Graphical Models Discrete Inference and Learning

MVA

2022-2023

http://thoth.inrialpes.fr/~alahari/disinflearn

Recap

Why Graphs? Graphs are a general language for describing and analyzing entities with relations/interactions

\square

Many Types of Data are Graphs (1)

Event Graphs

Image credit: SalientNetworks
Computer Networks

Disease Pathways

Image credit: Pinterest
Particle Networks

Image credit: visitlondon.com
Underground Networks

Many Types of Data are Graphs (2)

Image credit: Medium
Social Networks

Citation Networks

Image credit: Science

mage credit: Lumen Learning

Economic Networks Communication Networks

Image credit: Missoula Current News
Internet

Image credit: The Conversation
Networks of Neurons

Many Types of Data are Graphs (3)

Image credit: Maximilian Nickel et al
Knowledge Graphs

Image credit: ResearchGate
Code Graphs

Image credit: ese.wustl.edu
Regulatory Networks

Image credit: math.hws.edu
Scene Graphs

mage credit: MDP|
Molecules

Image credit: Wikipedia
3D Shapes

Graphs and Relational Data

Image credit: ResearchGate
Code Graphs

Image credit: MDPI
Molecules

Image credit: Wikipedia
3D Shapes

Graphs: Machine Learning

Complex domains have a rich relational structure, which can be represented as a relational graph

By explicitly modeling relationships we achieve better performance!

What have we seen?

- Inference
- Belief propagation
- Graph cuts (to be completed)
- Variational inference
- Simulation-based inference

Outline

Connection between st-mincut and energy minimization?

What problems can we solve using st-mincut?

st-mincut based Move algorithms

St-mincut and Energy Minimization

Minimizing a Qudratic Pseudoboolean function $E(x)$

$$
E(y)=\sum_{i} c_{i} y_{i}+\sum_{i, j} c_{i j} y_{i}\left(1-y_{j}\right)
$$

Polynomial time st-mincut algorithms require non-negative edge weights

So how does this work?

Construct a graph such that:
1.Any st-cut corresponds to an assignment of x
2. The cost of the cut is equal to the energy of x :

E(x)

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}
$$

Sink (1)

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Energy Function Reparameterization

Two functions E_{1} and E_{2} are reparameterizations if

$$
E_{1}(\mathbf{x})=E_{2}(\mathbf{x}) \text { for all } \mathbf{x}
$$

For instance:

$$
\begin{aligned}
& E_{1}\left(a_{1}\right)=1+2 a_{1}+3 \bar{a}_{1} \\
& E_{2}\left(a_{1}\right)=3+\bar{a}_{1}
\end{aligned}
$$

a_{1}	\bar{a}_{1}	$1+2 a_{1}+3 \bar{a}_{1}$	$3+\bar{a}_{1}$
0	1	4	4
1	0	3	3

Flow and Reparametrization

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Flow and Reparametrization

$$
E\left(a_{1}, a_{2}\right)=2+3 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Flow and Reparametrization

$$
E\left(a_{1}, a_{2}\right)=2+3 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Flow and Reparametrization

$$
E\left(a_{1}, a_{2}\right)=2+3 \bar{a}_{1}+5 a_{2}+4+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=6+3 \bar{a}_{1}+5 a_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}$

Flow and Reparametrization

Example: Image Segmentation

$$
E(y)=\sum_{i} c_{i} y_{i}+\sum_{i, j} c_{i j} y_{i}\left(1-y_{j}\right)
$$

$$
\begin{gathered}
\mathrm{E}:\{0,1\}^{\mathrm{n}} \rightarrow R \\
0 \rightarrow \mathrm{fg} \\
1 \rightarrow \mathrm{bg}
\end{gathered}
$$

$$
y^{*}=\arg \min _{y} E(y)
$$

How to minimize

$$
E(x) ?
$$

Global Minimum (\mathbf{y}^{*})

How does the code look like?

```
Graph *g;
```

For all pixels p
/* Add a node to the graph */
nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p, q
add_weights(nodeID(p), nodeID(q), cost);
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

How does the code look like?

