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Abstract

Discrete energy minimization has recently emerged as an indispensable tool for

computer vision problems. It enables inference of the maximum a posteriori so-

lutions of Markov and conditional random fields, which can be used to model

labelling problems in vision. When formulating such problems in an energy min-

imization framework, there are three main issues that need to be addressed: (i)

How to perform efficient inference to compute the optimal solution; (ii) How to

incorporate prior knowledge into the model; and (iii) How to learn the parame-

ter values. This thesis focusses on these aspects and presents novel solutions to

address them.

As computer vision moves towards the era of large videos and gigapixel images,

computational efficiency is becoming increasingly important. We present two

novel methods to improve the efficiency of energy minimization algorithms. The

first method works by “recycling” results from previous problem instances. The

second simplifies the energy minimization problem by “reducing” the number of

variables in the energy function. We demonstrate a substantial improvement in

the running time of various labelling problems such as, interactive image and

video segmentation, object recognition, stereo matching.

In the second part of the thesis we explore the use of natural image statis-

tics for the single view reconstruction problem, where the task is to recover a

theatre-stage representation (containing planar surfaces and their geometrical re-

lationships to each other) from a single 2D image. To this end, we introduce a

class of multi-label higher order functions to model these statistics based on the

distribution of geometrical features of planar surfaces. We also show that this

new class of functions can be solved exactly with efficient graph cut methods.

The third part of the thesis addresses the problem of learning the parameters

of the energy function. Although several methods have been proposed to learn

the model parameters from training data, they suffer from various drawbacks,

such as limited applicability or noisy estimates due to poor approximations. We

present an accurate and efficient learning method, and demonstrate that it is

widely applicable.
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eringham, Pushmeet Kohli, M. Pawan Kumar, Lubor Ladicky, Mukta Prasad,

Srikumar Ramalingam, Christophe Restif, Jon Rihan, Greg Rogez, Chris Rus-

sell, Florian Schroff, Josef Sivic, Olly Woodford; and the New Crew: Matthew

Blaschko, Varun Gulshan, Sam Hare, David Jarzebowski, Glenn Sheasby, Paul

Sturgess, Andrea Vedaldi, Jonathan Warrell. The support staff at Brookes, in

particular Stephen Allen, Helen Bainbridge, Sue Flint, Catherine Hutchinson,

Doreen Jarvis, Elizabeth Maynard, Ali McNiffe, Genevieve Whitson, deserve a

special mention for their help with many administrative issues over the years. I

also acknowledge the generous financial support provided by EPSRC and PAS-

CAL Network of Excellence.

I am indebted to M. Pawan Kumar (for being an inspiration that he is, and for

introducing me to Stephen Fry and QI), Carl Ek (for teaching me to appreciate

the finer and important things in life), Mukta Prasad (for home-cooked Indian

food, and for being Mukta), Pushmeet Kohli (for helping me start off on this

long journey), Paul Sturgess (for all his swimming tips), Andrew Zisserman (for

his support, many words of wisdom, and advice), Alyosha Efros (for his immense

berry and ice cream knowledge), P. J. Narayanan and C. V. Jawahar (for an

iii



Acknowledgements

inspiring introduction to the field), and Jayanthi Sivaswamy (for her encourage-

ment).

I would also like to thank: Srinika Ranasinghe (for accompanying me on many

food adventures in Oxford and elsewhere), Sajida Malik (for being there, and for

her love for chocolate), Patrick Buehler (for organizing fun trips), The Rowlands

(for “introducing” me to my home away from home – 21 Old Road), Claire Berna

(for invaluable advice on Paris and for being a good friend and housemate), David

Jarzebowski (for organizing road trips), Chenoa Marquis and Hajar Masri (for

their ever-entertaining company), Kiran BK, ALN Kumar and Sireesh Reddy (for

always reminding me that I ought to finish my thesis in reasonable time), Valerie

