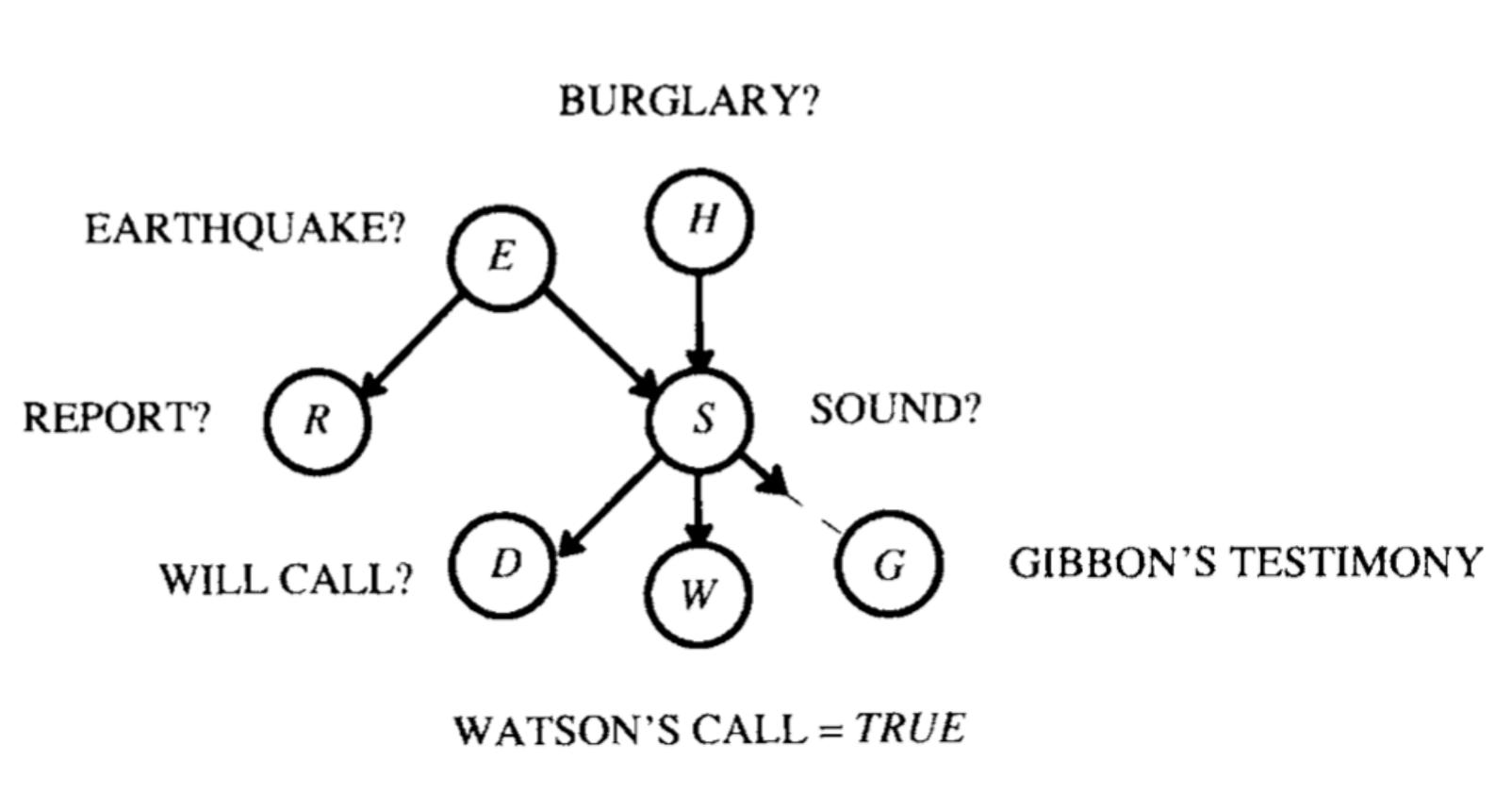
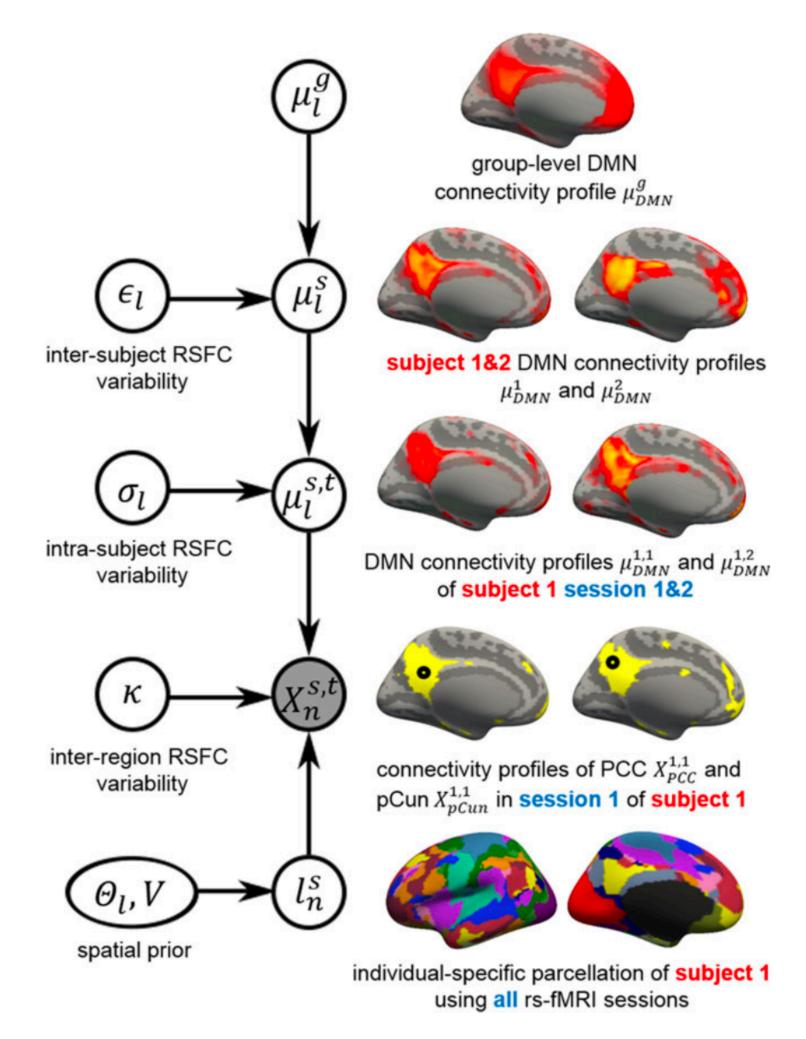
Graph Neural Networks

Demian Wassermann, Inria Graphical Models: Discrete Inference and Learning

Introduction to DAG and their relationship with Probability Functions (Pearl)



[Pearl 1987]



[Kong et al 2019]

And the Usual Graph Slide

Image credit: Medium

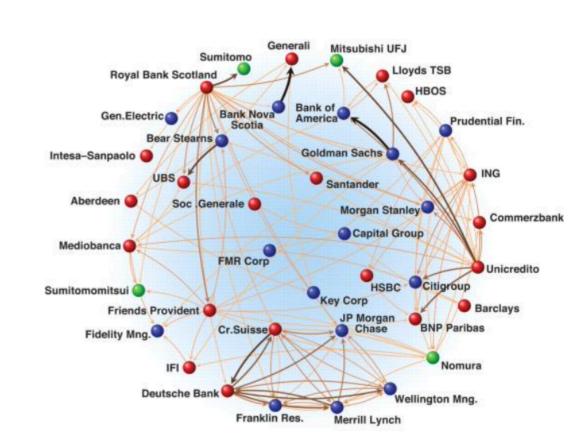
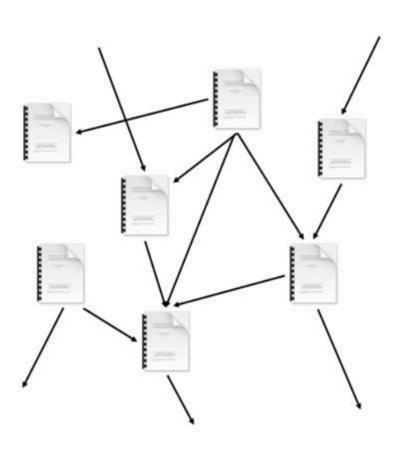


Image credit: <u>Science</u>

Image credit: <u>Lumen Learning</u>

Social Networks



Citation Networks

Economic Networks Communication Networks

Image credit: Missoula Current News

Internet

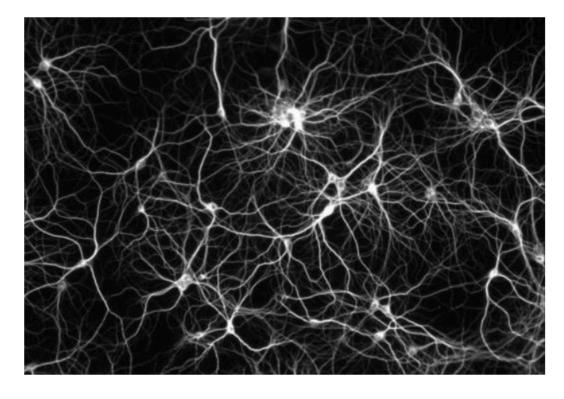
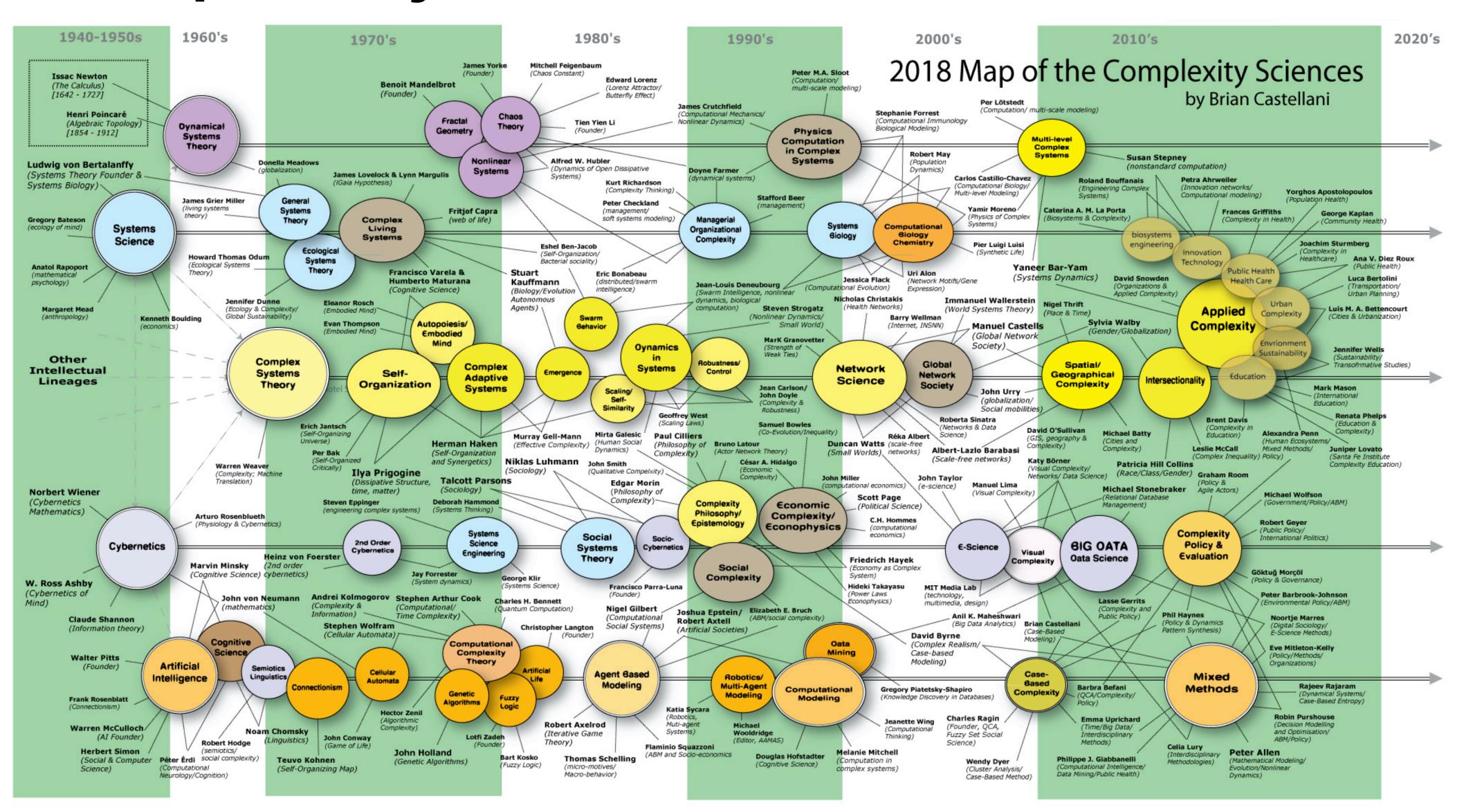


