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Causality

based on the presentation by |. Guyon et al.



Why Causality

Al / ML

* Underspecified Goals = Big Data Cures Everything

* Underspecified Limitations = Big Data Can Do Everything

* Underspecified Caveats = Big Data & Big Brother

Goals in Al

e Fair = Biases

 Accountable = cxplainability

* [ransparent = Decision making can be supported

* Robust = attacks / manipulations



Why Causality —What'’s the Issue with pure Al

 Biases in data, lots of them
e | eads to biased learnt models
e Robustness

* Scope becomes very important

References
 C. O’Nelll, Weapons of Math Destruction, 2016

 Zeynep Tufekci, We’re building a dystopia just to make people
click on ads, Ted Talks, Oct 2017.

4
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ML Approach to Explainable Models

Discriminative or Generative modelling

» Given
D = {(zi,y;),z; € R* i €1...N}, iid samples P(X,Y)
» Supervised learning h: X Y, ie. P(Y|X)

« Generative modelling §: X xY — Ry, ie. P(X,Y)

Lead to Predictive Modelling which will reproduce data biases |

e.g.. If there are lots of umbrellas, then it rains

Caillebotte, 1877




Seurat, 1884
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The Implicit Big Data Promise

* |f you can predict, can you control?

Knowledge -> Prediction -> Control

So How can this be Tested? Interventions

e Think about nutrition

Pearl’s “Do” operator: do(X = a) means that
we Iintervene a system on event X to make
o Economy “a” true (Pearl 2009)

e Think about healthcare

e Climate



The Implicit Big Data Promise

X is a direct cause of Y if when we intervene it Y’s law changes
X —Y 1t

Py \do(X=a,z=c) 7 Py|do(xX=b,2=c)

Example: Cancer, Smoking, and Genetic Factors

($)—~(0)y—c)  Fcldo(s=1,G=0) 7 Pcdo(s=0,G=0)

A

Intervention



Correlation does not Imply Causation

Per capita cheese consumption
correlates with

Number of people who died by becoming tangled in their bedsheets

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Causality is Needed for
Interventions
g 30lbs — 400death;§

28.5lbs 200 deaths
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Bedsheet tanglings-e- Cheese consumed

tylervigen.com

https://www.tylervigen.com/spurious-correlations
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Prediction is not Causation

 Consider
X ~ Uniform(0, 1)
Ey,Ez; ~N(0,1)
Y <« 05X + By
/Y +E,
 Prediction

A

Y =0.250X +0.57

as a causal model suggests that Y depends on Z

Direction of prediction often indistinguishable
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Correlation does not Imply Causation: A Serious Case
Nobel Laureates Ratio —

mem n Switzerland
- Seden X <’Country Wealth
e . Chocolate Consumption
lg 7 Austria: =|=Norway
e et i This means Confounders:
Variables are not Independent
.§ R .. B Wireland M9 Germany chocolate consumption /I nobel laurate ration
g: N Belgcium! l N Fianie -'—Finland
2 5] po|a\nd I"’%Australia PrObable Explanation:
”\%'-L_G.J: dL) Variables are Independent Conditionally to Another Event
o E= _T_ Spain
|- chocolate consumption 1l nobel laurate ration|country wealth

Chocolate Consumption (kg/yr/capita)

Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.
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Causality and Paradoxes

e |f mother smokes, child is small
* Tiny child, implies health issues
 However, P(tiny child, mother smokes)>P(tiny child)
So smoking is beneficial to child’s health?
Explain issues away:
* Multi-causality of children weight
* These causes also affect health
 Compared to these mother smoking is not that bad, but frequency of smoking?

e Conclusions Contain Social Biases: mother is always responsible (autism, etc)

13
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Why Causality

Goals in Al

o Fair = Biases

 Accountable = cxplainability

* [ransparent = Decision making can be supported
 Robust = attacks / manipulations

Causality Argued Advantages

* Decreased sensitivity wrt to Data
* Simulation of Interventions = variable clamping
 Hopes for explanation / bias detection

e Robust

15



Causal Discovery

How

* (Gold Standard = Randomised Controlled Experiments
* Feasiblility =»| ow INn many cases, especially human
* The Al/ML Setting = discovery: infer model from data
What For?

