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Random Forests

Recap

Set of decision trees

Each tree t generated from training data Dt ⊆ D ⊂ D
Creation of one tree independent of all other trees

Based on random processes to produce diverse set of trees
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Random Forests

Data Propagation

Data enters each tree in root node

Each non-terminal / internal node performs a (simple) binary test

Data propagation is based on test outcomes
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Random Forests Fusion

Tree Fusion

t = 1
...

t = 2 t = T

Query sample is propagated through all trees

Reaches exactly one leaf in each tree

Information about target variable assigned to these leafs need to be
combined
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Random Forests Fusion

Tree Fusion

How to combine
information assigned to

individual leafs?
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Random Forests Fusion

Tree Fusion

Random Forests

The simplest approach: voting scheme

P(c|x) =
1

T

T∑
t=1

δ(M(nt), c),

M(n) is dominant class of samples
in leaf node n,
δ(·, ·) is a Kronecker delta function,
δ(a, b) = 1 if a = b, 0 otherwise

Drawback: Does not store category distribution in every leaf
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Random Forests Fusion

Tree Fusion

Randomized Trees

P(c |x) =
1

T

T∑
t=1

Pt(c |x)

Pt(c |x) is class posterior
in leaf node nt

Drawback: Confidence about a correctness
of estimation is lost
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Random Forests Fusion

Tree Fusion

Randomized Trees

P(c |x) =
1

T

T∑
t=1

Pt(c |x)

Pt(c |x) is class posterior
in leaf node nt

Fuse before estimation:

DLx =
T⋃
t=1

Dnt

(Multi-set)

P(c |x) =
P(Lx |c)P(c)

P(Lx)

(Details in
[Hänsch, 2014])
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Random Forests Fusion

Tree Fusion

Randomized Trees

P(c |x) =
1

T

T∑
t=1

Pt(c |x)

Pt(c |x) is class posterior
in leaf node nt

Fuse before estimation:

DLx =
T⋃
t=1

Dnt

(Multi-set)

Weighted fusion.

P(c |x) =
T∑
t=1

wtPt(c |x)

(Details in
[Hänsch, 2014])
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Random Forests Node Tests

Random Forests - Split point selection

How to select split points?
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Random Forests Node Tests

Random Forests - Random split point selection

Uniform sampled
θ ∼ U(min(D̂),max(D̂))

Gaussian sampled
θ ∼ N(µ(D̂), σ(D̂))
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Random Forests Node Tests

Random Forests - Naive split point selection

Determine an optimal split point under usage of the marginal
distribution of the data

Both labeled and unlabeled data points can be used
Fast to compute
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Random Forests Node Tests

Random Forests - Naive split point selection

Interval center
θ = min(D̂)+max(D̂)

2

Mean value
θ = 1

|D̂|

∑
x∈D̂ x̂i

Median value
θ = median(D̂)
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Random Forests Node Tests

Random Forests - Naive split point selection

Determine an optimal split point under usage of the marginal
distribution of the data

Both labeled and unlabeled data points can be used
Fast to compute

No class-specific knowledge is used

Tend to give sub-optimal results, since all label-dependent
(task-specific) information is ignored
Label-independent split points are not optimal in a Bayesian sense
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Random Forests Node Tests

Random Forests - Split point selection

Class likelihood of two classes in red and blue, respectively,
Along with

Label-independent (green) and label-dependent (red) split points
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Random Forests Node Tests

Random Forests - Label-dependent split point selection

Max. drop of impurity θ = arg minθ̂ [PLI (nL) + PR I (nR)− I (n)]

Entropy
I (n)=−

∑
c P(c|n)·log P(c|n)

Gini
I (n)=1−

∑
c P(c|n)2

Misclassification
I (n)=1−maxc P(c|n)
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Random Forests Node Tests

Random Forests - Split point selection

Other possibilities available
→ Combine label-dependent & label-independent optimization
methods

Need for computational efficiency since selection is performed
thousand to million times during training

Avoid exhaustive search
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Random Forests Node Tests

Random Forests - Node optimization

Generate m split candidates
→ “Traditionally”: m =

√
d , where d is data dimension

→ “Modern” approaches: m ≈ 105

→ Usually even m = 2 leads to performance increase
→ Trade-off between high performance and high correlation