Image credit: The Conversation

Networks of Neurons

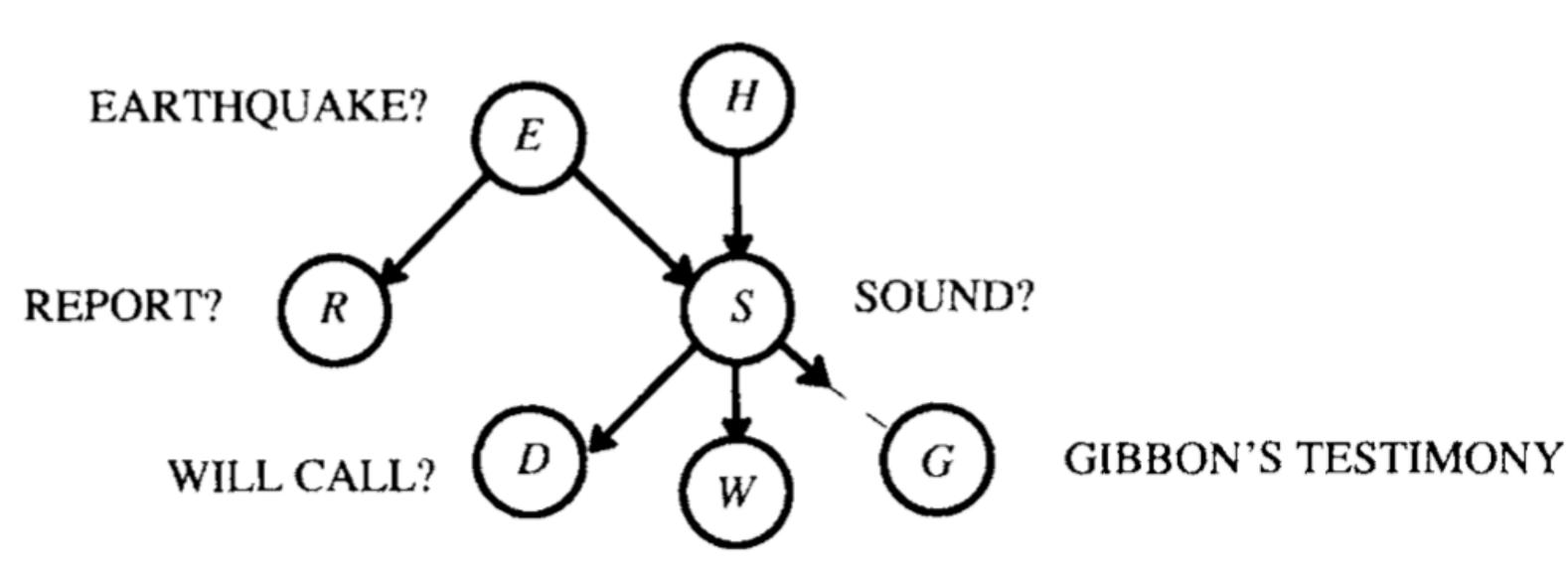
Complex Systems to Understand the World



Main Epistemological Angles on Graphs and Knowledge

BURGLARY?

4 August 1972, Volume 177, Number 4047



More Is Different

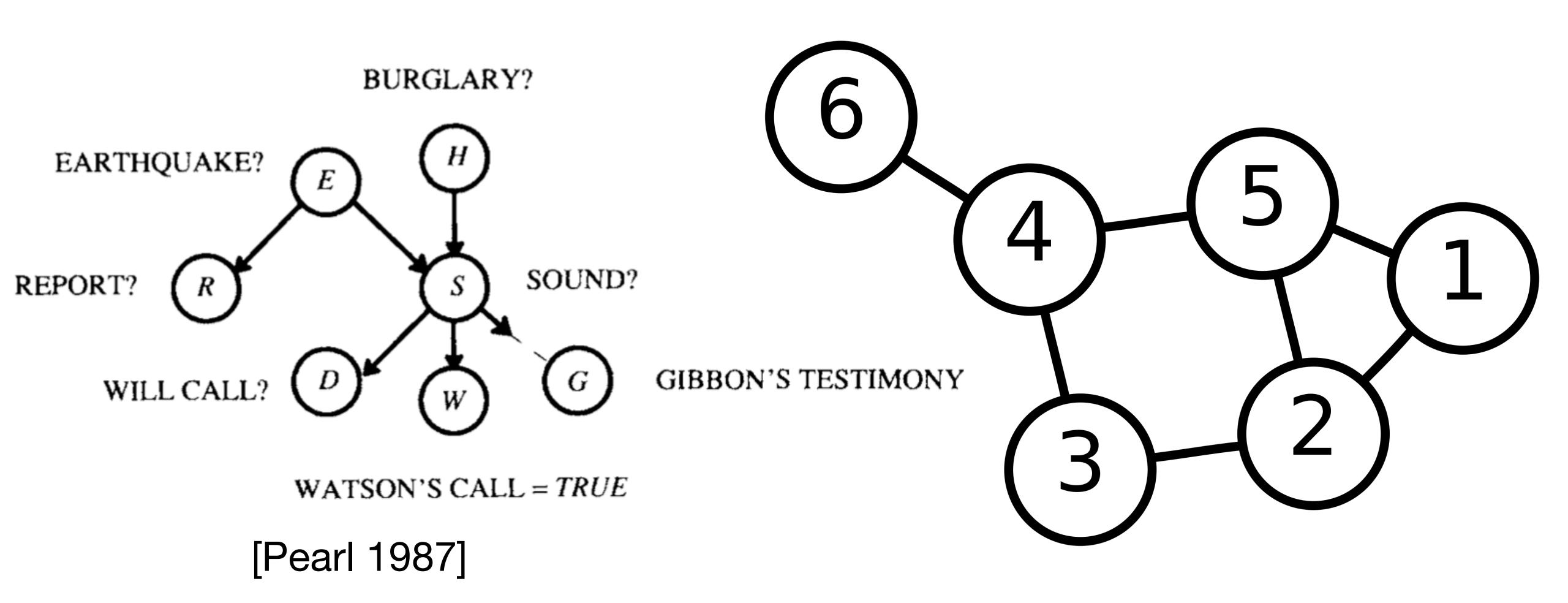
Broken symmetry and the nature of the hierarchical structure of science.

P. W. Anderson

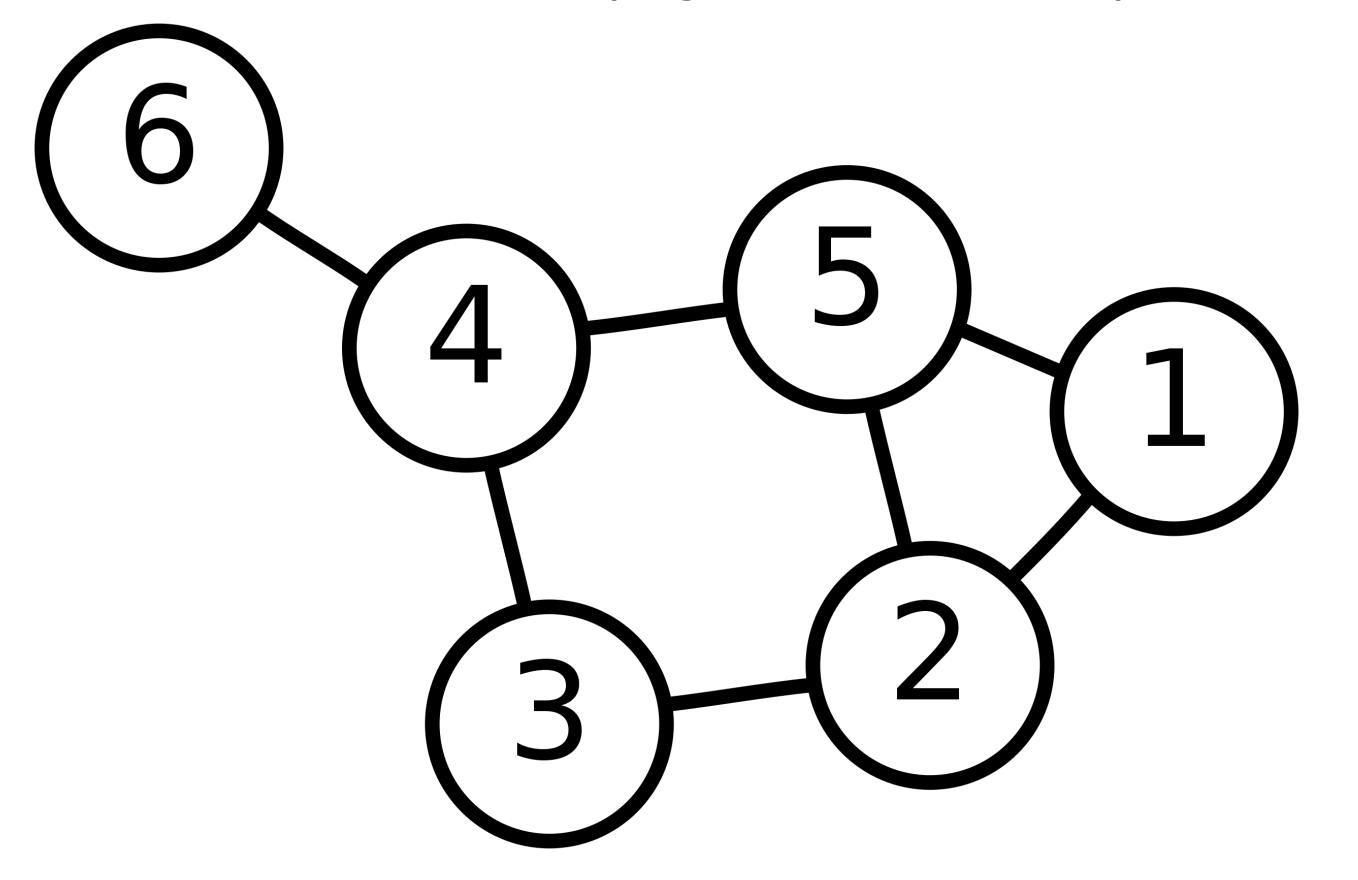
WATSON'S CALL = TRUE

[Pearl 1987]