 Understandable, interpretable models
* Prioritise confirmatory experiments: enable some control

 (Generate new data: for simulation, privacy, medical training

16



Applications

* Physics

* Neuroscience
 Epidemiology
« Economy

e Climate

17



How do we do it?



Causal Modelling

Setting

e Assume we have the random variables
Xq1,.... X4
* with a sample joint distribution

D={z; cQ%i=1...n}
Formal Background
o Key concept

e Framework

 Approaches

19



Key Concept 1: Variable (in)Dependency

* Definition of Independency
X1Y + PX,)Y)=PX)P(Y)

« How do we test for independency?
Correlation? It only works for first order linear dependencies

Y = X* 4 € — correlation(X,Y) ~ 0

o9
(Ol
Tan ¥
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Key Concept 1: Variable (in)Dependency

* Definition of Independency
X1Y + PX,)Y)=PX)P(Y)

« How do we test for independency?
Different tests:

_ Y2 ° ~
. Correlation Y = X“ + € — correlation(X,Y) >~ 0
 HSIC, Hilbert-Schmitt Independence Criterion (Gretton et al 05)
HSIC(Prxy),F,G) = [|Cxvlis

where |Cxvy %5 is the Hilbert-Schmitt norm of the kernel correlation
matrix and /.Y are two kernels: i.e. it’s the kernel trick for correlation.

21



Key Concept 2: Conditional (in)Dependency

* Definition of Conditional Independency
X 1 Y|C+ P(X,Y|C)=P(X|C)P(Y|C)

 C=rains, X=wet sidewalk,
Y=people with umbrellas

* Definition of Conditional Dependency
P(C|X,Y) # P(C|X)P(C|Y)
X ALY|IC=1<«+
P(X,Y)=P(X)P(Y)
P(X,Y|C =1)# P(X|C =1)P(Y|C =1)

« X=Complex Machine,
Y=Inexperienced worker, C=Accident

22



Definition of Causal Relationship

X is a direct cause of Y if when we intervene it Y’s law changes
X —Y 1t

Py \do(X=a,z=c) 7 Py|do(xX=b,2=c)

Example: Cancer, Smoking, and Genetic Factors

($)—~(0)y—c)  Fcldo(s=1,G=0) 7 Pcdo(s=0,G=0)

A

Intervention
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Markov Equivalences

Markov Equivalent Class: A 1L C|Band A /L C

V-Structure: 4 /

C'|Band A

C



Key Concept 3: Causality with Distributional Assymetry

* |everages Occam'’s Principle
The causal model as the simplest explaining the data (Janzig 19)

B=fA) ?
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Framework: Functional Causal Models (FCMs)

e Given X1,...,Xawhere Xi = filXpa(x,), £i),
with A Pa(X;) the parents or causes of X;, a deterministic function fi, and E: an error
representing independent random variable.

El But, what do we need for this system to
; represent a causal model?
1
E2 E3 E4 X1 = fi(E1)
.“‘\ /.._. o,v_. X2: f2(X]_,E2)
> f3 fa X3 = f3(X1, E3)
@ B @ Xa = f4(Es)
e X5 = f5(X3, X, Es)

@ P(X1,...,X4) = IP(Xi| X pa(x,)

26



Conditions for Causal Model Representation

» Causal Sufficiency: no unobserved

confounders i.i;.’-‘
. . i
* Causal Markov: all d-separations in the
causal graph G imply conditional By ﬁb\ = Ey
independencies in the observational N\ '4 v

distribution P
. @ ::.Esz} @
e Causal Faithfulness: all conditional vV

independencies in P imply d-separations
in the causal graph G @

27



How Do We Infer the Causal
Model From Data?