Graph *g;

```
For all pixels p
    /* Add a node to the graph */
    nodelD(p) = g->add_node();
    /* Set cost of terminal edges */
    set_weights(nodeID(p), fgCost(p), bgCost(p));
end
```

for all adjacent pixels p, q
add_weights(nodeID(p), nodeID(q), cost);
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

How does the code look like?

Graph *g;

For all pixels p
/* Add a node to the graph */
nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p, q
add_weights(nodeID(p), nodeID(q), cost(p,q));
end

label_p = g->is_connected_to_source(nodeID(p)); // is the label of pixel p (0 or 1)

How does the code look like?

Graph *g;
For all pixels p
/* Add a node to the graph */
nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels $\mathbf{p , q}$
add_weights(nodeID(p), nodeID(q), $\operatorname{cost}(p, q))$;
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p)); // is the label of pixel p (0 or 1)

$$
a_{1}=b g \quad a_{2}=f g
$$

Outline

Connection between st-mincut and energy minimization?

What problems can we solve using st-mincut?

st-mincut based Move algorithms

Minimizing Energy Functions

- General Energy Functions
- NP-hard to minimize
- Only approximate minimization possible
- Easy energy functions
- Solvable in polynomial time
- Submodular ~ O(n ${ }^{6}$)

Space of Function Minimization Problems

Minimizing Submodular Functions

- Minimizing general submodular functions
$-O\left(n^{5} Q+n^{6}\right)$ where Q is function evaluation time [Orlin, IPCO 2007]
- Symmetric submodular functions
$-E(y)=E(1-y)$
- $\mathrm{O}\left(\mathrm{n}^{3}\right)$ [Queyranne 1998]
- Quadratic pseudoboolean
- Can be transformed to st-mincut
- One node per variable ($\mathrm{O}\left(\mathrm{n}^{3}\right)$ complexity)
- Very low empirical running time

Submodular Pseudoboolean Functions

Function defined over boolean vectors $\mathbf{y}=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots . \mathrm{y}_{\mathrm{n}}\right\}$

Definition

- All functions for one boolean variable (f: $\{0,1\} \rightarrow \mathbb{R}$) are submodular
- A function of two boolean variables $\left(f:\{0,1\}^{2} \rightarrow \mathbb{R}\right)$ is submodular if

$$
f(0,1)+f(1,0) \geq f(0,0)+f(1,1)
$$

- A general pseudoboolean function $f: 2^{n} \rightarrow \mathbb{R}$ is submodular if all its projections f^{p} are submodular i.e.

$$
f \rho(0,1)+f p(1,0) \geq f p(0,0)+f p(1,1)
$$

Quadratic Submodular Pseudoboolean Functions

$$
\begin{gathered}
E(y)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\mathrm{i}, \mathrm{j}} \theta_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right) \\
\text { For all } \mathrm{ij} \quad \theta_{\mathrm{ij}}(0,1)+\theta_{\mathrm{ij}}(1,0) \geq \theta_{\mathrm{ij}}(0,0)+\theta_{\mathrm{ij}}(1,1)
\end{gathered}
$$

Equivalent (transformable)

$$
E(y)=\sum_{i} c_{i} y_{i}+\sum_{i, j} c_{i j} y_{i}\left(1-y_{j}\right) \quad c_{i j} \geq 0
$$

i.e. all submodular QPBFs are st-mincut solvable

How are they equivalent?

$$
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
$$

$$
\begin{aligned}
\theta_{\mathrm{ij}}\left(y_{\mathrm{i}}, y_{\mathrm{j}}\right)= & \theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) y_{\mathrm{i}}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) y_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-y_{\mathrm{i}}\right) y_{\mathrm{j}}
\end{aligned}
$$