Main Epistemological Angles on Graphs and Knowledge



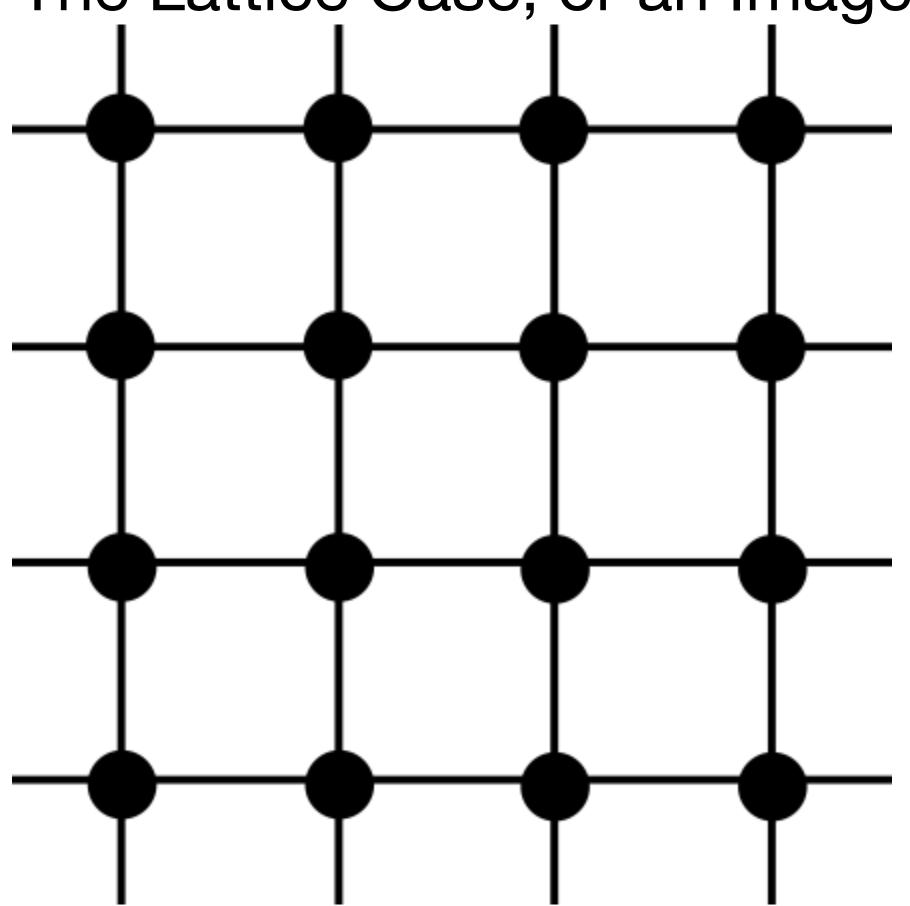
• Graph $G(V, E, f, g), E \subseteq V \times V, f : V \mapsto F, g : E \mapsto G$



- ullet V are the vertices
- E are the edges
- f is a mapping of features for vertices
- g is a mapping of features for edges

• Graph $G(V, E, f, g), E \subseteq V \times V, f : V \mapsto F, g : E \mapsto G$

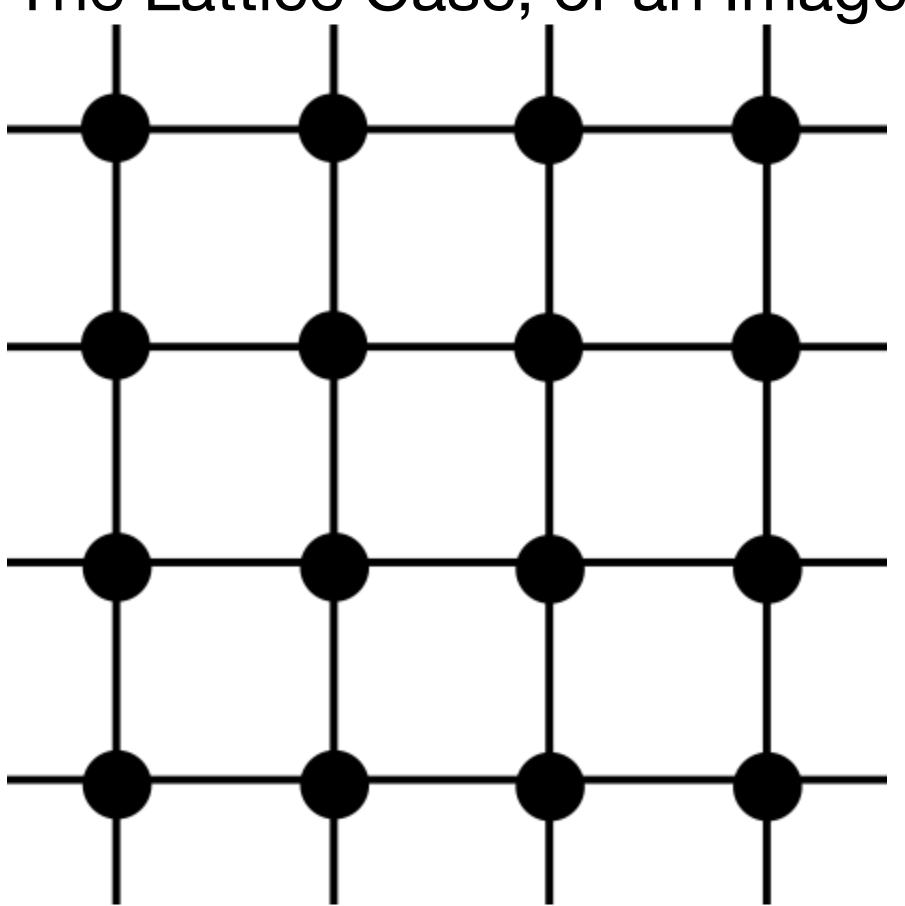
The Lattice Case, or an Image



- V are the vertices
- \bullet E are the edges
- *f* is a mapping of features for vertices
- g is a mapping of features for edges

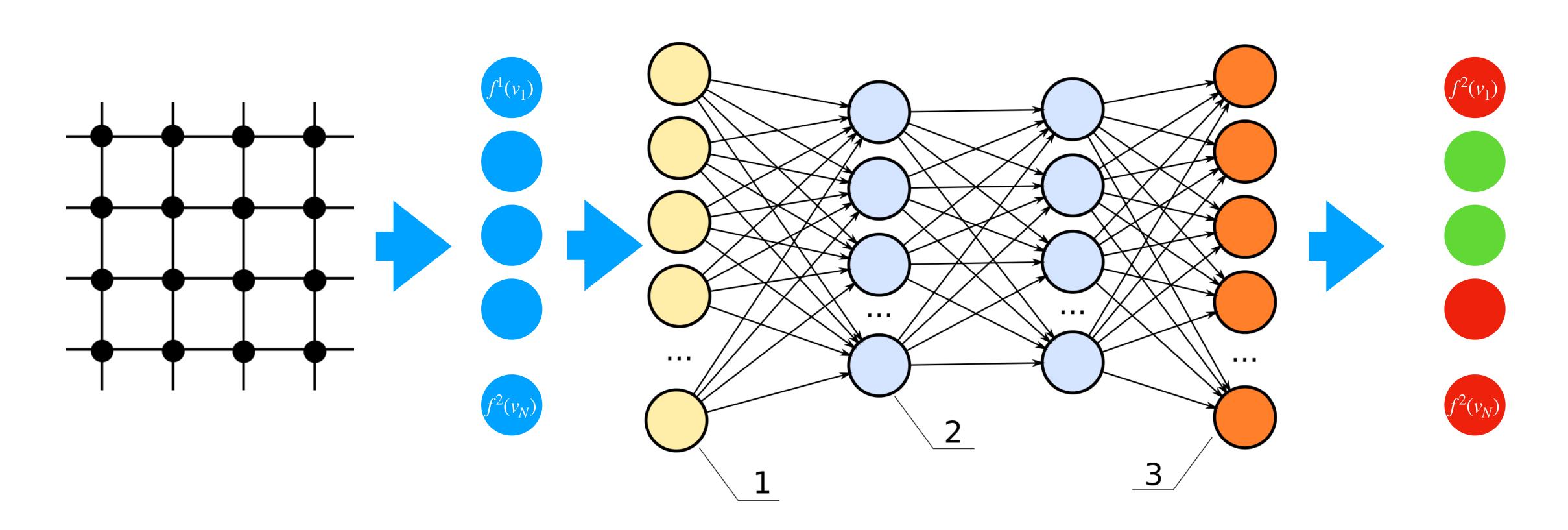
• Graph $G(V, E, f, g), E \subseteq V \times V, f : V \mapsto F, g : E \mapsto G$

The Lattice Case, or an Image



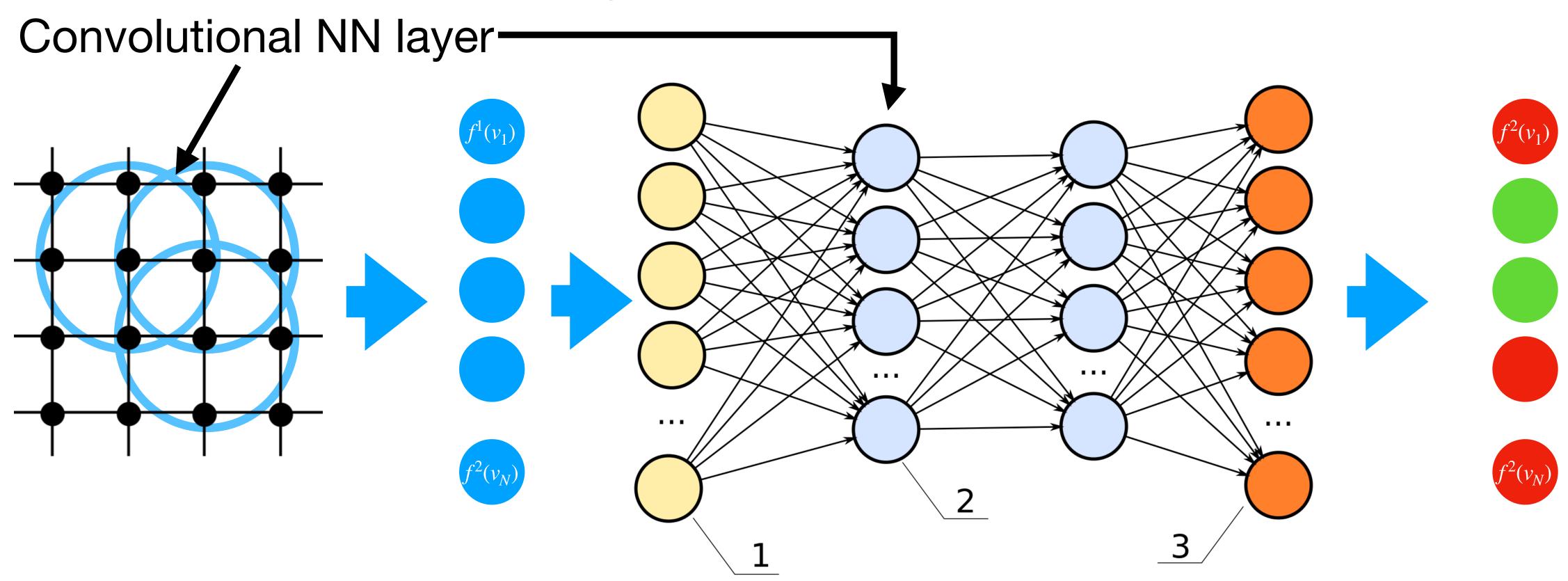
- ullet V are the vertices
- E are the edges
- *f* is a mapping of features for vertices
- Learn $\arg\min_{\theta} \mathscr{L}([f(v_i)]_i, [\phi_{\theta}(v_i)]_i)$ for a fixed ordering i

. Learn $\arg\min_{\theta} \mathscr{L}([f^2(v_i)]_i, [\phi_{\theta}(f^1(v_i))]_i)$ for a fixed ordering i The Lattice Case, or an Image