Key Approach 1: Constraint-Based Methods

* Constraint-based methods, through V-Structures and constraint propagation, output a
CPDAG (Completed Partially Directed Acyclic Graph).

(%, (%,
QEEOENOENOEEONNO
X %,
% %
(a) The exact DAG of G. (b) The CPDAG of G.

 Examples: Peter-Clark Algorithm (PC) and it’s extensions such as PC-Hist (Spires et al
00, Zhang et al 12)

29



Key Approach 2: Score-Based

* Use an objective function to optimise the graph. For instance the Bayesian information
criterion

BIC(G) = —2In(L) + kIn(n)

* with L the likelihood of the model, k number of parameters, and n the number of samples
* We optimise the sample with operations such as:

 Add an edge

* remove an edge

e revert and dee

* An algorithm for this are Greedy Equivalence Search (GES) by Chickering et al 02.

30



Key Approaches 1 and 2

e Limitations

Computational cost depending on the test/scoring/loss

Data hungry
|dentifiability issues

Example:

X1, Ex,,Ex, ~U(0,1)X;

Xy 1L X5]Y No V-struture

Y <« 0.5X; 4+ Ey,
X2 — Y + EX2

31
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Key Approach 3: Global Optimisation

 Assuming linear causal mechanisms, the system can be formulated in terms of
linear equations
X=B'X+E

where the triangular B matrix can be estimated through ICA for LInGAM (Shimizu
06, Hyvarien 99)

* This also can be done in terms of graphical models (Pearl 09, Friedman 08)

For instance with Max-Min Hill-Climbing (MMHC) by Tsamardinos (06) and
concave penalised Descent (CCDr) by Aragam (15)

32



Key Approach 4: Exploiting Asymmetries

* |f no v-structure is available and causal discovery with 2 variables is hard, we can
leverage asymmetries in the distributions . For instance with the Additive Noise
Model (ANM) of Hoyer (09)

1.1 0.6 0.6
[.50 0.4 04
. %j/ \>S/ — : .’ “eos
1.2 ~ 0.2 “— 0.2
| |
N [.00 :>< 0 O >~‘ 0 0
- e -
0.75 - =
. =2 —0.2 2 —0.2
(].3() e® L (] .'. (] .. ...O & &
—0.4 —0.4
0.25
o 0.6 —0.6
0.00
0.0 0.2 0.4 0.6 0.8 1.0 0 | 2 0.0 0.5 1.0
X Y X
Original data Residuals of X=g(Y) Residuals of Y=f(X)
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Key Approach 4: Exploiting Asymmetries

Limitations
* Restrictive assumptions on the type of causal mechanisms

 Conditional independence is not taken into account

X1, Ex,, Xo ~ N(0,1)X, 1L Ex,,Y 1 Ey,
Y « 0.5X1 + Xo + E4

(X1,Y) and (X2,Y) are a perfectly symmetric pairwise distribution after rescaling.
However, X1 AL Xo|Y g v-structure is at the origin of the data.

34



Key Approach 5: Machine Learning Base

Guyon et al 2014—2015

» Pair Cause-Effect Challenges
 (Gather data: a sample is a pair of variables (Ai,Bi)

 lts label 4 is the “true” causal relation (e.g. age “causes” salary)

e [nput .
E = {(A,’, B,',f,'),f,' n { 7y < ,JJ_}}
Example A;, B; Label ¢;
A; causes B; —
B; causes A; —
A; and B; are independent Al

» Qutput: (4, B) — ¢

35



Key Approach 5: Machine Learning Base

Guyon et al 2014—2015




Summary for “Key Approaches”

Scalability A Methods leveraging:
® GLS / FOGBES - ® Conditional independence
: ® Distributional asymmetries
LINGAM Both
: ® Feature selection
) PC
(2122 T 7= =
5 CAM
® GENIE-3
100 vars. |l oo, .................................. B i R
PC-HSIC
PalrwWilsSe | .o, ,.. ..... P — S ———— LR
Methods : ANM PNL GPI Jarfo
>
Linear Non-Linear General model
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A Python Package for Causal Discovery

All the presented framework 1s available on GitHub at :

https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox

It iIncludes multiple algorithms as well as tools for graph structure.