Select best split, reject all others

Measure optimality of a split

Classification: “Purity” of child nodes (e.g. Gini, entropy, etc.)
Regression: e.g. variance
In general: How much better is the estimation of the child nodes (as a
weighted average) than parent nodes?
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Random Forests Node Tests

Random Forests - Node optimization

Different energy functions allow simultaneous optimization of
different targets

Common example: Classification (Object class) and regression
(Object position)

e.g. Hough Forests[Gall et al., 2011]

Training Data: D = {Pi = (Ii , ci , di )}
Randomly decide for one of two energy functions:

Entropy of posterior: U1(A) = −|A| ·
∑

c P(c |A)log(P(c |A))
Variance of offset vectors: U2(A) =

∑
c

∑
d∈DA

C
||d − d̄A

C ||
Select best test t according to
arg mint(U∗({Pi |t = 0}) + U∗({Pi |t = 1}))
Use offset vectors and class posterior to perform Hough voting during
prediction
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Random Forests Node Tests

Random Forests - Structured prediction

Image data is structured

Exploited already during structured projection within node tests

Target variable can be structured as well
→ Offset vectors, label patch

Enriched spatial estimate for image labeling

Disadvantage: Increased memory footprint
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Random Forests Interpretation

Random Forests - Interpretation

Is maximum tree height reached?

How balanced is a tree? #nodes
2H+1−1

How large is largest leaf? 1− maxnt |Dnt |
|D|

How pure is largest leaf? I (n∗) with n∗ = arg maxnt |Dnt |

Out-of-bag estimate for generalization error
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Random Forests Interpretation

Random Forests - Feature relevance

RF for PolSAR image labeling, roughly 360 image features as input:
(PolSAR-blue, SAR-red, color-green, grayscale-magenta, binary-black)

Each feature has same probability to be used (as seen on the left)

Each feature is actually selected by the RF with very unequal
frequency (as seen on the right)

Features that have been used often are more important / descriptive
for the task at hand
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Random Forests Interpretation

Random Forests - Feature relevance

[R. Hänsch, 2015a]

RF for hyperspectral image labeling, > 200 spectral bands as input

Each band has same probability to be used

Each band is actually selected by the RF with very unequal frequency

Bands that have been used often are more important / descriptive for
the task at hand
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Random Forests Interpretation

Random Forests - Visualization

Important Characteristics of Random Forests

Forest Level

Strength of the whole forest
→ e.g. classification accuracy
Correlation between trees
→ e.g. correlation of classification maps

Tree Level

Strength of the individual tree
→ e.g. based on out-of-bag error
Structural layout of individual trees
→ e.g. balanced vs. degenerated chain

Node Level

Node features
→ e.g. size, split dimension, drop of impurity, leaf impurity, etc.
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Random Forests Interpretation

Random Forests - Visualization

Branch

Color:
(e.g.) split dimension
Thickness:
Number of samples
Length:

l
L/R
h+1 = lh · κ2 · ((fmax − fmin) + fmin)
Orientation:
(α, β)

L/R
h+1 = (α, β)h ± (30◦, κ1 · 45◦)

Leaf

Color: Leaf impurity
Size: Leaf size

2D position
Based on pairwise correlation
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Random Forests Interpretation

Random Forests - Visualization

Increasing tree height

Trees getting higher

Leafs getting purer

Trees getting stronger

Trees correlate stronger

Forest gets stronger

[R. Hänsch, 2015b]
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Random Forests Application Tips

Random Forests - Practical Considerations

GPU implementations available

Not all data samples in a node have to be used to define / select split
point

Accuracy usually grows faster with tree height than tree number

But: Tree height limited by amount of training data

Use features that are as diverse as possible

Use simple split point definitions in combination with node
optimization (i.e. selection)

Check tree properties / visualize
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ConvNets

Overview

1. Random Forests
Fusion
Node Tests
Interpretation
Application Tips

2. ConvNets
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Architectures
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3. Dense labelling with CNNs
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networks
Enhancing outputs with
RNNs
Yielding high-resolution
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Input