$B+C-A-D \geq 0$ is true from the submodularity of $\theta_{i j}$

How are they equivalent?

$$
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
$$

$$
\begin{aligned}
\theta_{\mathrm{ij}}\left(y_{\mathrm{i}}, y_{\mathrm{j}}\right)= & \theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) \mathrm{y}_{\mathrm{i}}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) \mathrm{y}_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-y_{\mathrm{i}}\right) \mathrm{y}_{\mathrm{j}}
\end{aligned}
$$

$B+C-A-D \geq 0$ is true from the submodularity of $\theta_{i j}$

How are they equivalent?

$$
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
$$

$$
\begin{aligned}
\theta_{\mathrm{ij}}\left(y_{i}, y_{\mathrm{j}}\right)= & \theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) y_{\mathrm{i}}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) \mathrm{y}_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-y_{\mathrm{i}}\right) \mathrm{y}_{\mathrm{j}}
\end{aligned}
$$

$B+C-A-D \geq 0$ is true from the submodularity of $\theta_{i j}$

How are they equivalent?

$$
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
$$

$$
\begin{aligned}
\theta_{\mathrm{ij}}\left(y_{i}, y_{\mathrm{j}}\right)= & \theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) y_{\mathrm{i}}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) \mathrm{y}_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-y_{\mathrm{i}}\right) y_{\mathrm{j}}
\end{aligned}
$$

$B+C-A-D \geq 0$ is true from the submodularity of $\theta_{i j}$

How are they equivalent?

$$
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
$$

$$
\begin{aligned}
\theta_{\mathrm{ij}}\left(y_{\mathrm{i}}, y_{\mathrm{j}}\right)= & \theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) y_{\mathrm{i}}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) y_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-y_{\mathrm{i}}\right) \mathrm{y}_{\mathrm{j}}
\end{aligned}
$$

$B+C-A-D \geq 0$ is true from the submodularity of $\theta_{i j}$

Quadratic Submodular Pseudoboolean Functions

y in $\{0,1\}^{n}$

$$
\begin{gathered}
E(y)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\mathrm{i}, \mathrm{j}} \theta_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right) \\
\text { For all } \mathrm{ij} \quad \theta_{\mathrm{ij}}(0,1)+\theta_{\mathrm{ij}}(1,0) \geq \theta_{\mathrm{ij}}(0,0)+\theta_{\mathrm{ij}}(1,1)
\end{gathered}
$$

Equivalent (transformable)

Recap

- Exact minimization of Submodular QBFs using graph cuts
- Obtaining partially optimal solutions of nonsubmodular QBFs using graph cuts

Outline

Connection between st-mincut and energy minimization?

What problems can we solve using st-mincut?

st-mincut based Move algorithms

St-mincut based Move algorithms

$$
E(\mathbf{y})=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{i, j} \theta_{i j}\left(y_{i}, y_{j}\right)
$$

$y \in$ Labels $L=\left\{\left\{_{1}, I_{2}, \ldots, I_{k}\right\}\right.$

- Commonly used for solving non-submodular multi-label problems
- Extremely efficient and produce good solutions
- Not Exact: Produce local optima

Move Making Algorithms

Computing the Optimal Move

Moves using Graph Cuts

Expansion and Swap move algorithms

[Boykov Veksler and Zabih, PAMI 2001]

- Makes a series of changes to the solution (moves)
- Each move results in a solution with smaller energy

- Current Solution

Search
Neighbourhood
N Number of
Variables
L Number of
Labels

Moves using Graph Cuts

Expansion and Swap move algorithms

[Boykov Veksler and Zabih, PAMI 2001]

- Makes a series of changes to the solution (moves)
- Each move results in a solution with smaller energy

> How to minimize move functions?