Published in Kalainathan Goudet 2019 JMLR - Open Source
Software

38
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Simulation Based Inference



Simulation-Based Inference
The setting

 Assume that we have a generative (graphical and parametrical) model to
produce the data. Can we train an inference system such that given a dataset
we can obtain the parameters?

More formally, given:
latent variables 2z ~ p(z|0)

simulated dataset x= ~ p(z|6, 2)

Can we train a system to infer a density
q(0]x)

41



Simulation-Based Inference
Current Approaches (Cranmer et al 2019)

Approximate Bayesian Computation Approximate Bayesian Computation Probabilistic Programming Probabilistic Programming
with Monte Carlo sampling with learned summary statistics with Monte Carlo sampling with Inference Compilation
_ . : X
[ prior ] [ prior J { prior ] proposal data ]
8,z 8, z
ve v Y ,,9, Z X
_ _ augmented
> proposal » proposal data » proposal -
0, z X ’
9 , | "9, ya X
v v
: ’ augmented
simulator @M}L@y | )
statistics w compare >
’ Y
Yy 0, z

X .
compare > compare data importance prior
“|  sampling

\4

A [ posterior J B [ posterior ] C [ posterior ] D posterior

Amortized surrogates

Amortized likelihood Amortized posterior Amortized likelihood ratio trained with augmented data
proposal [ ------mooooooooee ! { prior » proposal [(e------------------- proposal [e-------------------s proposal  [e---------m-moeooooy
6 6 6 | ) §
A4 4 A4 v '
simulator simulator '

simulator : augmented
E simulator
\( \l"/ \1x/ X, t(x,2), r(x,2)

0 , |unsupervised O _|unsupervised 6,| supervised : 6 [ supervised
\ 4 \4 ‘
approximate approximate approximate
likelihood posterior likelihood surrogate

ratio

evaluate

~— optional active learning
~——— optional active learning

—— optional active learning

or J*% data A[ data <L[ data { prior ]_9» L[ data

[ pri
confidence , ! : confidence , : confidence . |
E sets posterior f--------- | F posterior  [--------o-momooooooot G sets posterior |----------i H sote posterior ---------- E

_______________________________________________________________________________

Fig. 1. (A-H) Overview of different approaches to simulation-based inference.
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A Use Case Combining
Graphical Models with
Simulation-Based
Inference In Neuroscience




Part 1

Problem statement
Experimental & Theoretical

44



Pyramidal experimental setups

Kong et al. 2018 - MS-HBM

Functional connectivity modelled via a
Hierarchical Bayesian Model (HBM)

Connectivity with several scales for variability:

e Multiple subjects
e Multiple measurement sessions per subject
e Multiple brain vertices per session

&

group-level DMN
connectivity profile uJ,,

DSRES

inter-subject RSFC

¢ s subject 1&2 DMN connectivity profiles
variability

1 2
Hpan @Nd Upan

&

DMN connectivity profiles pyayy and pgz
of subject 1 session 1&2

intra-subject RSFC
variability

connectivity profiles of PCC X, and

pCun X, in session 1 of subject 1

inter-region RSFC
variability

spatial prior
individual-specific parcellation of subject 1
using all rs-fMRI sessions

Kong et al. 2018 45



Inference in HBMs

e Latent parameters 0 (for instance subject-level functional networks)
e Observed data X (for instance vertices connectivity in a given session)