Convolution ConvolutionPooling Pooling Fully Connected Fully Connected

Output

Y. Tarabalka Lecture 7: Modern Learning 27 Nov 2017 30 / 106



ConvNets MLP to ConvNet

Recap MLP

MLPs

Provide a mapping from X → Y, i.e. from a feature space (usually
X ≡ Rn) to a label space Y
Are based on concatenation of “simple” functions that depend on
parameters (i.e. weights)

Are optimized by gradient descent (and its modern extensions)
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ConvNets MLP to ConvNet

Recap MLP

MLPs

Provide a mapping from X → Y, i.e. from a features space (usually
X ≡ Rn) to a label space Y
Are based on concatenation of “simple” functions that depend on
parameters (i.e. weights)

Are optimized by gradient descent (and its modern extensions)

Work great, BUT:
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ConvNets MLP to ConvNet

ConvNets and Deep Learning

Used by

Facebook: Automatic tagging
Google: Photo search
Amazon: Recommendations
Pinterest: Home feed personalization
Instagram: Search

Buzzwords

Deep Learning, Deep Networks
Convolutional Neural Networks (CNNs), Convolutional Networks
(ConvNets)
Note: There are more Deep Networks / Deep Learning approaches
than ConvNets
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ConvNets MLP to ConvNet

ConvNets and Deep Learning

“CNNs are inspired by biological principles in the visual cortex.”

Small regions of cells sensitive to specific regions within the visual
field.

1962, Hubel and Wiesel

Neuronal cells fire only in the presence of certain structures e.g. edges
of a specific orientation
Organized in columns

Good selling point, BUT:

Extracting image features is neither new, nor the main point of
ConvNets
Training works very differently
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ConvNets Convolution

From FullyConnected (MLP) to Convolution (ConvNet)

Input Hidden Output
N neurons M neurons

Fully-connected:
NM weights

Im
a
g

e

C
la

ss

Multiple layers of units

All-to-all connection between
two adjacent layers

No lateral connections

A tremendous amount of
parameters in case of images
→ Untrainable
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ConvNets Convolution

From FullyConnected (MLP) to Convolution (ConvNet)

Input Output

Im
a
g

e

C
la

ss

Hidden

Receptive
field

Set most weights to zero and
thus delete most connections
and decrease parameters.
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ConvNets Convolution

From FullyConnected (MLP) to Convolution (ConvNet)

Input Output

Im
a
g

e

C
la

ss

Hidden

Shared
weights

→ Convolution of the input with kernel (weights,           )
produces feature map

Set most weights to zero and
thus delete most connections
and decrease parameters.

Use same values for weights of
different neurons within a layer.

The multiplication of the input
with identical weights for
different neurons corresponds to
a convolution.

The kernel of this convolution is
automatically learned.
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ConvNets Convolution

From FullyConnected (MLP) to Convolution (ConvNet)

Input Output

Im
a
g

e

C
la

ss

Hidden

Multiple features
with different kernels

→ Convolution of the input with kernel produces feature map

Set most weights to zero and
thus delete most connections
and decrease parameters.

Use same values for weights of
different neurons within a layer.

The multiplication of the input
with identical weights for
different neurons corresponds to
a convolution.

The kernel of this convolution is
automatically learned.

Use multiple convolutional layers
to enable different kernels to be
learned.
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ConvNets Convolution

Convolutional neural networks (CNNs)

Input: the image itself
{Convolutional layers + pooling layers}* + MLP
Jointly learn to extract features & conduct classification

Convolutional layer

Learned convolution filters → feature maps

Special case of fully connected layer:

Only local spatial connections

Location invariance

⇒ Makes sense in image domain (or
text, time series,...)
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ConvNets Convolution

Convolutional neural networks (CNNs)

Pooling layers

Subsample feature maps

Increase receptive field ©
Downgrade resolution

Robustness to spatial variation ©
Not good for pixelwise labeling §

5 3

12 1
12

Max pooling

Overall categorization CNN

Source: deeplearning.net
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ConvNets Convolution

Example of First Level Filters

Learned kernels of first
convolutional layer of a ConvNet
(AlexNet).