General Binary Moves

$$
E_{m}(t)=E\left(t y^{1}+(1-t) y^{2}\right)
$$

Minimize over move variables \mathbf{t} to get the optimal move

Move energy is a submodular QPBF (Exact Minimization Possible)

Boykov, Veksler and Zabih, PAMI 2001

Expansion Move

- Variables take label α or retain current label

[Boykov, Veksler, Zabih]

Expansion Move

- Variables take label α or retain current label

[Boykov, Veksler, Zabih]

Expansion Move

- Variables take label α or retain current label

[Boykov, Veksler, Zabiih]

Expansion Move

- Variables take label α or retain current label

[Boykov, Veksler, Zabiih]

Expansion Move

- Variables take label α or retain current label
- Move energy is submodular if:
- Unary Potentials: Arbitrary
- Pairwise potentials: Metric

$$
\begin{gathered}
\theta_{\mathrm{ij}}\left(\mathrm{I}_{\mathrm{a}}, \mathrm{l}_{\mathrm{b}}\right) \geq 0 \\
\theta_{\mathrm{ij}}\left(\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}\right)=0 \quad \text { iff } \quad \mathrm{a}=\mathrm{b}
\end{gathered}
$$

Cannot solve truncated quadratic
[Boykov, Veksler, Zabih]

Expansion Move

- Variables take label α or retain current label
- Move energy is submodular if:
- Unary Potentials: Arbitrary
- Pairwise potentials: Metric

$$
\theta_{\mathrm{ij}}\left(I_{\mathrm{a}}, I_{\mathrm{b}}\right)+\theta_{\mathrm{ij}}\left(I_{\mathrm{b}}, I_{\mathrm{c}}\right) \geq \theta_{\mathrm{ij}}\left(I_{\mathrm{a}}, I_{\mathrm{c}}\right)
$$

Examples: Potts model, Truncated linear

Cannot solve truncated quadratic
[Boykov, Veksler, Zabih]

Summary

Move making algorithms

Where do we stand?

Grid graph -
"submodular": Use graph cuts
"metric": Use expansion
otherwise: Use TRW, dual decomposition, relaxation

Chain/Tree, 2/multi-label: Use BP

What have we seen?

- Inference
- Belief propagation
- Graph cuts
- Variational inference
- Simulation-based inference
- Learning

Outline

- Supervised Learning
- Probabilistic Methods
- Loss-based Methods

Image Classification

Which city is this?
Input: d
Output: $x \in\{1,2, \ldots, h\}$

CRF training

- Stereo matching:
- Z: left, right image
- X: disparity map

Goal of training: estimate proper W

$$
f=\underset{\mathbf{x}}{\operatorname{argmin}} \operatorname{MRF}_{G}(\mathbf{x} ; \mathbf{u}, \mathbf{h})
$$

CRF training

- Denoising:
- Z: noisy input image
- X: denoised output image
 by w

CRF training (some further notation)

$$
\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{u}^{k}, \mathbf{h}^{k}\right)=\sum_{p} u_{p}^{k}\left(x_{p}\right)+\sum_{c} h_{c}^{k}\left(\mathbf{x}_{c}\right)
$$

$$
u_{p}^{k}\left(x_{p}\right)=\mathbf{w}^{T} g_{p}\left(x_{p}, \mathbf{z}^{k}\right), h_{c}^{k}\left(\mathbf{x}_{c}\right)=\mathbf{w}^{T} g_{c}\left(\mathbf{x}_{c}, \mathbf{z}^{k}\right)
$$

vector valued feature functions

$\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)=\mathbf{w}^{T}\left(\sum_{p} g_{p}\left(x_{p}, \mathbf{z}^{k}\right)+\sum_{c} g_{c}\left(\mathbf{x}_{c}, \mathbf{z}^{k}\right)\right)=\mathbf{w}^{T} g\left(\mathbf{x}, \mathbf{z}^{k}\right)$

Learning formulations

Risk minimization

$$
\begin{array}{r}
\hat{\mathbf{x}}^{k}=\arg \min _{\mathbf{x}} \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right) \\
\min _{\mathbf{w}} \sum_{k=1}^{K} \Delta\left(\mathbf{x}^{k}, \hat{\mathbf{x}}^{k}\right)
\end{array}
$$