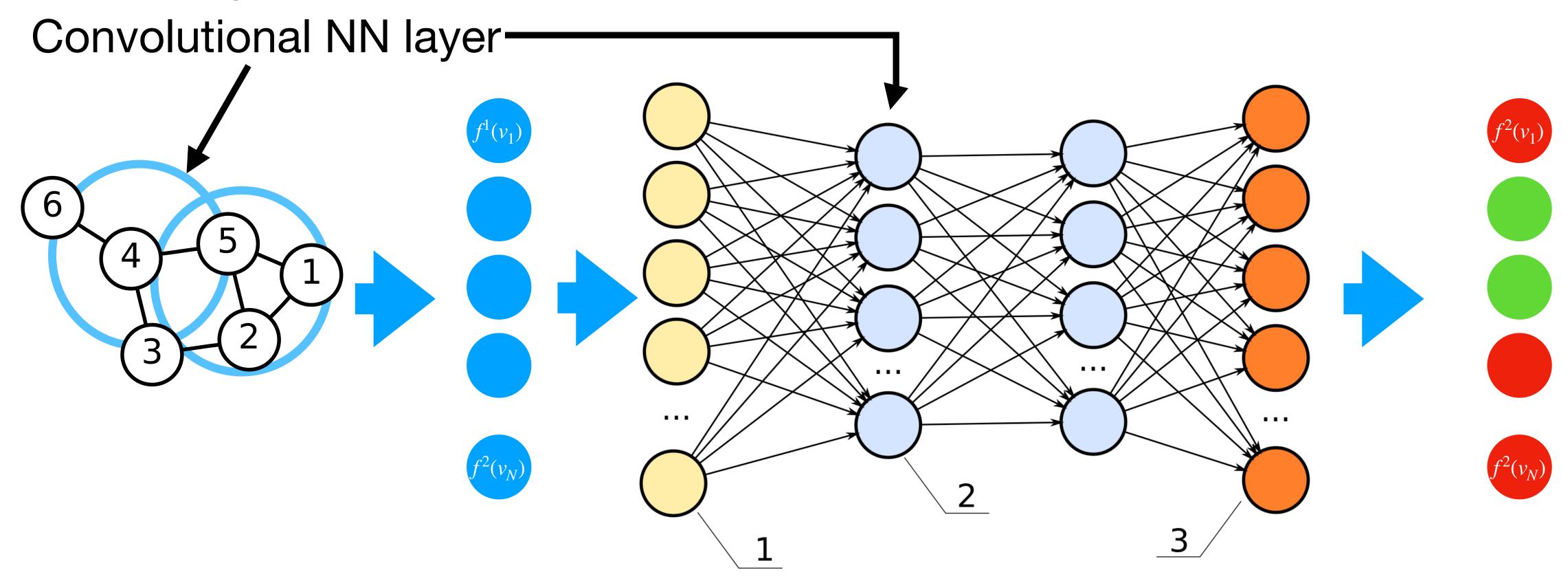


• Learn $\underset{\theta}{\arg\min}\,\mathcal{L}([f^2(v_i)]_i,[\phi_{\theta}(f^1(v_i))]_i)$ for a fixed ordering i

The Lattice Case, or an Image

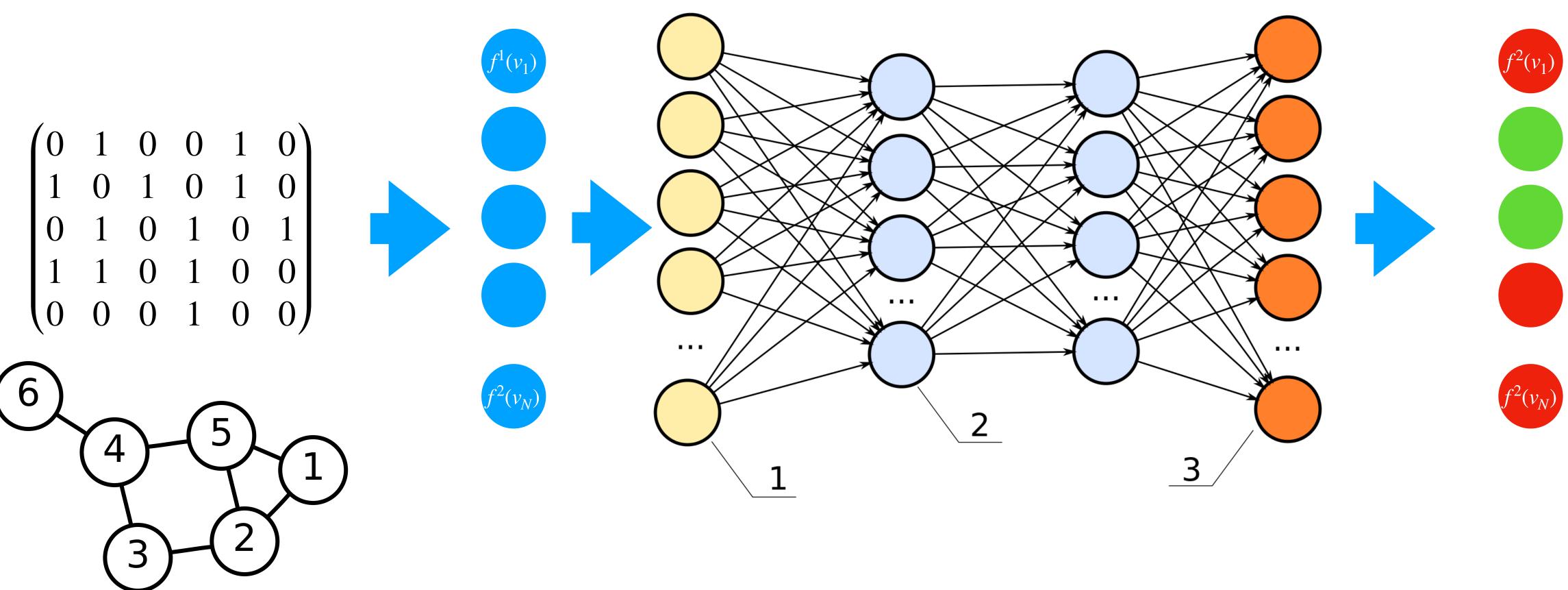


. Learn $\arg\min_{\theta} \mathscr{L}([f^2(v_i)]_i, [\phi_{\theta}(f^1(v_i))]_i)$ for a fixed structure The Graph Case, and now?



. Learn $\underset{\theta}{\arg\min}\,\mathcal{L}([f^2(v_i)]_i,[\phi_{\theta}(f^1(v_i))]_i)$ for a fixed structure

The Graph Case, use the affinity matrix

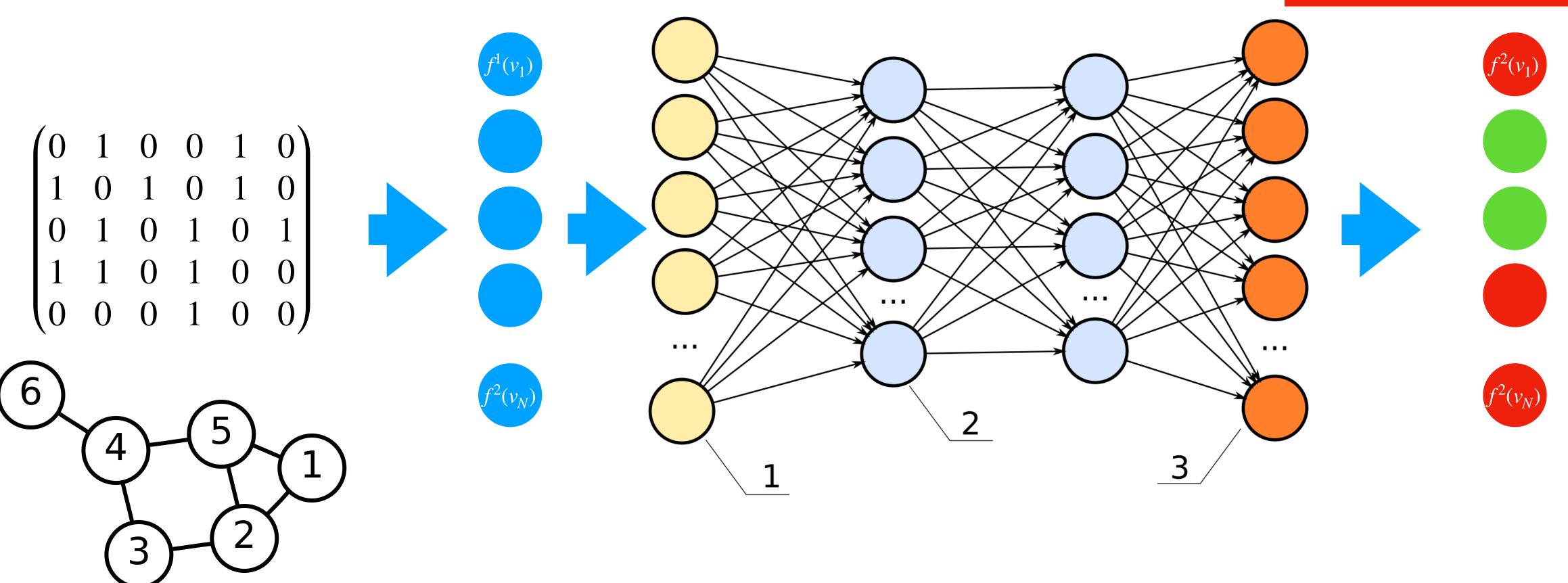


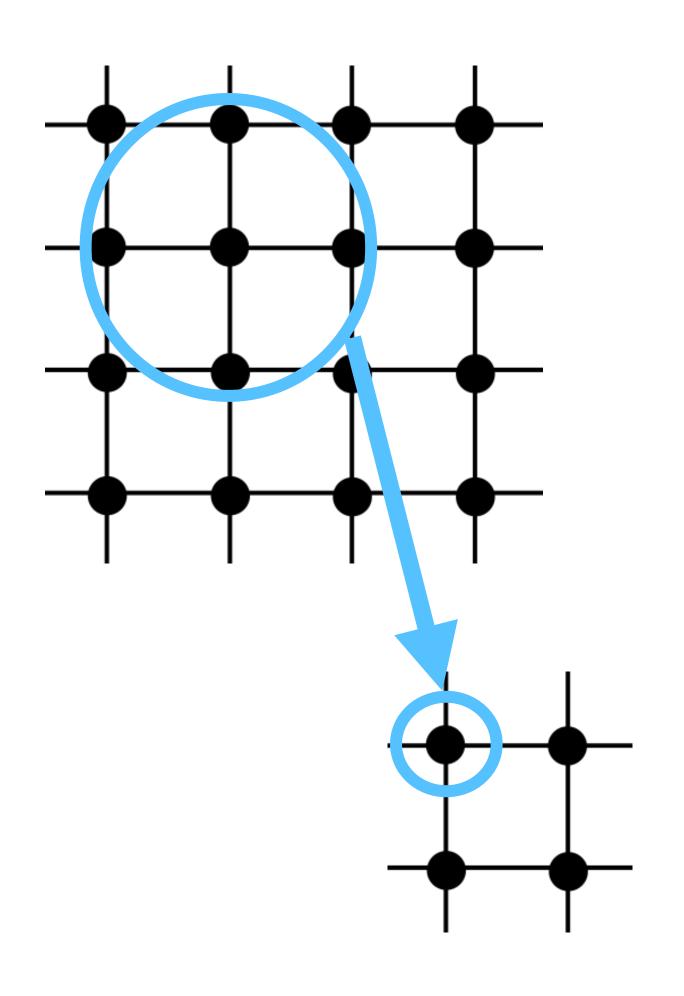
Learn $\underset{\theta}{\arg\min}\,\mathcal{L}([f^2(v_i)]_i,[\phi_{\theta}(f^1(v_i))]_i)$ for a fixed structure