Watmough and Rosalyn Porter (for helping me get through a difficult time), Katie

Kew (for demystifying artichokes and other things), Sandeep Kakani, Abilene Pitt

and Victoria Wightman (for being good friends), David Jones, Laura Myers and

Fran Woodcock (for tolerating me as a housemate for two years), Sam Hare (for

the conversations), Mark Rendel (for showing me around Lord’s), Katzi Emms

and Ben Richardson (for teaching me a tiny bit of French, which I promise to

improve upon), Mrs. Hodge (for apples from her tree), Yannis Hodges-Mameletzis

(for telling me a thing or two about food), Manish Jethwa and his mum (for

delicious dhoklas), Chan Mayt (for getting me into tennis, which I’m still no

good at), and many other friends I’ve made over the years.

Above all, I am grateful to Amma and Nanna, without whom nothing would

have been possible. They have supported me in all my not-so-conventional de-

cisions, and are responsible for everything that I am today. They will be very

pleased to know that I will no longer have a student status... at last! The un-

conditional love and support I have always received from my little sister means a

great deal to me, and for that I thank her.

Finally, thanks also to Nigel Slater, Sir David Attenborough, Michael Palin

and Stephen Fry, who are no less than Gods in my own crazy world!

Soho Square Gardens, London

19th August 2010

iv



Contents

1 Introduction 1

1.1 Computer Vision as an Optimization Problem 2

1.2 Contributions 4

1.3 Outline of the Thesis 6

1.4 Publications 7

2 Random Fields 8

2.1 Markov Random Fields 9

2.2 Conditional Random Fields 12

2.3 Maximum A Posteriori Estimation 14

2.3.1 Submodular Energy Functions . . . . . . . . . . . . . . . . . . . 14

2.3.2 Graph Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Solving Non-submodular Energy Functions . . . . . . . . . . . . 20

2.3.4 Message Passing Algorithms . . . . . . . . . . . . . . . . . . . . 22

2.4 Example Vision Problems 23

2.4.1 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Summary 26

3 Efficient Energy Minimization 27

3.1 Introduction 28

3.1.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Preliminaries 31

3.2.1 Approximate Energy Minimization . . . . . . . . . . . . . . . . 33

3.2.2 Computing Partially Optimal Solutions . . . . . . . . . . . . . 35

3.3 Efficient Multi-label Methods 36

3.3.1 Recycling Primal and Dual Solutions . . . . . . . . . . . . . . . 37

3.3.2 Reducing Energy Functions . . . . . . . . . . . . . . . . . . . . 41

v



Contents

3.4 Solving Pn Potts Model Efficiently 45

3.5 Experiments 49

3.5.1 Dynamic α-expansion . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.2 Using Partially Optimal Solutions . . . . . . . . . . . . . . . . . 54

3.6 Summary 59

4 Exact Inference for Higher Order CRFs 61

4.1 Introduction 62

4.1.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Notation and Preliminaries 64

4.2.1 Graph Cuts for Energy Minimization . . . . . . . . . . . . . . . 65

4.2.2 Submodular functions . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Problem Statement 68

4.4 Boolean encoding for multi-label variables 69

4.5 Encoding Functions 71

4.6 Application: Single View Reconstruction 78

4.7 Summary 81

5 Efficient Piecewise Parameter Learning 83

5.1 Introduction 84

5.1.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Preliminaries 87

5.2.1 Pseudo-likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.2 Max-Margin Learning . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 The Piecewise Model 92

5.3.1 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Constraint Reformulation . . . . . . . . . . . . . . . . . . . . . 94

5.4 Experimental Results 96

5.4.1 Man-made Structure Database . . . . . . . . . . . . . . . . . . 96

5.4.2 Middlebury-2005 Dataset . . . . . . . . . . . . . . . . . . . . . 98

5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vi



Contents

5.5 Summary 100

6 Discussion 102

6.1 Our Contributions 103

6.2 Future Work 104

A Datasets 106

Bibliography 109

vii



List of Figures

1.1 Example of an image segmentation problem . . . . . . . . . . . 3

1.2 Examples of labelling problems . . . . . . . . . . . . . . . . . . 5

2.1 Example of a stereo matching problem . . . . . . . . . . . . . . 10

2.2 Example of an object recognition problem . . . . . . . . . . . . 10

2.3 Example of a Markov random field . . . . . . . . . . . . . . . . 11

2.4 Example of an st-graph . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Graph reparameterization . . . . . . . . . . . . . . . . . . . . . 18