Correspond mostly to edges and
corners of different orientations.

Note: Grouping is caused by
network architecture (two
independent streams were used
to handle the large amount of
data).
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ConvNets Convolution

Example of Higher Level Filters

Layer 1

Top nine activations in feature
maps

Projected to pixel space using a
deconvolutional network

Reconstructed patterns that
cause high activations

Note: Images taken from
[Zeiler and Fergus, 2013].
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ConvNets Convolution

Example of Higher Level Filters

Top nine activations in feature
maps

Projected to pixel space using a
deconvolutional network

Reconstructed patterns that
cause high activations

Note: Images taken from
[Zeiler and Fergus, 2013].
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ConvNets Convolution

Example of Higher Level Filters

Top nine activations in feature
maps

Projected to pixel space using a
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ConvNets Convolution

Example of Higher Level Filters

Top nine activations in feature
maps

Projected to pixel space using a
deconvolutional network

Reconstructed patterns that
cause high activations

Note: Images taken from
[Zeiler and Fergus, 2013].
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ConvNets Convolution

Example of Higher Level Filters

Top nine activations in feature
maps

Projected to pixel space using a
deconvolutional network

Reconstructed patterns that
cause high activations

Note: Images taken from
[Zeiler and Fergus, 2013].
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ConvNets Architectures

Architectures

LeNet (1998)

One of the first successful applications of ConvNets

Digital digit / character recognition

AlexNet (2012)

Similar to LeNet, but deeper and bigger

Stacked conv-layers

Image classification (ImageNet Large-Scale Visual Recognition Challenge)

Trained on 15 million annotated images from over 22,000 categories

Trained on two GTX 580 GPUs for five to six days

ZF Net (2013)

Similar to AlexNet

Trained on 1.3 million annotated images

Trained on a GTX 580 GPU for twelve days
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ConvNets Architectures

Architectures

VGG Net (2014)

Simple and deep: Only 3x3 filters and 2x2 pooling

Stacked conv-layers to increase effective receptive field size

Used Caffe toolbox

Trained on 4 Nvidia Titan Black GPUs for two to three weeks

GoogLeNet (2015)

22 layers

Proposed inception module: Running multiple filter operations in parallel

12x fewer parameters than AlexNet

Trained on multiple high-end GPUs for a week

Microsoft ResNet (2015)

152 layers

Trained on an 8 GPUs for two to three weeks

3.6% error on ImageNet LSVRC (AlexNet: 15.4%)
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ConvNets Architectures

Common Architectures and Tricks

Designing good architecture somewhat tricky

Some designs, or parts of designs, exist that work well

Usually a good idea to look at papers of common architectures

Most of the time, at least some intuition or motivation for choice of
layers
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ConvNets Architectures

Network in a Network

Alternate between actual conv layers, and conv layers of size 1x1

Use the (per pixel) FC layers to compress (reduce channels)

Next (actual) convolution faster
Deeper network, but less parameters
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ConvNets Architectures

Inception Module

Used by Google

Multiple versions

Compilation of multiple ideas

Network in a Network

Use of small filters (only 3x3)

Using two 3x3 filters same receptive field size as one 5x5 filter

But less parameters
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Images

Multi-Layer Perceptron

Multi-Layer Perceptron

Images

Compressed Representation
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Images

...

...

Images

i

k

j
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Images

Images

...i

j

...k

j
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Images

Images

...i

j

...k

j
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Images

...

...

Images

i

k

j

Y. Tarabalka Lecture 7: Modern Learning 27 Nov 2017 56 / 106



ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Images

...

...

Images

i

k

j

Y. Tarabalka Lecture 7: Modern Learning 27 Nov 2017 57 / 106



ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Images

Images

...i

j

...k

jTrain

Fixed
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Images

Images

...

j

...
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Application: Deep Learning

Images

Images

...

j

...

Y. Tarabalka Lecture 7: Modern Learning 27 Nov 2017 60 / 106



ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Application: Deep Learning

Images

Images

...

j

...
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training
→ Learn “reasonable” features
from unlabeled data

Application: Deep Learning
→ Supervised learning (via
Backpropagation) only as
refinement

Images

Classification

...

j
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ConvNets Frameworks

Frameworks

Implementing fast, multi-channel convolutions just as hard as
implementing fast matrix multiplications

Use existing tools!