K training samples $\left\{\left(\mathbf{x}^{k}, \mathbf{z}^{k}\right)\right\}_{k=1}^{K}$

Regularized Risk minimization

Regularized Risk minimization

Choice 1: Hinge loss

$$
\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)
$$

$$
L_{G}\left(\mathrm{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathrm{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)-\min _{\mathbf{x}}\left(\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathrm{x}, \mathrm{x}^{k}\right)\right)
$$

- Upper bounds $\Delta($.
- Leads to max-margin learning

Max-margin learning

$$
\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k} \xi_{k}
$$

subject to the constraints:

$\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)+\xi_{k}$
energy of ground truth
any other
energy
desired slack margin

Max-margin learning

Choice 2: logistic loss

$$
\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)
$$

$L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)+\log \underbrace{\sum_{\mathbf{x}} e^{-\mathrm{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)}}_{\text {partition function }}$

- Can be shown to lead to maximum likelihood learning

Max-margin vs Maximum-likelihood

max-margin

Max-margin vs Maximum-likelihood

Solving the learning formulations

Maximum-likelihood learning

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{\mu}{2}\|\mathbf{w}\|^{2}+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right) \\
L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)+\log \underbrace{\sum_{\mathbf{x}} e^{-\mathrm{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)}}_{\text {partition function }}
\end{gathered}
$$

- Differentiable \& convex
- Global optimum via gradient descent, for example

Maximum-likelihood learning

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{\mu}{2}\|\mathbf{w}\|^{2}+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right) \\
L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)+\log \sum_{\mathbf{x}} e^{-\mathrm{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)} \\
\text { gradient } \longrightarrow \nabla_{\mathbf{w}}=\mathbf{w}+\sum_{k}\left(g\left(\mathbf{x}^{k}, \mathbf{z}^{k}\right)-\sum_{\mathbf{x}} p\left(\mathbf{x} \mid w, \mathbf{z}^{k}\right) g\left(\mathbf{x}, \mathbf{z}^{k}\right)\right) \\
\text { Recall that: } \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)=\mathbf{w}^{T} g\left(\mathbf{x}, \mathbf{z}^{k}\right)
\end{gathered}
$$

Maximum-likelihood learning

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{\mu}{2}\|\mathbf{w}\|^{2}+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right) \\
L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)+\log \sum_{\mathbf{x}} e^{-\mathrm{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)} \\
\text { gradient } \longrightarrow \nabla_{\mathbf{w}}=\mathbf{w}+\sum_{k}(g\left(\mathbf{x}^{k}, \mathbf{z}^{k}\right)-\underbrace{\left.\sum_{\mathbf{x}} p\left(\mathbf{x} \mid w, \mathbf{z}^{k}\right) g\left(\mathbf{x}, \mathbf{z}^{k}\right)\right)}
\end{gathered}
$$

- Requires MRF probabilistic inference
- NP-hard (exponentially many \mathbf{x}): approximation via loopy-BP ?

Max-margin learning (UNCONSTRAINED)

$$
\begin{gathered}
\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right) \\
L_{G}\left(\mathrm{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)-\min _{\mathbf{x}}\left(\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)\right)
\end{gathered}
$$

- Convex but non-differentiable
- Global optimum via subgradient method

Max-margin learning (CONsTRAINED)

$$
\min _{\mathbf{w}} \frac{\mu}{2}\|\mathbf{w}\|^{2}+\sum_{k} \xi_{k}
$$

subject to the constraints:

- Quadratic program (great!)
- But exponentially many constraints (not so great)

Max-margin learning (CONSTRAINED)

- What if we use only a small number of constraints?
- Resulting QP can be solved
- But solution may be infeasible
- Constraint generation to the rescue
- only few constraints active at optimal solution!!
(variables much fewer than constraints)
- Given the active constraints, rest can be ignored
- Then let us try to find them!

