \sum_{z \in \mathcal{Z}} p(x, y, z) \]

\[p(x) = \sum_{y \in \mathcal{Y}} p(x, y) \]

Slide courtesy: Erik Sudderth
Factors

• A factor $\Phi(Y_1,\ldots,Y_k)$

$\Phi: \text{Val}(Y_1,\ldots,Y_k) \rightarrow \mathbb{R}$

• Scope = $\{Y_1,\ldots,Y_k\}$
Factors

- Example: $P(D, I, G)$

Example courtesy: PGM course, Daphne Koller
Factors

• Example: $P(D, I, g^1)$

What is the scope here?

Example courtesy: PGM course, Daphne Koller
General factors

- Not necessarily for probabilities

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a⁰</td>
<td>b⁰</td>
<td>30</td>
</tr>
<tr>
<td>a⁰</td>
<td>b¹</td>
<td>5</td>
</tr>
<tr>
<td>a¹</td>
<td>b⁰</td>
<td>1</td>
</tr>
<tr>
<td>a¹</td>
<td>b¹</td>
<td>10</td>
</tr>
</tbody>
</table>
Factor product

<table>
<thead>
<tr>
<th></th>
<th>a₁</th>
<th>b₁</th>
<th>c¹</th>
<th>a₂</th>
<th>b₁</th>
<th>c¹</th>
<th>a³</th>
<th>b₁</th>
<th>c¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a²</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a²</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a³</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a³</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Example courtesy: PGM course, Daphne Koller
Factor marginalization

Example courtesy: PGM course, Daphne Koller
Factor reduction

<table>
<thead>
<tr>
<th></th>
<th>a¹</th>
<th>b¹</th>
<th>c¹</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a¹</td>
<td>b¹</td>
<td>c¹</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>a¹</td>
<td>b¹</td>
<td>c²</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>a¹</td>
<td>b²</td>
<td>c¹</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>a¹</td>
<td>b²</td>
<td>c²</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>a²</td>
<td>b¹</td>
<td>c¹</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>a²</td>
<td>b¹</td>
<td>c²</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>a²</td>
<td>b²</td>
<td>c¹</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>a²</td>
<td>b²</td>
<td>c²</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>a³</td>
<td>b¹</td>
<td>c¹</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>a³</td>
<td>b¹</td>
<td>c²</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>a³</td>
<td>b²</td>
<td>c¹</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>a³</td>
<td>b²</td>
<td>c²</td>
<td>0.18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a¹</th>
<th>b¹</th>
<th>c¹</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a¹</td>
<td>b²</td>
<td>c¹</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>a²</td>
<td>b¹</td>
<td>c¹</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>a²</td>
<td>b¹</td>
<td>c²</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>a²</td>
<td>b²</td>
<td>c¹</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>a³</td>
<td>b¹</td>
<td>c¹</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>a³</td>
<td>b²</td>
<td>c¹</td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>
Why factors?

- Building blocks for defining distributions in high-dimensional spaces
- Set of basic operations for manipulating these distributions
Independent random variables

\[P(x, y) = p(x) p(y) \]

for all \(x \in \mathcal{X}, y \in \mathcal{Y} \)

Slide courtesy: Erik Sudderth
Marginal independence

- **Sets** of variables X, Y

- X is independent of Y
 - Shorthand: $P \perp (X \perp Y)$

- **Proposition**: P satisfies $(X \perp Y)$ if and only if
 - $P(X=x, Y=y) = P(X=x) \cdot P(Y=y)$, $\forall x \in \text{Val}(X), \ y \in \text{Val}(Y)$
Conditional independence

- **Sets** of variables X, Y, Z

- X is independent of Y given Z if
 - Shorthand: $P \vdash (X \perp Y \mid Z)$
 - For $P \vdash (X \perp Y \mid \emptyset)$, write $P \vdash (X \perp Y)$

- **Proposition:** P satisfies $(X \perp Y \mid Z)$ if and only if
 - $P(X,Y|Z) = P(X|Z) P(Y|Z), \quad \forall x \in \text{Val}(X), \ y \in \text{Val}(Y), \ z \in \text{Val}(Z)$
Bayes Rule

• Simple yet profound
• Concepts
 – Likelihood
 • How much does a certain hypothesis explain the data?
 – Prior
 • What do you believe before seeing any data?
 – Posterior
 • What do we believe after seeing the data?
Bayesian Networks

• DAGs
 – nodes represent variables in the Bayesian sense
 – edges represent conditional dependencies

• Example
 – Suppose that we know the following:
 • The flu causes sinus inflammation
 • Allergies cause sinus inflammation
 • Sinus inflammation causes a runny nose
 • Sinus inflammation causes headaches
 – How are these connected?
Bayesian Networks