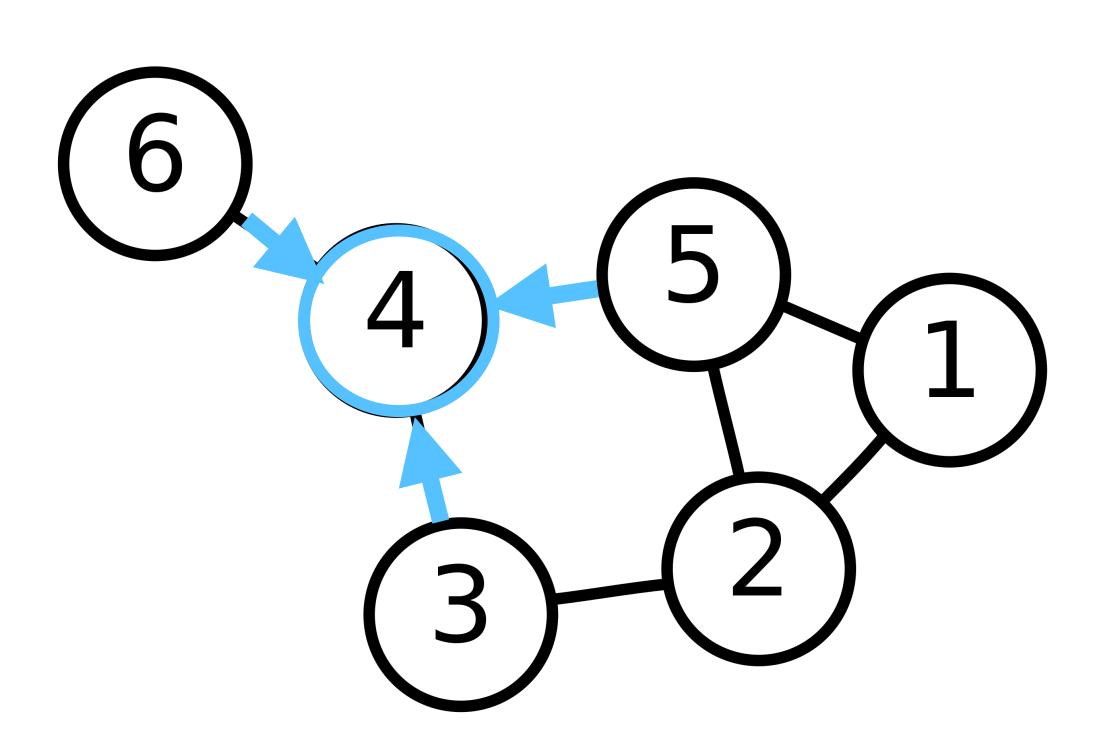
The Graph Case, use the affinity matrix

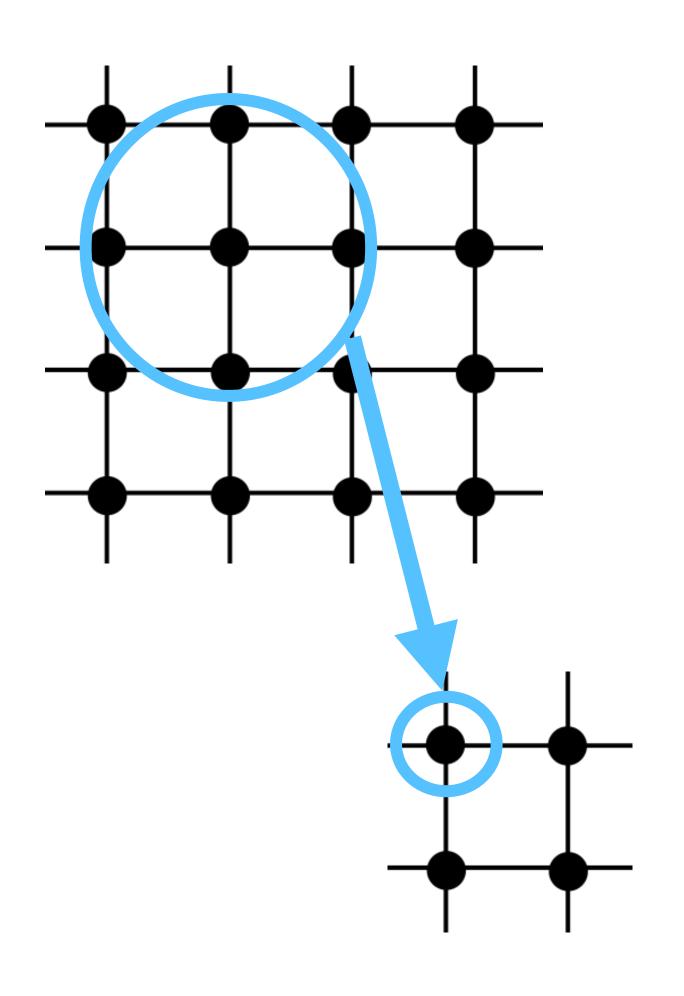
Issues

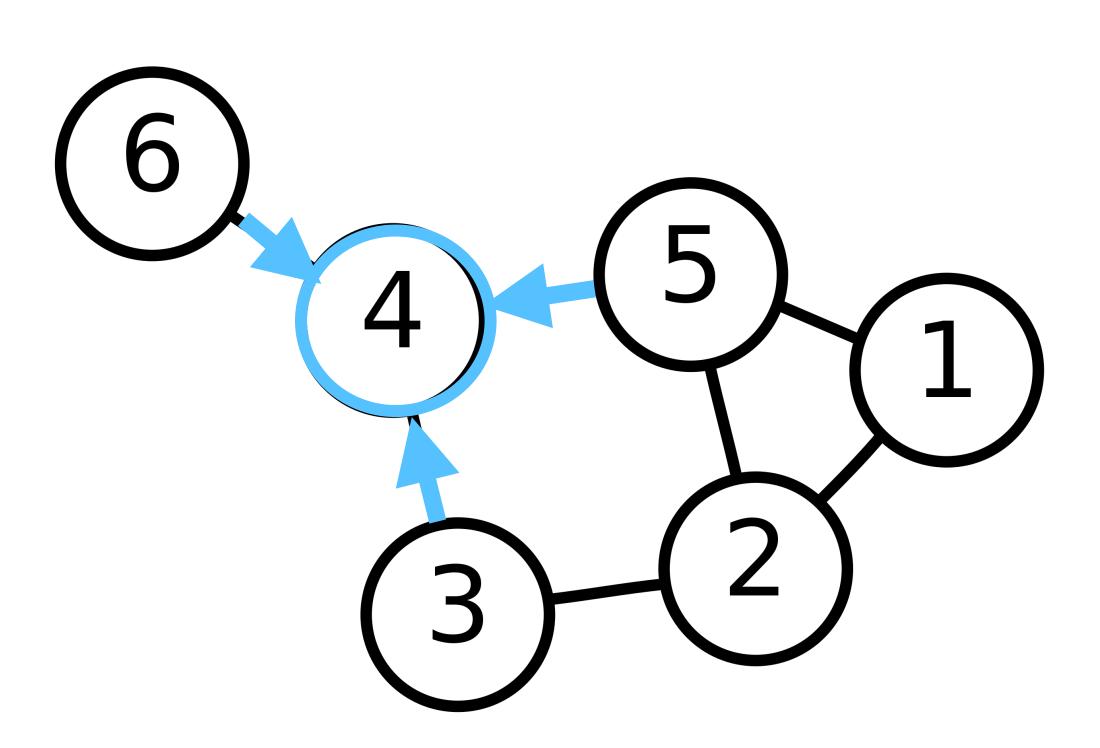
- O(|V|) Parameters
- Not applicable different sizes
- Sensitive to node ordering











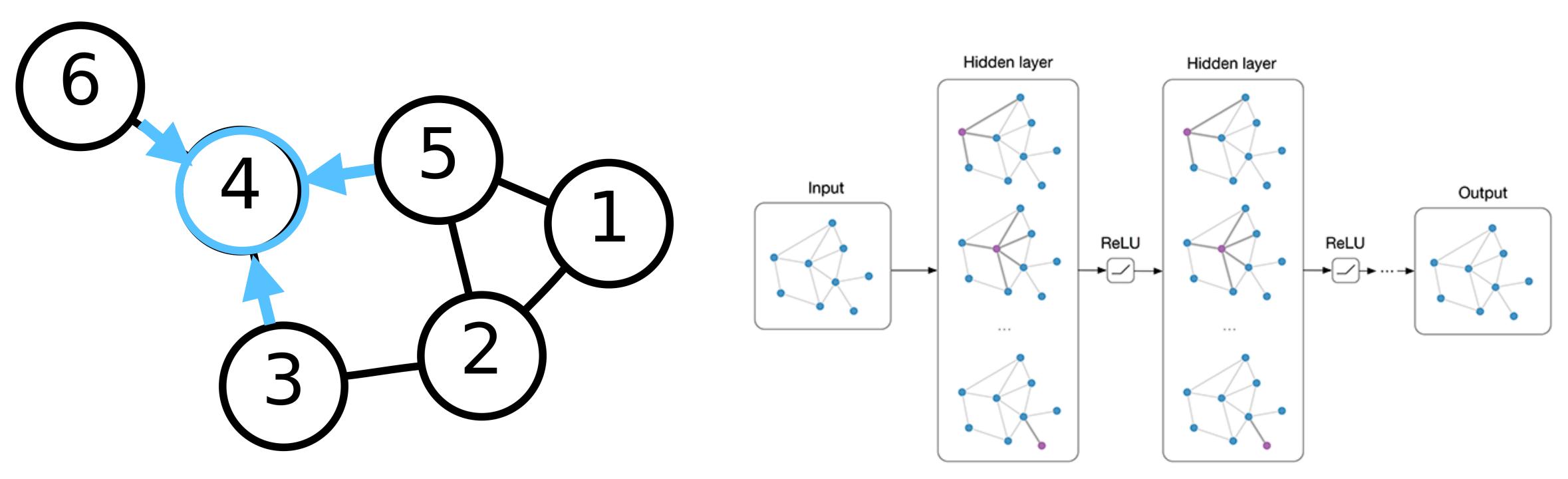


Image from T. Kipf's blog. Kipf et al. ICLR 2017

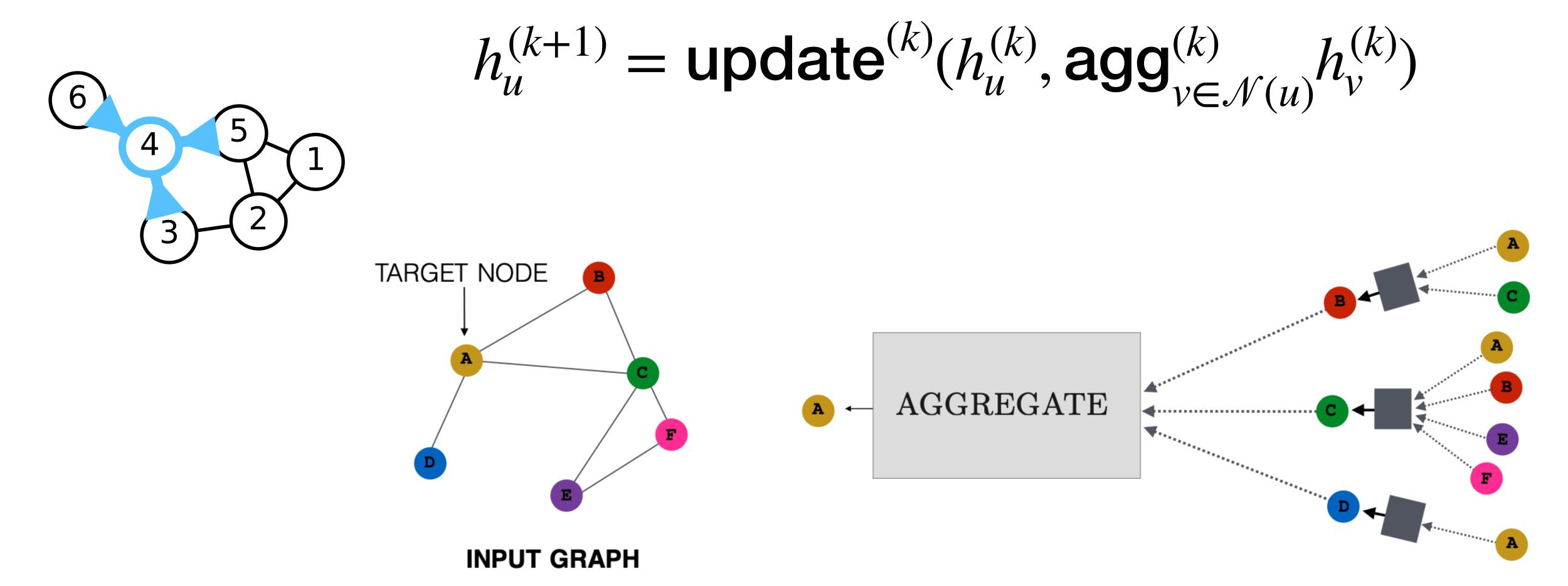
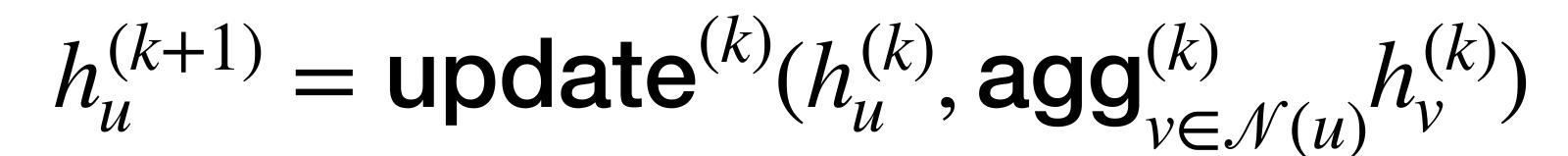