What have we seen?

- Inference
- Belief propagation
- Graph cuts
- Variational inference
- Simulation-based inference
- Learning

Today: Modern ML Toolbox

Images

Hidden Layer 1

Hidden Layer 2
Output Layer

Modern deep learning toolbox is designed for simple sequences \& grids

Audio signals

Images

Modern

deep learning toolbox is designed for sequences \& grids

Not everything

can be represented as a sequence or a grid

How can we develop neural networks that are much more broadly applicable?

New frontiers beyond classic neural networks that only learn on images and sequences

Hot subfield in ML

Why is Graph Deep Learning Hard?

Networks are complex.

- Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

Networks

Images

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

ML withGraphs

Graph Neural Networks

Each node defines a computation graph

- Each edge in this graph is a transformation/aggregation function

Graph Neural Networks

INPUT GRAPH

Neural networks

Intuition: Nodes aggregate information from their neighbors using neural networks

Representation Learning

(Supervised) Machine Learning Lifecycle:

 This feature, that feature. Every single time!

Representation Learning

Map nodes to d-dimensional embeddings such that similar nodes in the network are embedded close together

representation
(u) $\xrightarrow[f: u \rightarrow \mathbb{R}^{d}]{\text { Learn a neural network }}$

$$
f: u \rightarrow \mathbb{R}^{d}
$$

\mathbb{R}^{d}
Feature representation, embedding

ML for Graph data

- Traditional methods
- Node embeddings
- Graph neural networks
- Applications

Different Types of Tasks

Graph-level prediction, Graph generation

Classic Graph ML Tasks

- Node classification: Predict a property of a node
- Example: Categorize online users / items
- Link prediction: Predict whether there are missing links between two nodes
- Example: Knowledge graph completion
- Graph classification: Categorize different graphs
- Example: Molecule property prediction
- Clustering: Detect if nodes form a community
- Example: Social circle detection
- Other tasks:
- Graph generation: Drug discovery
- Graph evolution: Physical simulation

Traditional ML Pipeline

- Design features for nodes/links/graphs
- Obtain features for all training data

Traditional ML Pipeline

- Train an ML model: - Apply the model:
- Logistic Regression
- Random forest
- Neural network, etc.
- Given a new node/link/graph, obtain its features and make a prediction

Machine Learning in Graphs

Goal: Make predictions for a set of objects

Design choices:

- Features: d-dimensional vectors \boldsymbol{x}
- Objects: Nodes, edges, sets of nodes, entire graphs
- Objective function:
- What task are we aiming to solve?

Node-Level Tasks

Node classification
ML needs features.

Node-Level Features: Overview

Goal: Characterize the structure and position of a node in the network:

- Node degree
- Node centrality
- Clustering coefficient Node feature
- Graphlets

Link-Level Prediction Task: Recap

- The task is to predict new links based on the existing links.
- At test time, node pairs (with no existing links) are ranked, and top K node pairs are predicted.
- The key is to design features for a pair of nodes.

Link Prediction as a Task

Two formulations of the link prediction task:

- 1) Links missing at random:
- Remove a random set of links and then aim to predict them
- 2) Links over time:
- Given $G\left[t_{0}, t_{0}^{\prime}\right]$ a graph defined by edges up to time t_{0}^{\prime}, output a ranked list L of edges (not in $G\left[t_{0}, t_{0}^{\prime}\right]$) that are predicted to appear in time $G\left[t_{1}, t_{1}^{\prime}\right]$

$G\left[t_{0}, t_{0}^{\prime}\right]$
$G\left[t_{1}, t_{1}^{\prime}\right]$
- Evaluation:
- $n=\left|E_{\text {new }}\right|$: \# new edges that appear during the test period $\left[t_{1}, t_{1}^{\prime}\right]$
- Take top n elements of L and count correct edges