Caffe
Tensorflow
Torch

For larger datasets you want to use a (good) GPU!
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ConvNets Frameworks

Caffe

Started by Yangqing Jia at UC Berkeley

Maintained by Berkeley AI Research and many
contributers

Backend in C++, frontends for Python and
Matlab

http://caffe.berkeleyvision.org/

https://github.com/BVLC/caffe

Version 2 now available
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ConvNets Frameworks

Tensorflow

Developed by Google Brain team

Python frontend

https://www.tensorflow.org/

https://github.com/tensorflow
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ConvNets Frameworks

Torch

Lua frontend

http://torch.ch/

https://github.com/torch/torch7

Y. Tarabalka Lecture 7: Modern Learning 27 Nov 2017 66 / 106

http://torch.ch/
https://github.com/torch/torch7


Dense labelling with CNNs Fully convolutional networks

Outline

1. Random Forests
Fusion
Node Tests
Interpretation
Application Tips

2. ConvNets
MLP to ConvNet
Convolution
Architectures
Auto Encoder
Frameworks

3. Dense labelling with CNNs
Fully convolutional networks
Enhancing outputs with RNNs
Yielding high-resolution outputs
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Dense labelling with CNNs Fully convolutional networks

Example: dense labeling with CNNs in remote sensing

Pioneering works:

1. Predict an entire patch centered in input patch (Mnih, 2013)

Allows to learn “in-patch location” priors
→ Patch border artifacts

2. Predict the central pixel in the patch and shift one by one
(e.g., Paisitkriangkrai et al., CVPR Earthvision 2015)

Too many redundant computations
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Dense labelling with CNNs Fully convolutional networks

State of the art: fully convolutional network (FCN)

Fully convolutional networks (FCNs)

[Long et al., CVPR 2015]

Convolutions & subsampling

“Deconvolutional” layer to upsample

Proposed FCN for remote sensing Deconv. layer

[Maggiori et al, TGRS 2017]
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Dense labelling with CNNs Fully convolutional networks

State of the art: fully convolutional network (FCN)

Output size varies with input size (with fixed number of parameters)

Location invariant (same logic used to compute every output)

Avoid redundant computations

Especially relevant in remote sensing (arbitrary tiling, azimuth)
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Dense labelling with CNNs Fully convolutional networks

FCN: experiment

Patch artifacts removed
by construction

More accurate

10x faster Input Patch-based FCN

Massachusetts dataset (Mnih, 2015)

Once again...

Imposing sensible restrictions

improves the learning process,

reduces execution times.
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Dense labelling with CNNs Fully convolutional networks

FCN: experiment

Massachusetts dataset

[Dataset: Mnih, 2013]

Color input Reference FCN SVM

Classification of 22.5 km2 (1 m resolution): 8.5 seconds
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Dense labelling with CNNs Fully convolutional networks

Dealing with imperfect training data

Frequent misregistration/omission in large-scale data sources:

Pléiades image + OpenStreetMap (OSM) over Loire department

Possible strategy

Two-step training process:

1. Pretrain on large amounts of imperfect data
→ Learn dataset generalities

2. Fine-tune on a small piece of manually labeled reference
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Imperfect training data: experiment

1. Pretrain on 22.5 km2 Pléiades + OpenStreetMap data

2. Fine-tune on a manually labeled tile (2.5km2, 3000×3000 px.)

Fine-tuning tile

Close-up

E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. “Convolutional Neural Networks for Large-Scale Remote-Sensing Image
Classification”, TGRS 2017.
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Imperfect training data: experiment

Test on a different manually labeled tile

Test tile

Results
Input Ref. FCN FCN+FT

Method Accuracy AUC* IoU
FCN 99.13% 0.98154 47%

FCN + FT 99.57% 0.99836 72%

*AUC: area under the ROC curve
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Concluding remarks

FCNs have now become the standard dense labeling architecture

Recognition/localization trade-off

Subsampling:

increases the receptive field (improving recognition)

reduces resolution (hampering localization)