Image from Hamilton, "Graph Representation Learning Book"

Main Points



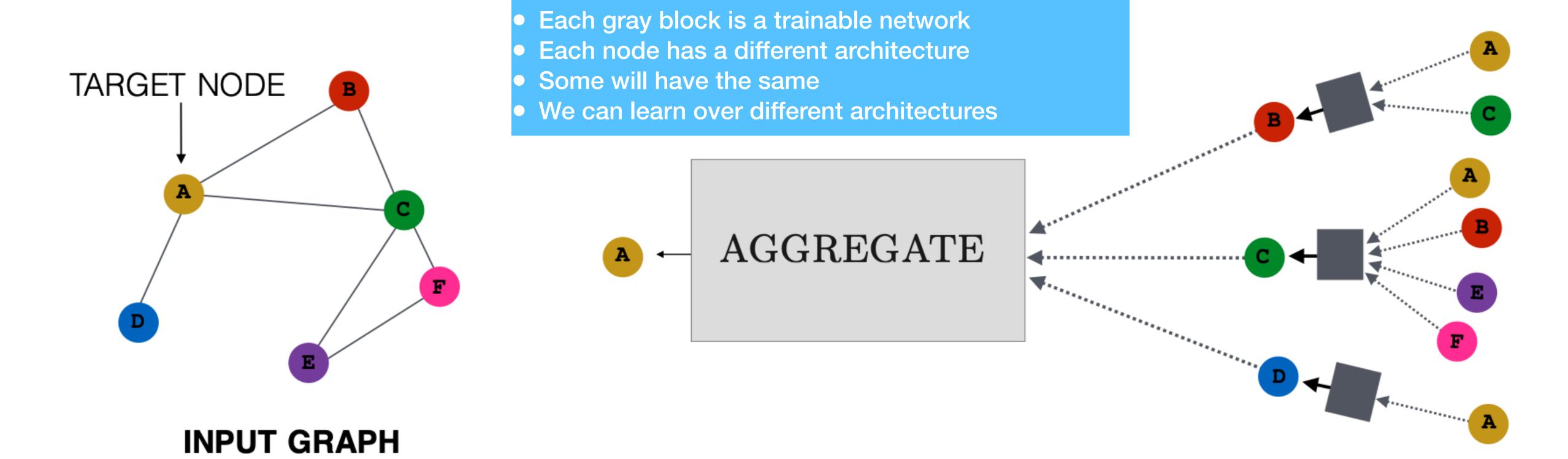
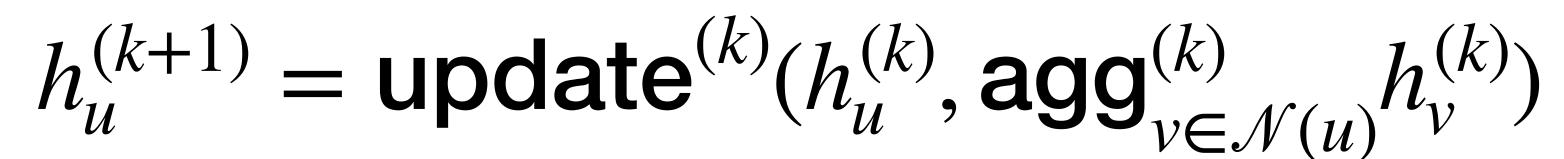
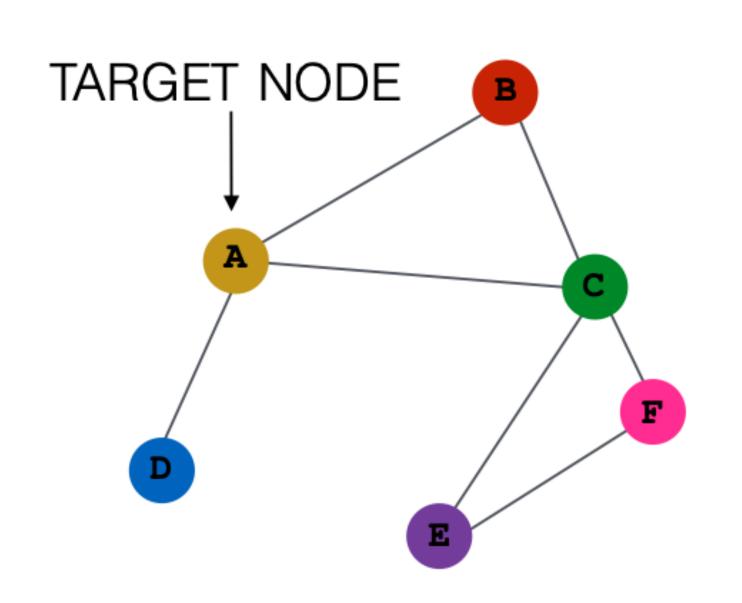


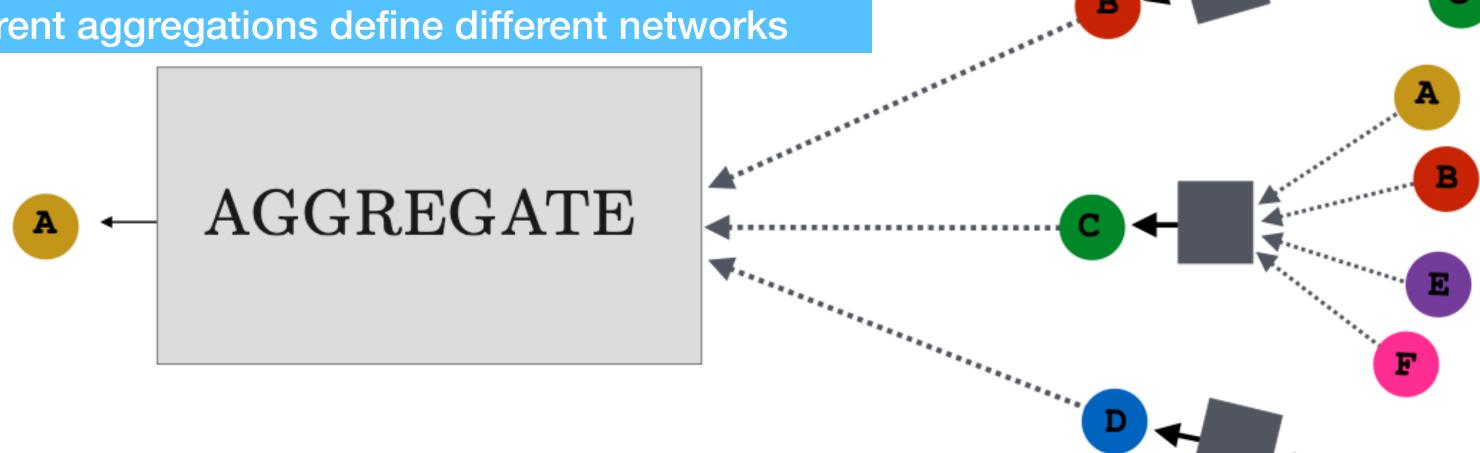
Image from Hamilton, "Graph Representation Learning Book"

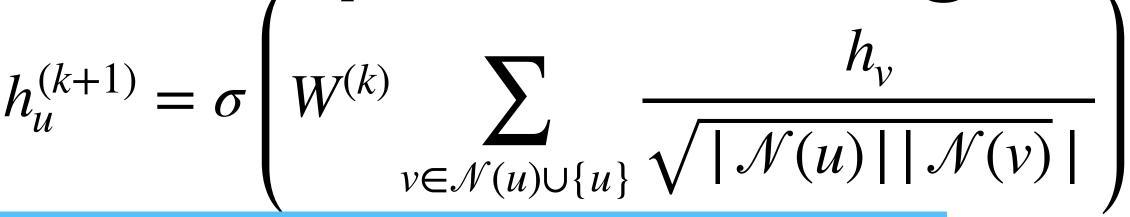




Main Points

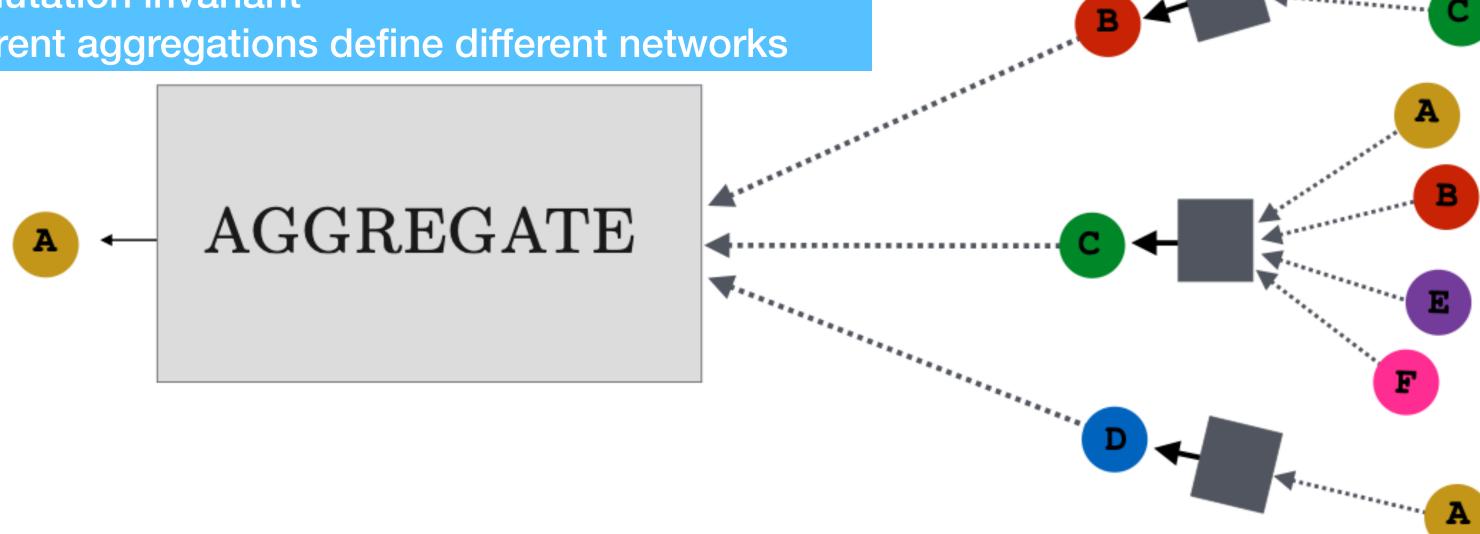
- Each layer incorporates information from nodes khops away
- Neighbours need to be aggregated need to be permutation invariant
- Different aggregations define different networks