Link Prediction via Proximity

- Methodology:
- For each pair of nodes (x, y) compute score $c(x, y)$
- For example, $c(x, y)$ could be the \# of common neighbors of x and y
- Sort pairs (x, y) by the decreasing score $c(x, y)$
- Predict top n pairs as new links
- See which of these links actually appear in $G\left[t_{1}, t_{1}^{\prime}\right]$

Link-Level Features: Overview

- Distance-based feature
- Local neighborhood overlap
- Global neighborhood overlap

Link-Level Features: Summary

- Distance-based features:
- Uses the shortest path length between two nodes but does not capture how neighborhood overlaps.
- Local neighborhood overlap:
- Captures how many neighboring nodes are shared by two nodes.
- Becomes zero when no neighbor nodes are shared.
- Global neighborhood overlap:
- Uses global graph structure to score two nodes.
- Katz index counts \#walks of all lengths between two nodes.

Graph-Level Features

- Goal: We want features that characterize the structure of an entire graph.
- For example:

Background: Kernel Methods

- Kernel methods are widely-used for traditional ML for graph-level prediction.
- Idea: Design kernels instead of feature vectors.
- A quick introduction to Kernels:
- Kernel $K\left(G, G^{\prime}\right) \in \mathbb{R}$ measures similarity b/w data
- Kernel matrix $\boldsymbol{K}=\left(K\left(G, G^{\prime}\right)\right)_{G, G^{\prime}}$ must always be positive semidefinite (i.e., has positive eigenvalues)
- There exists a feature representation $\phi(\cdot)$ such that $K\left(G, G^{\prime}\right)=\phi(G)^{\mathrm{T}} \phi\left(G^{\prime}\right)$
- Once the kernel is defined, off-the-shelf ML model, such as kernel SVM, can be used to make predictions.s

Graph-Level Features: Overview

- Graph Kernels: Measure similarity between two graphs:
- Graphlet Kernel [1]
- Weisfeiler-Lehman Kernel [2]
- Other kernels are also proposed in the literature (beyond the scope of this lecture)
- Random-walk kernel
- Shortest-path graph kernel
- And many more...

Graph-Level Features: Summary

- Graphlet Kernel
- Graph is represented as Bag-of-graphlets
- Computationally expensive
- Weisfeiler-Lehman Kernel
- Apply K-step color refinement algorithm to enrich node colors
- Different colors capture different K-hop neighborhood structures
- Graph is represented as Bag-of-colors
- Computationally efficient
- Closely related to Graph Neural Networks (as we will see!)

Graph Representation Learning

Graph Representation Learning alleviates the need to do feature engineering every single time.

Graph Representation Learning

Goal: Efficient task-independent feature

 learning for machine learning with graphs!

Why Embedding?

- Task: Map nodes into an embedding space
- Similarity of embeddings between nodes indicates their similarity in the network. For example:
- Both nodes are close to each other (connected by an edge)
- Encode network information
- Potentially used for many downstream predictions

Example Node Embedding

- 2D embedding of nodes of the Zachary's Karate Club network:

Input

Output

Setup

Assume we have a graph G:

- V is the vertex set.
- A is the adjacency matrix (assume binary).
- For simplicity: No node features or extra information is used

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Embedding Nodes

- Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph

original network

Embedding Nodes

Goal: $\underset{\text { in the original network }}{\operatorname{similarity}}(u, v) \approx \underset{\text { Similarity of the embedding }}{\mathbf{z}_{\mathrm{T}}^{\mathrm{T}} \mathbf{z}_{u}}$

original network
embedding space

Learning Node Embeddings

1. Encoder maps from nodes to embeddings
2. Define a node similarity function (i.e., a measure of similarity in the original network)
3. Decoder DEC maps from embeddings to the similarity score
4. Optimize the parameters of the encoder so that:

$$
\operatorname{DEC}\left(\mathbf{z}_{v}^{\mathrm{T}} \mathbf{z}_{u}\right)
$$

$$
\underset{\text { in the original network }}{\operatorname{similarity}(u, v)} \underset{\text { Similarity of the embedding }}{ }
$$