⇒ “Blobby” objects

Input Ref. CNN

Solutions

1. Post-process the CNN’s output (e.g., CRF)

2. Use innovative (e.g., multiscale) architectures
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Dense labelling with CNNs Enhancing outputs with RNNs

Enhancing CNNs’ outputs

Image CNN ukHeat maps Enhancement Enhanced
heat maps

P(k)=eu k/∑
j

eu j

Recent approaches

CNN + Fully connected CRF (Chen et al., ICML 2015)

CNN + Fully connected CRF as RNN (Zheng et al., CVPR 2015)

CNN + Domain transform (Chen et al., CVPR 2016)

In remote sensing:

CNN + CRF (Paisitkriangkrai et al., CVPR Worshops 2015)

CNN + Fully connected CRF (Marmanis et al., ISPRS 2015; Sherrah 2016,...)

Goal

Learn iterative enhancement process
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Partial differential equations (PDEs)

One strategy: progressively enhance the score maps by using partial
differential equations

Given heat maps uk , image I :

Heat flow
(Smooths out uk )

∂uk(x)

∂t
= div(∇uk(x))

Divergence represents the volume density of the outward flux of a
vector field from an infinitesimal volume around a given point
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Partial differential equations (PDEs)

Given heat maps uk , image I :

Heat flow
(Smooths out uk )

∂uk(x)

∂t
= div(∇uk(x))

Perona-Malik
Edge-stopping function g(∇I , x)

∂uk(x)

∂t
= div(g(∇I , x)∇uk(x))

Anisotropic diffusion
Diffusion tensor D(I , x)

∂uk(x)

∂t
= div(D(∇I , x)∇uk(x))

Geodesic active contours
Edge-stopping function g(∇I , x)

∂uk(x)

∂t
= |∇uk(x)|div

(
g(∇I , x)

∇uk(x)

|∇uk(x)|

)
...
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Partial differential equations (PDEs)

Different PDE approaches can be devised to enhance classification
maps

Several choices must be made to select the appropriate PDE and
tailor it to the considered problem

For example, edge-stopping function g(∇I , x) must be chosen
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Partial differential equations (PDEs)

Different PDE approaches can be devised to enhance classification
maps

Several choices must be made to select the appropriate PDE and
tailor it to the considered problem

For example, edge-stopping function g(∇I , x) must be chosen

Can we let a machine learning approach discover by itself a useful
iterative process?
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Dense labelling with CNNs Enhancing outputs with RNNs

Partial differential equations (PDEs)

Different PDE approaches can be devised to enhance classification
maps

Several choices must be made to select the appropriate PDE and
tailor it to the considered problem

For example, edge-stopping function g(∇I , x) must be chosen

Can we let a machine learning approach discover by itself a useful
iterative process?

PDEs are usually discretized in space by using finite differences

Derivatives as discrete convolution filters
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A generic enhancement process

Differential operations ( ∂
∂x ,

∂
∂y ,

∂2

∂x∂y ,
∂2

∂x2 , ...)
applied on uk and image I
Implemented as convolutions: Mi ∗ uk , Nj ∗ I
{M1,M2, ...}, {N1,N2, ...} conv. kernels (e.g., Sobel filters)

...

...

... ... +

Image I

Conv.

Conv.

MLP

Concat.

N j∗I

M i∗u tut ut+1

δu t
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A generic enhancement process

Φ(uk , I ) = {Mi ∗ uk , Nj ∗ I ; ∀i , j}, set of responses

...

...

... ... +

Image I

Conv.

Conv.

MLP

Concat.

N j∗I

M i∗u tut ut+1

δu t
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A generic enhancement process

Overall update on uk at x : δuk(x) = fk ( Φ(uk , I )(x) )
Class-specific fk , implemented as multilayer perceptron
Mi and Nj convey spatial reasoning (e.g., gradients),
fk their combination (e.g., products)

...

...

... ... +

Image I

Conv.

Conv.

MLP

Concat.

N j∗I

M i∗u tut ut+1

δu t
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A generic enhancement process

Discretized in time:
uk,t+1(x) = uk,t(x) + δuk,t(x), overall update δ

...

...

... ... +

Image I

Conv.