2.6 Constructing an st-graph corresponding to an energy function . 20

2.7 Two examples of interactive binary segmentation . . . . . . . . 24

3.1 Example images and their ground truth labellings . . . . . . . . 30

3.2 An example showing the dynamic update of edge capacities . . 39

3.3 The number of label changes . . . . . . . . . . . . . . . . . . . 40

3.4 Graph construction for Pn Potts model . . . . . . . . . . . . . 47

3.5 Key frames of the ‘Dayton’ video sequence . . . . . . . . . . . . 50

3.6 Run-times obtained by recycling primal and dual solutions . . . 52

3.7 Comparison of run-times and solution energy . . . . . . . . . . 53

3.8 Performance of the partially optimal solution algorithm . . . . . 56

3.9 Sample results of object-based segmentation and stereo . . . . . 57

3.10 Solution energies computed using trw-s and bp algorithms . . 58

3.11 Labelling obtained using the bp algorithm . . . . . . . . . . . . 59

4.1 Converting an energy minimization problem to an st-mincut

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Transforming a multi-label problem to an st-mincut problem . 70

4.3 Graph construction for characterizing a general kth order multi-

label function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Potentials for single view reconstruction . . . . . . . . . . . . . 79

4.5 Single view reconstruction results . . . . . . . . . . . . . . . . . 80

5.1 Toy example of a binary image segmentation problem . . . . . . 88

5.2 Difference between pseudo- and piecewise pseudo- likelihoods . 90

5.3 Qualitative results on the man-made structure database . . . . 98

viii



List of Figures

A.1 Middlebury-2005 images . . . . . . . . . . . . . . . . . . . . . . 107

A.2 Man-made structure dataset . . . . . . . . . . . . . . . . . . . . 108

ix



List of Tables

3.1 Run-times for various labelling examples using the Pn model . . 54

3.2 Run-times for single mrf problems . . . . . . . . . . . . . . . . 55

4.1 Coefficients in the third order binary energy function . . . . . . 74

4.2 Misclassification error for some of the images . . . . . . . . . . 81

5.1 Quantitative results on the man-made structure database . . . 99

5.2 Quantitative results on the Middlebury-2005 database . . . . . 99

x



Chapter 1

Introduction



Many problems in computer vision, such as image segmentation, stereo matching,

object recognition, single view reconstruction, have been posed as energy mini-

mization problems [16, 18, 36, 93, 94, 95]. Such formulations involve representing

the vision task in terms of an energy or cost function. An optimal solution to

the problem is then obtained by finding the minima of the energy function. This

approach is becoming increasingly popular due to the availability of efficient and

easy to use algorithms, such as graph cuts [1, 17, 31]. In this thesis, we focus on

various aspects of energy minimization approaches in the context of computer vi-

sion problems. Specifically, we are interested in image labelling problems, wherein

every pixel in the image is assigned a label from a given set.

1.1 Computer Vision as an Optimization

Problem

One of the main challenges in dealing with computer vision tasks is the size of

the problem. Let us consider the image segmentation problem as an example,

where the task is to assign every pixel in an image a label corresponding to the

segment it belongs to. Figure 1.1 shows an image used in [46] and its correspond-

ing segmentation into four regions, namely cow, grass, trees, and sky. Given a

640 × 480 image with each pixel taking one of four possible labels, the energy

function is composed of over 300, 000 variables, and there are over 10180,000 pos-

sible labellings in the solution space. A certain cost or energy value is associated

with each of these label assignments, and the lowest cost labelling corresponds

to the optimal solution. Naturally, searching for the best solution (also referred

to as the Inference problem) in such an extremely large space requires efficient

optimization algorithms.