• Example

Slide courtesy: Dhruv Batra
Bayesian Networks

• A general Bayes net
 – Set of random variables
 – DAG: encodes independence assumptions
 – Conditional probability trees
 – Joint distribution

\[P(Y_1, \ldots, Y_n) = \prod_{i=1}^{n} P(Y_i \mid Pa_{Y_i}) \]
Bayesian Networks

• A general Bayes net
 – How many parameters?
 • Discrete variables Y_1, \ldots, Y_n

 • Graph: Defines parents of Y_i, i.e., (Pa_{Y_i})

 • CPTs: $P(Y_i | Pa_{Y_i})$

Slide courtesy: Dhruv Batra
Markov nets

• Set of random variables

• Undirected graph
 – Encodes independence assumptions

• Factors

Comparison to Bayesian Nets ?
Pairwise MRFs

• Composed of pairwise factors
 – A function of two variables
 – Can also have unary terms

• Example
Markov Nets: Computing probabilities

• Can only compute ratio of probabilities directly

• Need to normalize with a **partition function**
 – Hard! (sum over all possible assignments)

• In Bayesian Nets, can do by multiplying CPTs
Markov nets \leftrightarrow Factorization

• Given an undirected graph H over variables $Y = \{Y_1, ..., Y_n\}$

• A distribution P factorizes over H if there exist
 – Subsets of variables $S^i \subseteq Y$ s.t. S^i are fully-connected in H
 – Non-negative potentials (factors) $\Phi_1(S^1), ..., \Phi_m(S^m)$: clique potentials
 – Such that

 \[P(Y_1, ..., Y_n) = \frac{1}{Z} \prod_{i=1}^{m} \Phi_i(S^i) \]
Conditional Markov Random Fields

- Also known as: Markov networks, undirected graphical models, MRFs
- Note: Not making a distinction between CRFs and MRFs
- \(X \in \mathcal{X} \): observed random variables
- \(Y = (Y_1, \ldots, Y_n) \in \mathcal{Y} \): output random variables
- \(Y_c \) are subset of variables for clique \(c \subseteq \{1, \ldots, n\} \)
- Define a factored probability distribution

\[
P(Y \mid X) = \frac{1}{Z(X)} \prod_c \psi_c(Y_c; X)
\]

Partition function

\[
\sum_{Y \in \mathcal{Y}} \prod_c \psi_c(Y_c; X)
\]

Exponential number of configurations!
MRFs / CRFs

- Several applications, e.g., computer vision

Low-level vision problems

- Interactive figure-ground segmentation [Boykov and Jolly, 2001; Boykov and Funka-Lea, 2006]
- Surface context [Hoiem et al., 2005]
- Semantic labeling [He et al., 2004; Shotton et al., 2006; Gould et al., 2009]
- Stereo matching [Kolmogorov and Zabih, 2001; Scharstein and Szeliski, 2002]
- Image denoising [Felzenszwalb and Huttenlocher 2004]
MRFs / CRFs

• Several applications, e.g., computer vision

High-level vision problems

Object detection [Felzenszwalb et al., 2008; Akhter and Black, 2015; Ramakrishna et al., 2012]

Scene understanding
[Fouhey et al., 2014; Ladicky et al., 2010; Xiao et al., 2013; Yao et al., 2012]
MRFs / CRFs

• Several applications, e.g., medical imaging
MRFs / CRFs

- Inherent in all these problems are graphical models

- Pixel labeling
- Object detection
- Pose estimation
- Scene understanding
Maximum a posteriori (MAP) inference

\[y^* = \arg \max_{y \in \mathcal{Y}} P(y \mid x) \]

\[= \arg \max_{y \in \mathcal{Y}} \frac{1}{Z(x)} \prod_c \psi_c(Y_c; X) \]

\[= \arg \max_{y \in \mathcal{Y}} \log \left(\frac{1}{Z(x)} \prod_c \psi_c(Y_c; X) \right) \]

\[= \arg \max_{y \in \mathcal{Y}} \sum_c \log \psi_c(Y_c; X) - \log Z(x) \]

\[= \arg \max_{y \in \mathcal{Y}} \sum_c \log \psi_c(Y_c; X) - E(Y; X) \]
Maximum a posteriori (MAP) inference

\[y^* = \underset{y \in \mathcal{Y}}{\arg\max} \ P(y \mid x) = \underset{y \in \mathcal{Y}}{\arg\max} \ \sum_{c} \log \psi_c(Y_c; X) \]

\[= \underset{y \in \mathcal{Y}}{\arg\min} \ E(y; x) \]