Conv.

MLP

Concat.

N j∗I

M i∗u tut ut+1

δu t
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Iterative processes as recurrent neural networks (RNNs)

“Unroll” iterations

Enforce weight sharing along iterations

Train by backpropagation as usual (“through time”)

Every iteration is meant to progressively refine the classification maps

...

+

Image

...+ ... ...

 

N j∗I

ut=0
ut=1 ut=2 ut=3
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Dense labelling with CNNs Enhancing outputs with RNNs

Experiments

FCN trained on Pléiades satellite
images + OSM data

Manually labeled tiles
for RNN training/testing

Unroll 5 iterations

32 Mi and 32 Nj

MLP: 1 hidden layer, 32 neurons Building, Road, Background

E. Maggiori, G. Charpiat, Y. Tarabalka, P. Alliez. “Recurrent Neural Networks to Correct Satellite Image Classification Maps”.
TGRS 2017.
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Dense labelling with CNNs Enhancing outputs with RNNs

Experiments

Color input Reference

Coarse CNN → RNN enhancement → RNN output
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Experiments

Color CNN map

(RNN input)
— Intermediate RNN iterations — RNN output Reference

0 1 2 3 4 5
0.965

0.97

0.975

0.98

0.985

RNN iteration

A
c
c
u
ra

c
y
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Experiments

Comparison

Color image Coarse CNN CNN+CRF Class-agnostic
CNN+RNN

CNN+RNN Reference

Overall Mean Class-specific IoU
Method accuracy IoU Build. Road Backg.

CNN 96.72 48.32 38.92 9.34 96.69
CNN+CRF 96.96 44.15 29.05 6.62 96.78

Class-agn. CNN+RNN 97.78 65.30 59.12 39.03 97.74
CNN+RNN 98.24 72.90 69.16 51.32 98.20
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Experiments

More examples

Color image Coarse CNN RNN output Reference
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Dense labelling with CNNs Enhancing outputs with RNNs

Concluding remarks

A small set of accurately labeled data can be used to enhance
classification maps

We can learn the specifics of an iterative enhancement process

Removing the recurrence constraint significantly deteriorates results

Y. Tarabalka Lecture 7: Modern Learning 27 Nov 2017 91 / 106



Dense labelling with CNNs Yielding high-resolution outputs

Yielding high-resolution outputs

Very recent works

Four families of architectures:

Dilation (Chen et al., 2015; Dubrovina et al., 2016,...)

Unpooling/deconv. (Noh et al., 2015; Volpi and Tuia, 2016,...)

Skip networks (Long et al., 2015; Badrinarayanan et al., 2015,...)

MLP network (Maggiori et al., 2017,...)

Ultimate goal: CNN architecture that addresses recognition/localization
trade-off

Analysis of SoA: E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. “High-Resolution Semantic Labeling with Convolutional
Neural Networks”, arXiv, Nov. 2016.
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Dilation networks

Based on the shift-and-stitch approach:

Conduct predictions at different offsets to produce low-resolution
outputs
Interleave these outputs to compose the final high-resolution result

Such an interleaving can be implemented as convolutions on
non-contiguous locations

⇒ Larger context without introducing more parameters

Not robust to spatial deformation
(e.g., detect road located exactly 5px away)
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Unpooling/deconvolution networks

The CNN is “mirrored” to learn the deconvolution:

Pooling indices

Pooling Unpooling

Conv. Deconv.

Max (left) and average (right) unpooling

Max pooling
indices

a b

c d

a 0 0 0 

0 0 b 0 

0 c 0 0 

0 0 d 0 

1
4

a b

c d

a a b b 

a a b b 

c c d d 

c c d d 

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

The depth of deconv. networks is significantly larger (∼ twice FCN)
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Dense labelling with CNNs Yielding high-resolution outputs

Skip networks

1. Extract intermediate
features

2. Classify

3. Upsample/add (pairwise)

Addresses trade-off

Inflexible/arbitrary at
combining resolutions

Score

Upsample

Upsample

Upsample

Add

Add

Add

Score Score

Score
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Dense labelling with CNNs Yielding high-resolution outputs

MLP network

Premise

CNNs do not need to “see” everywhere at the same resolution

E.g., to classify central pixel:

Full resolution context Full resolution only near center

⇒ Combine resolutions to address trade-off, in a flexible way
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MLP network

Concatenate

Learn to combine features

Upsample features

Base FCN
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Dense labelling with CNNs Yielding high-resolution outputs

MLP network

Concatenate

Learn to combine features

Upsample features Extract intermediate features

Upsample to the highest res.