Two Key Components

- Encoder: maps each node to a low-dimensional vector

$$
\operatorname{ENC}(v)=\mathbf{z}_{v} \quad \text { embedding }
$$

node in the input graph

- Similarity function: specifies how the relationships in vector space map to the relationships in the original network $\operatorname{similarity}(u, v) \approx \mathbf{z}_{v}^{\mathrm{T}} \mathbf{z}_{u} \quad$ Decoder

"Shallow" Encoding

Simplest encoding approach: Encoder is just an embedding-lookup

Each node is assigned a unique embedding vector
 (i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, node2vec

Framework Summary

- Encoder + Decoder Framework
- Shallow encoder: embedding lookup
- Parameters to optimize: \mathbf{Z} which contains node embeddings \mathbf{z}_{u} for all nodes $u \in V$
- We will cover deep encoders (GNNs) in Lecture 6
- Decoder: based on node similarity.
- Objective: maximize $\mathbf{z}_{v}^{\mathrm{T}} \mathbf{z}_{u}$ for node pairs (u, v) that are similar

How to Define Node Similarity?

- Key choice of methods is how they define node similarity.
- Should two nodes have a similar embedding if they...
- are linked?
- share neighbors?
- have similar "structural roles"?
- There are also random walk based approaches

Note on Node Embeddings

- This is unsupervised/self-supervised way of learning node embeddings.
- We are not utilizing node labels
- We are not utilizing node features
- The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved.
- These embeddings are task independent
- They are not trained for a specific task but can be used for any task.

Random-Walk Embeddings

probability that u
 $\mathbf{z}_{u}^{\mathrm{T}} \mathbf{z}_{v} \approx \underset{\substack{\text { and } v \text { co-occur on } \\ \text { random walk over }}}{\text { rat }}$ the graph

Random-Walk Embeddings

1. Estimate probability of visiting node \boldsymbol{v} on a random walk starting from node u using some random walk strategy R

2. Optimize embeddings to encode these random walk statistics:

Similarity in embedding space (Here: dot product= $\cos (\theta))$ encodes random walk "similarity"

Why Random Walks?

1. Expressivity: Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information Idea: if random walk starting from node u visits v with high probability, u and v are similar (high-order multi-hop information)
2. Efficiency: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks

Unsupervised Feature Learning

- Intuition: Find embedding of nodes in
d-dimensional space that preserves similarity
- Idea: Learn node embedding such that nearby nodes are close together in the network
- Given a node u, how do we define nearby nodes?
- $N_{R}(u)$... neighbourhood of u obtained by some random walk strategy R

Feature Learning as Optimization

- Given $G=(V, E)$,
- Our goal is to learn a mapping $f: u \rightarrow \mathbb{R}^{d}$: $f(u)=\mathbf{z}_{u}$
- Log-likelihood objective:

$$
\max _{f} \sum_{u \in V} \log \mathrm{P}\left(N_{\mathrm{R}}(u) \mid \mathbf{z}_{u}\right)
$$

- $N_{R}(u)$ is the neighborhood of node u by strategy R
- Given node u, we want to learn feature representations that are predictive of the nodes in its random walk neighborhood $N_{R}(u)$.

Random Walk Optimization

1. Run short fixed-length random walks starting from each node u in the graph using some random walk strategy R.
2. For each node u collect $N_{R}(u)$, the multiset ${ }^{*}$ of nodes visited on random walks starting from u.
3. Optimize embeddings according to: Given node u, predict its neighbors $N_{\mathrm{R}}(u)$.
max f
$u \in V$

Summary so far

- Core idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.
- Different notions of node similarity:
- Naïve: similar if two nodes are connected
- Neighborhood overlap
- Random walk approaches