The generative Hierarchical Bayesian Model defines the joint probability:

p(X, 0) = p(X | 6) x p(6)
Our goal is to obtain the posterior distribution:
p(6 | X)

Inference can be amortized: once a training overhead has been paid for, we want to
obtain the posterior distribution of 6 given any data point X

&

group-level DMN
connectivity profile uJ,,

inter-subject RSFC

¢ subject 1&2 DMN connectivity profiles
variability

1 2
Uppan @Nd Upan

intra-subject RSFC
variability

DMN connectivity profiles uj, and ubZ .,

of subject 1 session 1&2

inter-region RSFC
variability

connectivity profiles of PCC X, and

pCun X, in session 1 of subject 1

spatial prior
individual-specific parcellation of subject 1
using all rs-fMRI sessions

Kong et al. 2018 46



Variational Inference (VI)

A popular inference framework (Blei et al. 2017)

Posits the inference problem as an optimization: we consider a variational family and look in this
family for the function “closest” to our target:

g €Q/q) ~pl| X)

VI now leverages automatic differentiation in modern ML frameworks to look for the optimal
function (ADVI Kucukelbir et al. 2016)

Structured VI aims at exploiting the forward model’s structure to improve even further the
variational family (ASVI Ambrogioni et al. 2021, Weilbach et al. 2020, CF Ambrogioni et al. 2021)
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A massive dimensionality for the ground HBM

In the MS-HBM
(Kong et al. 2018) :

@ e population network

connectivity D
= 1483 -

subject network
S=40

. ! _ session hetwork
1T . T=4

(for every subject)

Total number of parameters: O(STD)
~ 5 millions !
— prohibits traditional methods 48



A synthetic template HBM

See Koller et Friedman (2009)

o template >

OROENORO

plates

@S

. template RVs

49



ADAVI: structured VI exploiting plates

Plates translate i.i.d sampling from a common distribution: there
IS a strong symmetry in the forward HBM (several identical
sub-graphs in the ground graph)

ADAV/I’s main idea is to exploit that symmetry to reduce the
variational family’s number of parameters (and improve its
performance)

We want to scale our parametrization over the dimensionality of
the graph template and NOT the ground graph

50



Breaking down the acronym
ADAVI:

e Automatic: the variational family is derived
directly from the forward HBM

e Dual: a backward model is constructed that Dual
goes from data X to parameters 6 Model Backward

e Amortized: once trained, the posterior is Model
available for every data point X

e VI: we use optimization to derive the
variational posterior

Forward

51



Part 2

Methodological overview
Subpart A: pyramidal HBMs

52



Definition of a pyramidal HBM

e A simpler class of problems to build our proof-of-concept
architecture...

e ..yet expressive enough to encompass “real-life” models

e A subclass of plate-enriched Hierarchical Bayesian Models

Pyramidal HBM =

“a single stack of plates with a single observed data at the bottom”

53



Graphical overview: no colliding plates

54



The notion of a RV’s hierarchy

HlerarChy 1 ..................

Hleral’Chy O ..................

Hierarchy =
How “high” is a RV In
the pyramid

55



O = |latent . = observed

Graphical overview: unique observed data at last hierarchy

O

56



ADAVI: 2 main building blocks

e A hierarchical encoder (HE) that encodes the observed data X
across multiple hierarchies

e A set of conditional density estimators that approximate the
posterior distribution

We'll review sequentially those items

57



Part 2

Methodological overview
Subpart B: Hierarchical Encoder

58



Hierarchical Encoder

e Sequentially contracts plates in the observed data X to produce multiple

encodings

e One encoding per hierarchy level (later used for every RV that shares this
hierarchy)

e Idea: exploit the i.i.d symmetry across a plate, using multiple stacked Set

Transformers (Lee et al. 2019)

Set Transformer = an attention-based neural network architecture that exploits the
permutation invariance across a plate

The hierarchical encoder is responsible for the amortization of our variational family

59



Graphical overview

Generative HBM

- L
° ° Hierarchy 1

\ /

Hierarchy 2

Hierarchical encoder

- Encodings

- Set Transformers

60



Function mapping for Set Transformers

e The settransformer ST, contracts the plate P,
e It does this operation in parallel across plate P;

This means that the parametrization of ST, is shared for multiple
operations: STy produces as many encodings as the cardinality of P

This is an essential feature of our architecture: this is how we
reduce our total number of parameters.