Concatenate

⇒ Pool of features
(e.g., edge detectors, object
detectors)
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Dense labelling with CNNs Yielding high-resolution outputs

MLP network

Concatenate

Learn to combine features

Upsample features

Multi-layer perceptron (MLP) learns
how to combine those features
⇒ Output classif. map

Pixel by pixel (series of 1×1
convolutional layers)
⇒ 128 hidden neurons, nonlinear
activation

Addresses trade-off in a flexible way
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Experiments

Datasets

ISPRS 2D semantic labeling contest:

Vaihingen (9 cm) Potsdam (5 cm)

Color infra-red + Elevation model
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Dense labelling with CNNs Yielding high-resolution outputs

Results: Base FCN vs derived architectures

Vaihingen Imp. surf. Building Low veg. Tree Car Mean F1 Acc.
Base FCN 91.46 94.88 79.19 87.89 72.25 85.14 88.61
Unpooling 91.17 95.16 79.06 87.78 69.49 84.54 88.55

Skip 91.66 95.02 79.13 88.11 77.96 86.38 88.80
MLP 91.69 95.24 79.44 88.12 78.42 86.58 88.92

Potsdam Imp. surf. Building Low veg. Tree Car Clutter Mean F1 Acc.
Base FCN 88.33 93.97 84.11 80.30 86.13 75.35 84.70 86.20
Unpooling 87.00 92.86 82.93 78.04 84.85 72.47 83.03 84.67

Skip 89.27 94.21 84.73 81.23 93.47 75.18 86.35 86.89
MLP 89.31 94.37 84.83 81.10 93.56 76.54 86.62 87.02

Image GT Base FCN Unpooling Skip MLP

Classes: Impervious surface (white), Building (blue), Low veget. (cyan), Tree (green),
Car (yellow), Clutter (red).
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Results: Comparison with other methods

Vaihingen Imp. surf. Build. Low veg. Tree Car F1 Acc.
CNN+RF 88.58 94.23 76.58 86.29 67.58 82.65 86.52

CNN+RF+CRF 89.10 94.30 77.36 86.25 71.91 83.78 86.89
Deconvolution 83.58 87.83

Dilation 90.19 94.49 77.69 87.24 76.77 85.28 87.70
Dilation + CRF 90.41 94.73 78.25 87.25 75.57 85.24 87.90

MLP 91.69 95.24 79.44 88.12 78.42 86.58 88.92

Submission of the MLP-network results to ISPRS server

Overall accuracy: 89.5%

Second place (out of 29) at the time of submission

Significantly simpler and faster than other methods
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Concluding remarks

Modern CNN architertures address well recognition/localization
trade-off

Good generalisation potential

How to implement?

You can use ready frameworks

New architectures become popular

Example: U-net
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Dense labelling with CNNs Yielding high-resolution outputs

Concluding remarks

Key to CNNs’ success

Imposing sensible restrictions to neuronal connections reduces optimization
search space w.l.o.g:

Better minima → better accuracy

Computational efficiency

⇒ Win-win

A recurrent pattern: simpler is better

FCNs → More accurate and 10x faster

RNNs → Removing recurrence significantly degrades results

MLP net → More accurate than more complicated models

Y. Tarabalka Lecture 7: Modern Learning 27 Nov 2017 104 / 106



Dense labelling with CNNs Yielding high-resolution outputs

Concluding remarks

The “no free lunch” principle in machine learning (Wolper, 1996)

There is no such thing as a universally better classifier. A classifier is
better under certain assumptions.

CNNs exploit the properties of images particularly well

Shifting efforts from feature engineering to network engineering

Good payoff of the efforts,
e.g., learning better features than handmade ones,
convolutions → GPUs, borrowing pretrained network
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