MAP inference \(\Leftrightarrow \) Energy minimization

The energy function is

\[E(Y; X) = \sum_{c} \psi_c(Y_c; X) \]

where \(\psi_c(\cdot) = -\log \psi_c(\cdot) \)
Clique potentials

- Defines a mapping from an assignment of random variables to a real number

\[\psi_c : \mathcal{Y}_c \times \mathcal{X} \rightarrow \mathbb{R} \]

- Encodes a preference for assignments to the random variables (lower is better)

- Parameterized as

\[\psi_c(y_c; x) = w_c^T \phi_c(y_c; x) \]
Clique potentials

- **Arity**

\[
E(y; x) = \sum_{c} \psi_c(y_c; x) = \sum_{i \in \mathcal{V}} \psi_i^U(y_i; x) + \sum_{ij \in \mathcal{E}} \psi_{ij}^P(y_i, y_j; x) + \sum_{c \in \mathcal{C}} \psi_c^H(y_c; x).
\]

- **Unary**
- **Pairwise**
- **Higher-order**
Clique potentials

- Arity

4-connected, \mathcal{N}_4

8-connected, \mathcal{N}_8
Reason 1: Texture modelling

Training images

Test image

Test image (60% Noise)

Result MRF 4-connected (neighbours)

Result MRF 4-connected

Result MRF 9-connected (7 attractive; 2 repulsive)
Reason 2: Discretization artefacts

Higher-connectivity can model true Euclidean length

[Boykov et al. '03; '05]
Graphical representation

- Example

\[E(y) = \psi(y_1, y_2) + \psi(y_2, y_3) + \psi(y_3, y_4) + \psi(y_4, y_1) \]
Graphical representation

- Example

\[E(y) = \sum_{i,j} \psi(y_i, y_j) \]
Graphical representation

- Example

\[E(y) = \psi(y_1, y_2, y_3, y_4) \]

factor graph
A Computer Vision Application

Binary Image Segmentation

How?

Cost function Models our knowledge about natural images

Optimize cost function to obtain the segmentation
A Computer Vision Application

Binary Image Segmentation

Object - white, Background - green/grey

Each vertex corresponds to a pixel

Edges define a 4-neighbourhood grid graph

Assign a label to each vertex from \(L = \{ \text{obj}, \text{bkg} \} \)
A Computer Vision Application

Binary Image Segmentation

Graph $G = (V, E)$

Cost of a labelling $f : V \rightarrow L$

Object - white, Background - green/grey

Per Vertex Cost

Cost of label ‘obj’ low Cost of label ‘bkg’ high
A Computer Vision Application

Binary Image Segmentation

Object - white, Background - green/grey

Cost of a labelling $f : V \rightarrow L$

Cost of label ‘obj’ high Cost of label ‘bkg’ low

UNARY COST
Graph $G = (V,E)$

Cost of a labelling $f : V \rightarrow L$

Object - white, Background - green/grey

Per Edge Cost

Cost of same label low

Cost of different labels high

A Computer Vision Application

Binary Image Segmentation
A Computer Vision Application

Binary Image Segmentation

Graph $G = (V,E)$

Cost of a labelling $f : V \rightarrow L$

Object - white, Background - green/grey

Cost of same label high

Cost of different labels low

Per Edge Cost

PAIRWISE COST
A Computer Vision Application

Binary Image Segmentation

Object - white, Background - green/grey

Graph $G = (V,E)$

Problem: Find the labelling with minimum cost f^*
A Computer Vision Application

Binary Image Segmentation

Graph $G = (V,E)$

Problem: Find the labelling with minimum cost f^*
Another Computer Vision Application

Stereo Correspondence

Disparity Map

How?

Minimizing a cost function
Another Computer Vision Application

Stereo Correspondence

Graph $G = (V,E)$

- Vertex corresponds to a pixel
- Edges define grid graph

$L = \{\text{disparities}\}$
Another Computer Vision Application

Stereo Correspondence

Cost of labelling f:

Unary cost + Pairwise Cost

Find minimum cost f^*
Graph $G = (V, E)$

Discrete label set $L = \{1, 2, \ldots, h\}$

Assign a label to each vertex $f : V \to L$

Cost of a labelling $Q(f)$

Unary Cost \hspace{1cm} Pairwise Cost

Find $f^* = \arg \min Q(f)$
Overview

• Basics: problem formulation
 – Energy Function
 – MAP Estimation
 – Computing min-marginals
 – Reparameterization

• Solutions
 – Relaxations, primal-dual [Lecture 2]
 – Belief Propagation and related methods [Lecture 3]