Although the problem of finding the minima of a general energy function is

np-hard [18], there exist a number of powerful algorithms which compute the ex-

act solution for a particular family of functions in polynomial time. For instance,

max-product belief propagation algorithm exactly minimizes energy functions de-

fined over graphs with no loops [75, 115]. Similarly, certain energy functions can

2



1.1. Computer Vision as an Optimization Problem

(a) (b)

Figure 1.1: (a) A natural image used in [46]; and (b) its segmentation into regions,

namely cow, grass, trees, and sky, represented by four grey scale intensity values.

Each pixel in the image (a) can take any one of the four labels, which results in

over 10180,000 possible labellings. An energy value is associated with each labelling,

and the segmentation in (b) is obtained by finding the labelling corresponding to

the lowest energy.

be minimized by solving a minimum cost st-cut (st-mincut) problem [37,50,88,89].

In the first part of this thesis, we extend the class of energy functions which can

be solved efficiently. We present novel techniques that improve the computational

and memory efficiency of algorithms for solving multi-label energy functions. Our

methods are motivated by the observations that the performance of minimization

algorithms depends on: (i) the initialization used for the variables; and (ii) the

number of variables in the energy function. We reuse results from previous prob-

lem instances to initialize the variables in the new instance, and also compute

partially optimal solutions to reduce the number of unlabelled variables.

There are two other issues that need to be addressed when formulating vision

labelling tasks in an energy minimization framework: (i) How to model the prob-

lem; and (ii) How to set the parameter values in the energy function. The second

part of the thesis explores the possibility of including natural image statistics,

which have been shown to be effective for many tasks [104, 114], into the energy

function. We also show how the global minima of such energy functions can be

obtained.

The last few years have seen a lot of attention being devoted to the problem

of learning parameters of energy functions [62,71,84,90,100,117]. These methods

3



1.2. Contributions

learn the parameters using training data images and their corresponding labels1,

rather than make the user set them manually. However, the state-of-the-art

parameter learning methods suffer from various drawbacks. They can lead to

poor accuracy due to noisy estimates, as noted in [84, 97], or require performing

inference for every training image repeatedly, which limits their applicability. In

the third part of the thesis, we present an efficient piecewise method to overcome

these drawbacks. Our method decomposes the original problem into a number of

smaller problems, and then performs efficient discriminative learning.

1.2 Contributions

The main contributions of this thesis are summarized below. We will discuss

the relevant contributions in detail at the end of every chapter, and present a

consolidated summary in section 6.1.

Efficient Inference. As shown in section 1.1, energy functions defined for com-

puter vision problems contain an extremely large number of variables. Searching

for optimal solutions in such a large space requires efficient inference algorithms.

We present three efficient techniques to improve the running time of inference

methods. They are readily applicable for most of the popular energy minimiza-

tion algorithms in computer vision. Methods optimized using our techniques

provide the same solution as the standard methods, although in a much shorter

time. Furthermore, all the optimality guarantees of the original methods are

retained. One of our techniques can be considered as an extension of the work

in [39, 46] for the multi-label (i.e. more than two labels) case.

Applications. We demonstrate the benefits of our methods on various labelling

problems such as, colour based segmentation, stereo matching, object class cat-

egory segmentation, single view reconstruction, structure detection. Our results

in all these problems are significantly better than those reported previously in

the literature. Examples of the labelling problems we consider are shown in Fig-

1Labels are obtained from either manual or automatic annotation of images. For example,
pascal voc dataset [19] provides high-quality manually annotated training data.
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1.2. Contributions

sky

vertical

ground

tree

car

road

building

(a) (b) (c)

Figure 1.2: We show the benefits of our methods on various image labelling prob-

lems: (a) Single view reconstruction, (b) Object class category segmentation, (c)

Structure detection. The first row shows an example image, and the second row

shows the expected result, which corresponds to the minimum energy labelling.