61



Overview over the ground graph (ignoring C)

grounding > ' ° .

STy

One single function ST produces the encoding Ei={e;e12}={STo(d,d12); STg (da, doo) }

eq1 Will be used to infer by and e4»> will be used to infer b,
62



Part 2

Methodological overview
Subpart C: Conditional density estimators

63



Conditional density estimators

We build a density estimator for every latent RV template. If for
the generative HBM we have (D is observed):

p(4, D, C, D) =p(A) xp(B | A) xp(C | A) xp(D | B,C)

Then we will have 3 different density estimators:
qa(A) = p(A | D)

qB(B) ~ p(B D)
qc(C) = p(C | D)

64



Graphical overview

Generative HBM

2

ADAVI architecture
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Architecture of a density estimator (1/2)

A single density estimator is the combination of 2 items:

e a “universal’ density estimator in the real unbounded space: for this we use
Normalizing Flows (Rezende et al. 2016, Papamakarios et al. 2019)

NFg

o anormalizing flow re-parametrizes a standard normal distribution into a more

complex distribution
o leveraging the normalizing flow litterature, we can obtain very expressive
density estimators




B
Architecture of a density estimator (2/2)

A single density estimator is the combination of 2 items:

e a link function to project the real unbounded space to the constrained space in
which the RV evolves:
o for instance the space of real positive numbers for a variance
o or the simplex for a mixture parameter
o eftc...



Function mapping for density estimators

3
Similar to Set Transformers, density estimators are °
applied in parallel across plates

For instance, the density estimator gg for the RV °

template B is applied in parallel across plate P4,
sharing its parametrization for the inference of

both by and b,
We therefore infer by and b, independently o °
For amortization purposes, the density estimation

from gg is conditioned by the encoding E;: 1
@

68



Overview over the ground graph (ignoring C)

. T
grounding > o

|
STo

One single density estimator q, estimates both by and b,

S
=

T

STy

One single function ST produces the encoding Ei={e ;e12}={STo(d,d12); STp (ds, doo) }

qB(B) = qp(B; E1) = qu(b1;e11) X qu(be2; e12)

69



Overview of a density estimator

Both the normalizing flow and the link function are diffeomorphisms, allowing
for density computation using the change-of-variable formula (Papamakarios

et al. 2019)
70



Putting estimators together

We combine the individual density estimators using a mean field approximation:
Q(A7 Ba C) — QA(A) X QB(B) X QC'(C)

This means that we don’t model statistical dependencies in the posterior between
different RV templates. This is an implementation choice, not a necessity for our
architecture.

Inside the resulting variational family, we then optimize for q:

argmin KL(q(A,B,C)|[|p(A,B,C | D))
q

/1



General overview of the ADAVI architecture

Generative
Pyramidal
HBM

> Automatic Derivation >

/

P, P

\

o
S
N

& &é &

< s L .
N ! ! i
A
X > | ST, B —» ST —x By
Simulated
Data N [€---- F

Dual
Amortized
Variational

Family

Rouillard et al. 2021
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import tensorflow probability as tfp

from adavi.dual.models import ADAVFamily

tfd
tfb

tfp.distributions

tfp.bijectors

generative hbm = tfp.distributions.JointDistributionNamed (

model=dict (
mu=tfd.Normal (loc=0, scale=l),
X=lambda mu: tfd.Sample (

distribution=tfd.Normal (loc=mu,

sample shape=(10,)