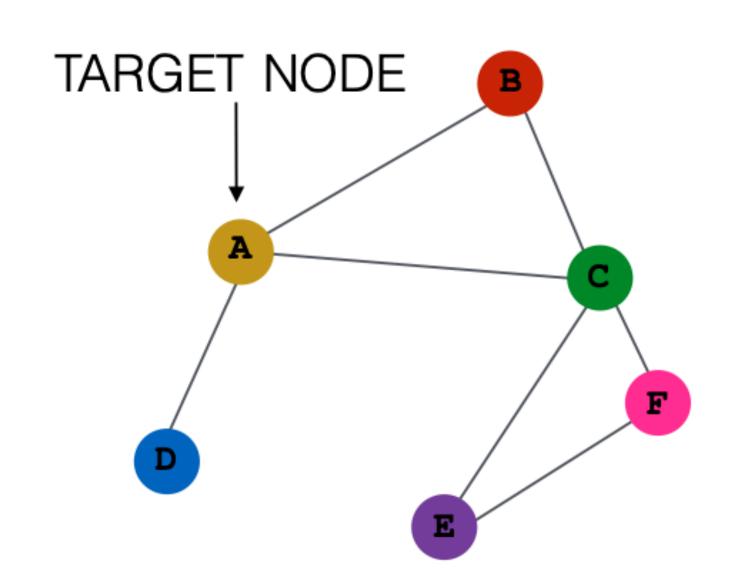




Main Points

- Each layer incorporates information from nodes khops away
- Neighbours need to be aggregated need to be permutation invariant
- Different aggregations define different networks



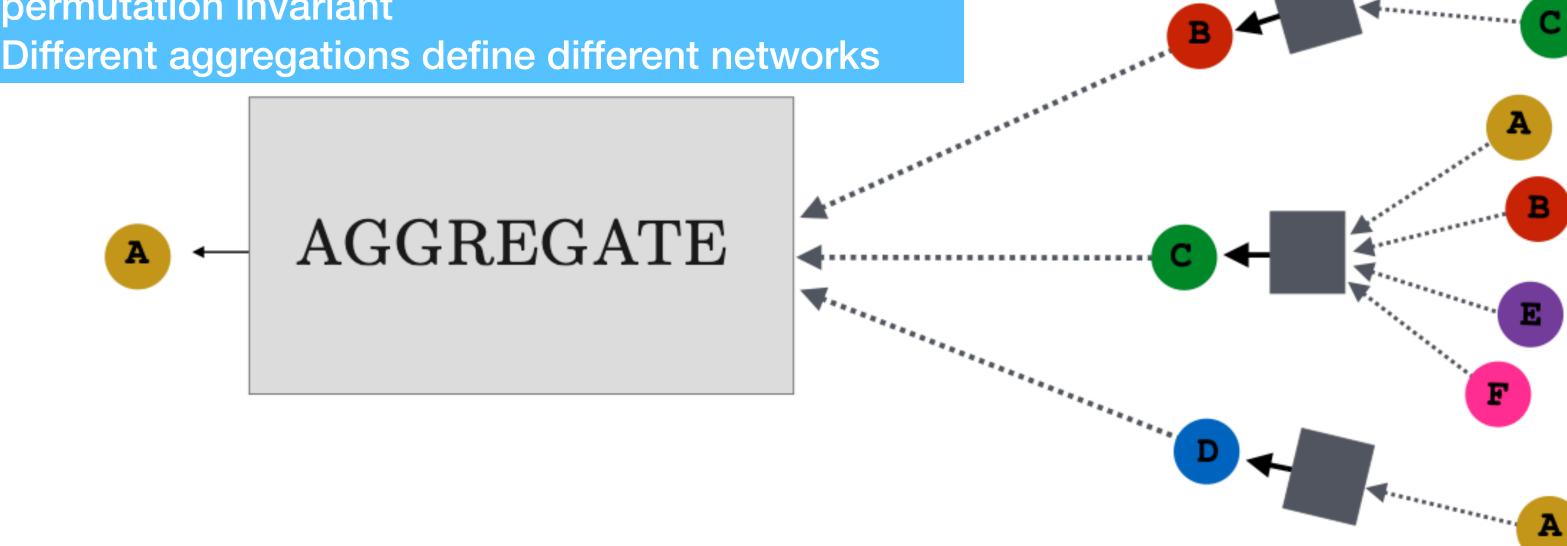


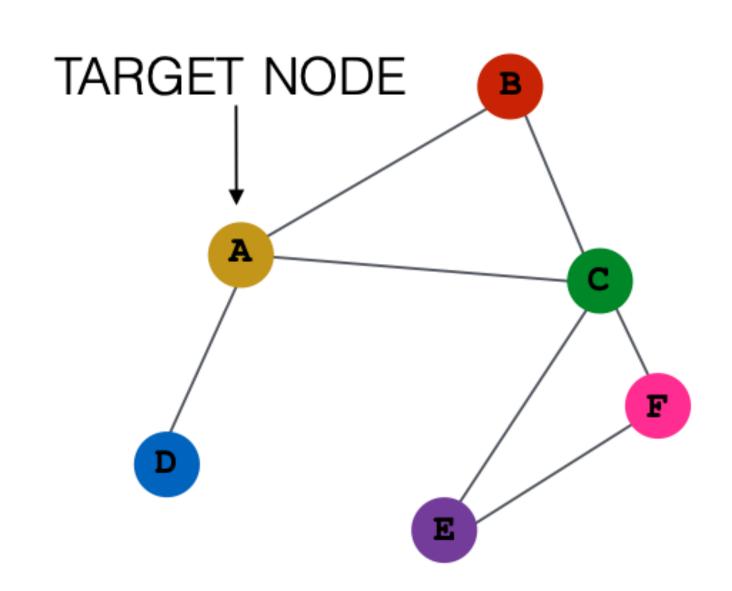
Convolutions on Graphs: Deep Encoder

$$h_u^{(k+1)} = \sigma \left(W^{(k)} \sum_{v \in \mathcal{N}(u)} \frac{h_v^{(k)}}{|\mathcal{N}(u)|} + B^{(k)} h_u^{(k)} \right), h_{(u)}^0 = x_v, h_u^{(L)} = z_v$$

Main Points

- Each layer incorporates information from nodes khops away
- Neighbours need to be aggregated need to be permutation invariant





Convolutions on Graphs: Deep Encoder

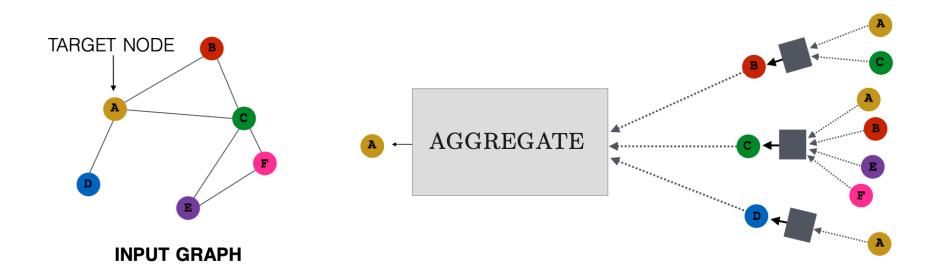
$$h_u^{(k+1)} = \sigma \left(W^{(k)} \sum_{v \in \mathcal{N}(u)} \frac{h_v^{(k)}}{|\mathcal{N}(u)|} + B^{(k)} h_u^{(k)} \right), h_{(u)}^{(0)} = x_v, h_u^{(L)} = z_v$$

To train this model:

- Feed $W^{(k)}$ and $B^{(k)}$ to a loss and minimise with Stochastic gradient descent
- The matrices need to be shared across nodes
- In general, we can do this in matrix form $H^{(k)}=[h_i^{(k)}]_i$, define the diagonal degree matrix $D_{u,u}=Deg(u)=|\mathcal{N}(u)|$
- degree matrix $D_{u,u}=Deg(u)=|\mathcal{N}(u)|$ Then, $H^{(k+1)}=\sigma(D^{-1}AH^{(k)}W^{k^T}+H^{(k)}B^{k^T})$
- $D^{-1}A$ is sparse
- If the aggregation function is complex, the matrix formulation does not work

Convolutions on Graphs: Deep Encoder

$$H^{(k+1)} = \sigma(D^{-1}AH^{(k)}W^{k^T} + H^{(k)}B^{k^T}), h_u^{(L)} = z_v$$



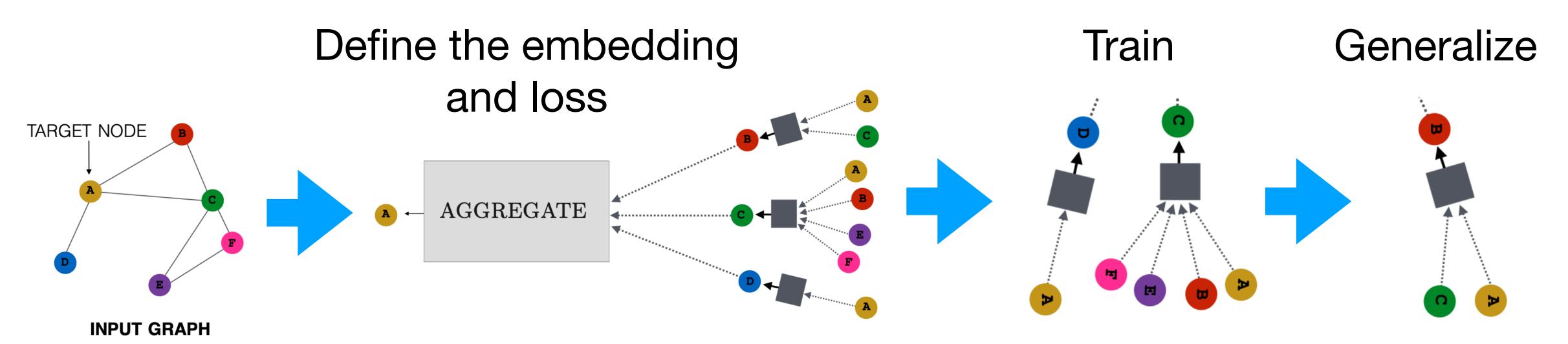
To train this model:

- . Supervised learning $\underset{\theta}{\operatorname{arg min}} \mathcal{L}(Y, f(z_v))$
 - Example for classification with cross entropy loss

$$\mathcal{L} = \sum_{u} y_u \log(\sigma(z_u^T \theta)) + (1 - y_u) \log(1 - \sigma(z_u^T \theta))$$

• For unsupervised learning $\mathcal{L}=sum_{u,v}CE(y_{u,v},DEC(z_u,z_v))$ where $y_{u,v}=1$ if nodes u and v are similar

Convolutions on Graphs: Deep Encoder Design



Design The model:

- 1. Define the embedding: define a neighbourhood aggregation function
- 2. Define a loss function on the embedding and batch-train
- 3. Train the model on batch-computed graphs. Which are selected from a node batch + subgraph
- 4. Generate embeddings for nodes. This is applicable to different graphs and nodes