)
hbm_kwargs = dict (
generative_hbm=generative_hbm,
hierarchies={
"mu": ]_,
nynw.
P
link functions={
"mu": tfb.Identity(),
"X": tfb.Identity()

scale=0.1),

adav_family = ADAVFamily (
set transforer kwargs={...},
conditional nf chain kwargs={...},
**hbm kwargs

train data = generative hbm.sample((100,))

val datum = generative hbm.sample((1,))

adav_family.compile (
train method="reverse KL",
n theta draws per x=32,
optimizer="adam"

)

adav_family.fit (train data)

posterior sample = (
adav_family

.sample parameters conditioned to data (

val datum

see https://github.com/NeurolLang/adavi

and TFP Dillon et al. (2017)
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Part 3

Experimental results
Subpart A: Gaussian random effects
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Baseline of comparison

Exploiting the structure of the forward HBM, we factorize the parameter space into
multiple sub-spaces, corresponding to multiple NF blocks.

We furthermore solve in parallel multiple similar inference tasks (across a plate)
using a common conditional density estimator.

Our point of comparison is a single “big” NF that wouldn’t exploit this structure and
simply model the joint distribution for O:

e Forinstance (S)NPE-C (Greenberg et al. 2019)
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The forward HBM: Gaussian random effects

e We consider a population mean pu in dimension D=2

e From a Gaussian distribution centred on y, we draw G=3
group means [, ks and [

e Foreverygroup i, 2, 3, we draw N=50 points from a
gaussian centered on the group mean H4, HUo, M3 t0 Obtain

the observed data X

The goal:

infer the posterior distribution of 4, Uo, U3 and M given X

There are 2 plates and 3 levels of hierarchy in this problem.
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Posterior samples for the 2 methods
ours I§IPE-C

1.2 4 1.2 4

Data

1.2 4
1.0 1

0.8 -

colored points

00.6-
= samples

0.4‘ # -~

from [y, U2, M3
| posterior

2 diffe re nt 04 0.6 08 10 12 = T =
data points =~ ---------mmmmmmmmmmmmmooooo--

1.00 - 1.00 1.00 - . . .
. ack circles
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0.75 1 0.75 4 0.75 4
I
= theoretical
ground truth
®
[ ] 0‘
0.25 4 0.25 4 0.25 -
=
1 ) :
0.00 4 0.00 - 0.00 -
® ®
&
s
~0.25 1 -0.25 - ~0.251
BN ®
3 @
~0.50 > ® 4 ~0.50 - ~0.50
, -
.
. 8
Sal I IpleS for the ) —0.75 1 -0.75
¢ ' : -0.75 ~0.50 -0.25 0.00 0.25 0.50 0.75 ~0.75 ~0.50 -0.25 0.00 0.25 0.50 0.75

e

G — 3 g ro u p S -075  -050  —0.25 0.00 0.25 0.50 0.75

black points = samples from |l posterior 7



Parameterization with respect to plate dimensionality

The total number of parameters to estimate grows with the plate size G: adding more groups means
more group means to infer.

A NF’s parameterization scales quadratically with the size of the parameter space (e.g. Real NVP
Dinh et al. 2017, FFJORD Grathwohl et al. 2018, MAF Papamakarios et al. 2018)

In this example, the parametrization of a “single big NF” will be
O(G*D?)

In comparison, our parameterization is

2
In the general case with M plates, we have O(D )Jarameters VS

O(MD?) O(CardP{ x ... x CardPj; x D?)
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Il
W

15

30

C2ST mean (std)

# Parameters

Computing time
(CPU)

C2ST mean (std)

# Parameters

Computing time
(CPU)

C2ST mean (std)

# Parameters

Computing time
(CPU)

NPE-C

1.00 (0.00)

42k

1d

1.00 (0.00)
85k

4.9d

1.00 (0.00)

138k

7.6d

ADAVI

0.70 (0.10)

13k

20 m (1Tm on GPU)

0.70 (0.17)

13k

99m

0.85 (0.17)

13k

166m

See benchmark from Lueckmann et al. (2021) for Classifier 2-Sample Test (C2ST) metric
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Part 3

Experimental results
Subpart B: Neuroimaging experiment
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Broca’s area functional parcellation

We consider Broca’s area in the Inferior Frontal Gyrus, traditionally
associated to language

Broca’s area can be anatomically split into 2 parts (pars
triangularis and ).-Our goal is to recover that binary
split using a functional parcellation based on f-MRI data

We consider connectivity vectors = how is a given brain vertex
“wired” to the rest of the brain-(functional definition)

Data from the Human Connectome jlect (HCP) (Van Essen et al.
2012) preprocessed with the help of Dr. Tho Yeo and Dr. Ru
Kong (CBIG)

wikipedia
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Multiple scales of variability
We adapt the MS-HBM from Kong et al. (2018):

o we consider 2 distinct population connectivity networks |19 and 1,9
o each subject’s connectivity networks s and (s vary from the

population networks
o the connectivity networks of an individual can vary across time, @

resulting in session connectivity networks st and st

o for a given subject and session, a given brain vertex can express a
connectivity Xst as a variation of one of the 2 connectivity networks
(mixture model)

o agiven vertex therefore has a label corresponding to the network it
belongs to (1 or 2)

All this variability is encompassed into a single hierarchical model, with a
probabilistic treatment: this showcases the strength of the Bayesian

approach. Total: 300k parameters !
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Barriers to entry for experimenters

e Though Bayesian methods are appealing, inference usually requires a lot of work, and strong

methodological knowledge: analytical derivations, lengthy method building and tuning, etc...
e In the original implementation, Kong et al. use a manually-derived EM procedure (with pages of
equations)

e Furthermore, the very high dimensionality of the parameter space prohibits any naive approach,
doubling down on the methodological knowledge required

With ADAVI, we place ourselves in the line of automatic VI, seamless to use for experimenters once the
forward model has been expressed in a modern probabilistic framework (TFP Dillon et al. 2017).

Our exploitation of plates allows us to perform inference efficiently in a data regime where existing
methods would quickly become intractable
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“‘wiring” to the rest of the cortex

/

Population Networks 9

B Network O
B Network 1

colored spots mark the top 99%
of connectivity for both networks
(red and blue)

“functional cartography” for the cortex

Population Parcellation

‘red-ish” and “blue-ish” parts represent
posterior probability for the vertex’
network label

“‘white-ish” means uncertainty
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Connectivity

Soft
Parcellation

Networks

113215 / 122822

B Network 0
B Network 1

3 different pair of networks for 3 different subjects

B Network 0
B Network 1

o

025

.5

3 different parcellations for 3 different subjects

113922

A

I Network O
B Network 1

0.25

-0.25

-0.5
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Part 4
Conclusive remarks
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Methodological extensions

e ADAVI leverages a simple principle: the i..d symmetry introduced by plates
Is translated into a shared parametrization both for encoding and density
estimation

e Many limiting implementation details (not tied to the method in itself) can be
relaxed:

o the pyramidal class of models
o the mean-field approximation

o the non-sequentiality of inference (see SBI Cranmer et al. (2020))
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Insights into inference

e ADAVIis an example of the gains from exploiting structure in an inference
problem. It does so to reduce its parametrization rather than boosting its
performance.

e More generally, the idea of ADAVI is to derive an Structured Variational family
from a graph template, to exploit symmetries that exist in a ground graph

e That general line of thinking (shared in structured VI) is a promising road to
more and more effective (automatic) Variational Inference

We tackled a complex real-life neuroimaging experiment with a fully Bayesian

treatment, advancing the capabilities of Bayesian methods and making them
more experimenter-friendly.
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Thank you for your attention !
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