Convolutions on Graphs: Results

Published as a conference paper at ICLR 2017

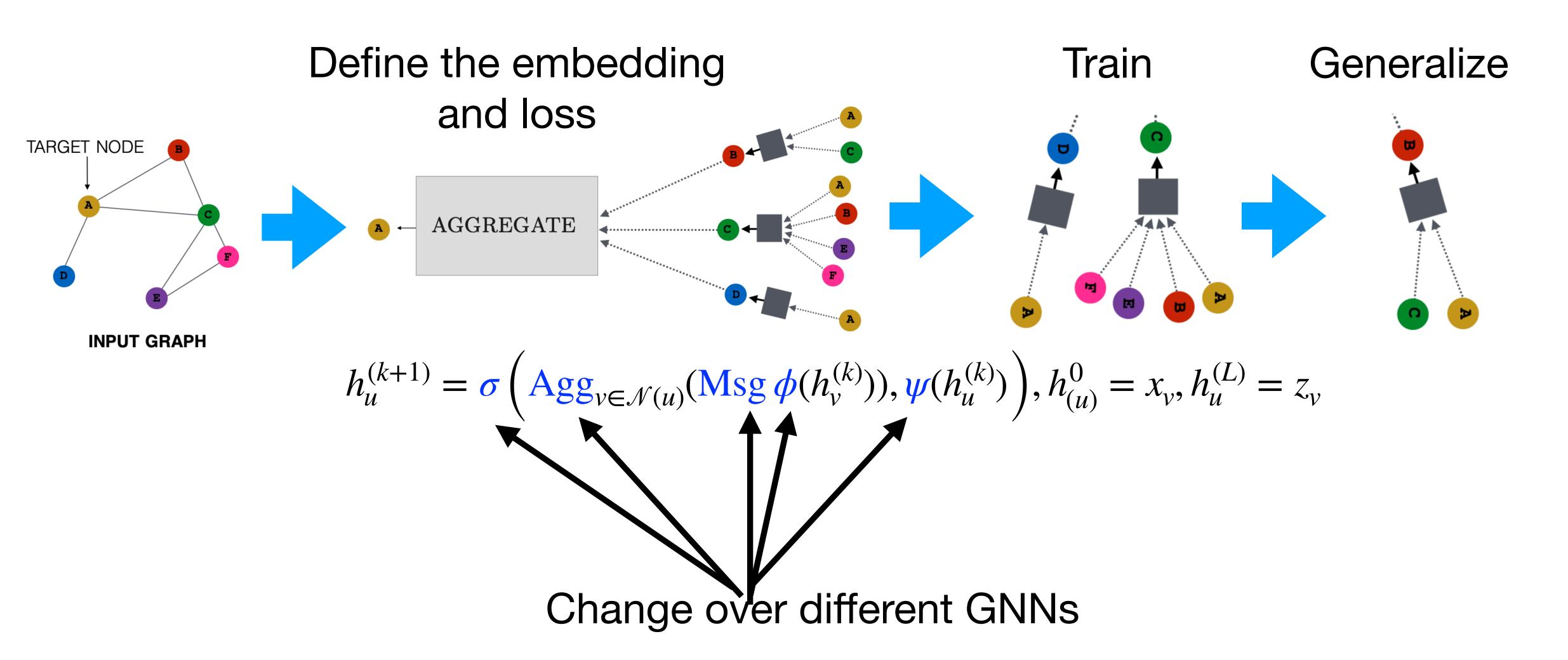
SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

Thomas N. Kipf
University of Amsterdam
T.N.Kipf@uva.nl ☑

Max Welling
University of Amsterdam
Canadian Institute for Advanced Research (CIFAR)
M.Welling@uva.nl

Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7



$$h_u^{(k+1)} = \sigma\left(\text{Agg}_{v \in \mathcal{N}(u)}(\text{Msg}\,\phi(h_v^{(k)})), \psi(h_u^{(k)})\right), h_{(u)}^{(0)} = x_v, h_u^{(L)} = z_v$$

GCN

- σ is the sigmoid function
- Msg is the weighting of nodes $W^{(k+1)}h_{v}^{(k)}$
- Agg is the average
- ϕ is the identity function
- ψ is null

GraphSage

- σ is the sigmoid function
- Msg is the weighting of nodes $W^{(k+1)}h_v^{(k)}$
- Agg is two-stage
 - Aggregate from networks
 - Different aggregation with the node itself
- ϕ is the identity function
- ψ is null

$$h_u^{(k+1)} = \sigma\left(\text{Agg}_{v \in \mathcal{N}(u)}(\text{Msg}\,\phi(h_v^{(k)})), \psi(h_u^{(k)})\right), h_{(u)}^{(0)} = x_v, h_u^{(L)} = z_v$$

GraphSage

• σ is the sigmoid function

sometimes
$$\sigma(x) = \sigma\left(\frac{x}{\|x\|_2}\right)$$

- \mathbf{Msg} is the weighting of nodes $W^{(k+1)}h_{v}^{(k)}$
- Agg is two-stage
 - Aggregate from networks
 - Different aggregation with the node itself
- ϕ is the identity function
- ψ is null

GraphSage Aggregations

- Mean, like GCN
- Pool, by applying a non-identity ϕ
- LSTM aggregations

GraphSage: Results

Inductive Representation Learning on Large Graphs

William L. Hamilton* wleif@stanford.edu

Rex Ying*

Jure Leskovec

rexying@stanford.edu

jure@cs.stanford.edu

Department of Computer Science Stanford University Stanford, CA, 94305

Table 1: Prediction results for the three datasets (micro-averaged F1 scores). Results for unsupervised and fully supervised GraphSAGE are shown. Analogous trends hold for macro-averaged scores.

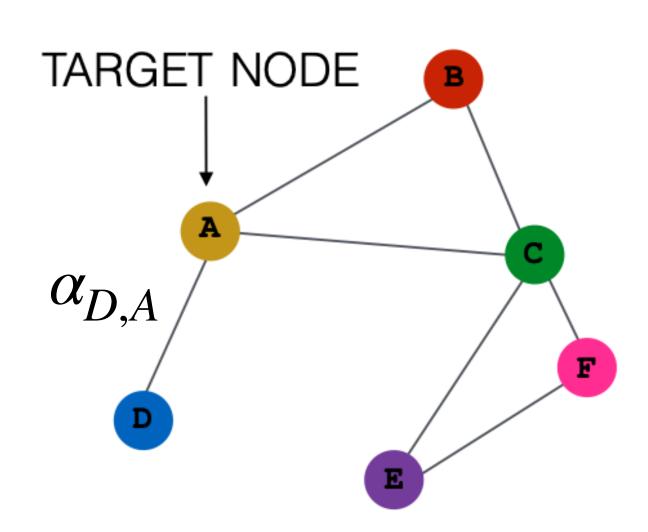
	Citat	ion	Rede	dit	PP	I
Name	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1
Random	0.206	0.206	0.043	0.042	0.396	0.396
Raw features	0.575	0.575	0.585	0.585	0.422	0.422
DeepWalk	0.565	0.565	0.324	0.324		
DeepWalk + features	0.701	0.701	0.691	0.691		
GraphSAGE-GCN	0.742	0.772	0.908	0.930	0.465	0.500
GraphSAGE-mean	0.778	0.820	0.897	0.950	0.486	0.598
GraphSAGE-LSTM	0.788	0.832	0.907	0.954	0.482	0.612
GraphSAGE-pool	0.798	0.839	0.892	0.948	0.502	0.600
% gain over feat.	39%	46%	55%	63%	19%	45%

$$h_u^{(k+1)} = \sigma\left(\text{Agg}_{v \in \mathcal{N}(u)}(\text{Msg}\,\phi(h_v^{(k)})), \psi(h_u^{(k)})\right), h_{(u)}^{(0)} = x_v, h_u^{(L)} = z_v$$

Graph Attention Network (GAT)

- Most parameters are arbitrary
- Msg is the weighting of nodes $\alpha_{uv}W^{(k+1)}h_v^{(k)}$
- this learnable weighting $\alpha_{u,v}$ will learn which nodes are more important for any give node embedding.

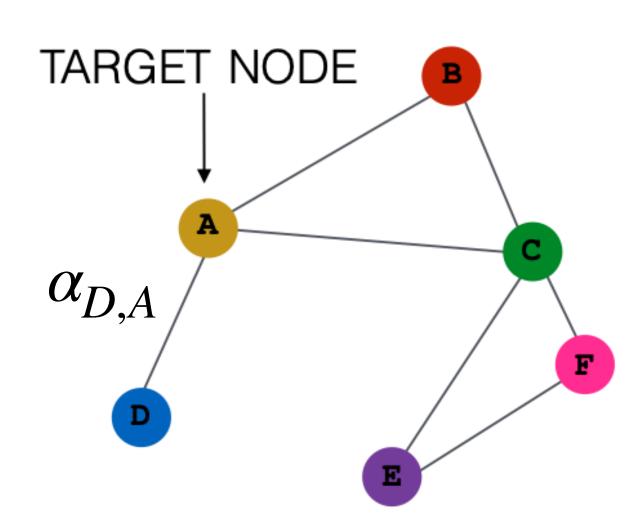
$$h_u^{(k+1)} = \sigma \left(\sum_{v \in \mathcal{N}(u)} \alpha_{u,v} W^{(k)} \frac{h_v^{(k)}}{|\mathcal{N}(u)|} + B^{(k)} h_u^{(k)} \right), h_{(u)}^0 = x_v, h_u^{(L)} = z_v, \alpha_{u,\cdot} = \sum_{v \in \mathcal{N}(v)} \alpha_{u,v} = 1$$



$$h_u^{(k+1)} = \sigma\left(\text{Agg}_{v \in \mathcal{N}(u)}(\text{Msg}\,\phi(h_v^{(k)})), \psi(h_u^{(k)})\right), h_{(u)}^{(0)} = x_v, h_u^{(L)} = z_v$$

Graph Attention Network (GAT)

- Main Benefits:
 - Implicit importance of neighbours
 - Computationally efficient
 - Storage efficient O(V+E) entries and fixed
 - Localised
 - Inductive, it doesn't depend on the graph structure



Graphic Attention Network Results

Published as a conference paper at ICLR 2018

Transductive

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%
MoNet (Monti et al., 2016)	$81.7 \pm 0.5\%$		$78.8 \pm 0.3\%$
GCN-64*	$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	79.0 \pm 0.3%
GAT (ours)	$83.0 \pm 0.7\%$	72.5 \pm 0.7%	79.0 \pm 0.3%

GRAPH ATTENTION NETWORKS

Department of Computer Science and Technology

University of Cambridge petar.velickovic@cst.cam.ac.	gcucurull@gmail.com .uk
Arantxa Casanova* Centre de Visió per Computador, UAB ar.casanova.8@gmail.com	Adriana Romero Montréal Institute for Learning Algorithms adriana.romero.soriano@umontreal.ca
Pietro Liò Department of Computer Science and Tec	Yoshua Bengio chnology Montréal Institute for Learning Algorithms

Guillem Cucurull*

Centre de Visió per Computador, UAB

yoshua.umontreal@gmail.com

Inductive

University of Cambridge

Petar Veličković*

Method	PPI
Random	0.396
MLP	0.422
GraphSAGE-GCN (Hamilton et al., 2017)	0.500
GraphSAGE-mean (Hamilton et al., 2017)	0.598
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612
GraphSAGE-pool (Hamilton et al., 2017)	0.600
GraphSAGE*	0.768
Const-GAT (ours)	0.934 ± 0.006
GAT (ours)	0.973 ± 0.002

Summarising

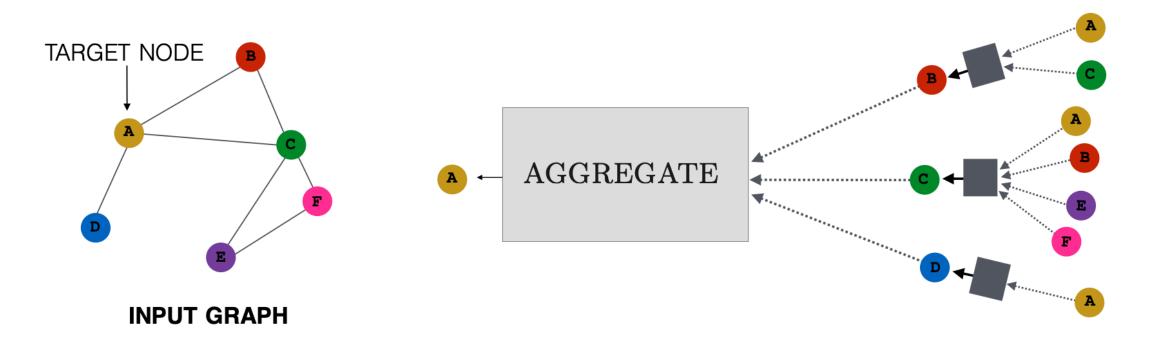


Image from Hamilton, "Graph Representation Learning Book"

- Graphs are good representations of data support and relationships
- Going from grid/lattices to graphs in non-trivial, we need permutation invariance, scale invariance, and sometimes topological invariance
- The main trick, is detect patches or motifs and generalise them to global structure
- There's ample evidence that taking into account heterogeneous structure improves supervised/semi-supervised tasks
- Novel techniques in graph networks, like GCNN, GraphSage, GAT, and others clearly improve on the results that don't take into account structure