In (a), the task is to assign one of the three geometric labels, namely ground,

vertical, sky, to every pixel in the image. Here we show an image from the auto-

matic photo pop-up dataset [35]. In (b), we would like to recognize which object

each pixel in the image belongs to. One of the images from the msrc dataset [95]

containing four object classes, building, car, road, tree, is shown here. In (c),

the task is to find man-made structures (such as houses, cathedrals, buildings,

castles) in the image. An image from the man-made structure database [62] along

with the result (illustrated with white squares overlaid on the image) is shown.

ures 1.1 and 1.2. We have also made implementation of our methods publicly

available.2 In fact, most of the researchers using α-expansion, tree-reweighted

message passing, and belief propagation algorithms, can replace the standard

implementations with our optimized versions easily.

Using Natural Image Statistics. It is well-known that natural image statis-

tics can be used to improve the results of many labelling problems [65, 104,114].

We explore the use of these rich statistics for the problem of reconstructing a

scene from a single 2D image.3 We encode these learnt statistics as terms in the

energy function that depend on more than two variables (referred to as higher

2See http://cms.brookes.ac.uk/research/visiongroup
3Note that this reconstruction problem is different from the traditional one where most pixels

in the scene are assigned a 3D location. Here, the scene is approximated using three planes,
which correspond to ground, vertical, and sky [36].

5



1.3. Outline of the Thesis

order terms). Unlike the work of [43], we present a method to obtain an exact

solution for multi-label energy functions involving higher order terms.

Efficient Learning. We present a widely applicable method for learning pa-

rameters of the energy function. Unlike the previous methods, it is not limited

by the efficiency of the inference step in every iteration of the learning algorithm.

Our approach can also be viewed as extending max-margin based learning meth-

ods [100, 102] to a larger class of energy functions. Furthermore, our method is

very easy to implement, and is suitable for multi-label energy functions.

1.3 Outline of the Thesis

In Chapter 2 we review the concepts of discrete optimization in the context of

computer vision problems. We explain how vision problems can be formulated us-

ing probabilistic models such as Markov and conditional random fields. We then

show that finding optimal solutions of such a model is equivalent to minimizing an

energy function. We also provide details of popular (exact and approximate) en-

ergy minimization algorithms, explain under what conditions they can be applied,

and discuss their limitations. Finally, we provide examples of energy functions for

various image labelling problems, such as segmentation, stereo matching, single

view reconstruction.

Chapter 3 introduces our methods for efficiently solving multi-label energy

functions. Inspired by the dynamic computation paradigm, our first method im-

proves the performance of the α-expansion algorithm [18]. We reuse results from

previous problem instances to initialize the variables in a new (related) instance.

This makes solving the new problem instance much more computationally effi-

cient. Our second method simplifies the energy function by solving the easy part

of the problem efficiently. Our strategy of reusing computations is then used to

solve the remainder of the problem. We first present our methods for functions

with energy terms containing one or two variables, and then show extensions to

higher order terms. Many applications of these methods are also shown in this

chapter.

6
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In chapter 4 we address the problem of finding the exact solution of multi-label

energy functions with higher order terms. We present a framework to transform

a certain class of multi-label higher order functions to second order boolean func-

tions, which can be minimized exactly using graph cuts. We show a principled

way of including the rich statistics of natural images into the energy minimization

framework in the form of higher order terms. In the latter part of this chapter

we use these higher order terms to improve the quality of reconstruction from a

single view of a scene.

Chapter 5 describes our method for learning parameters of energy functions.

We begin by discussing the pros and cons of two popular paradigms, namely (ap-

proximate) maximum likelihood [62,84] and max-margin [71,102], for estimating

the energy function parameters. We then describe our large margin piecewise

learning method, which incorporates the benefits of both the paradigms. Finally,

we show results on binary and multi-label energy functions to demonstrate that

our model is widely applicable.

In chapter 6 we give a summary of the work presented in this thesis, and

highlight our contributions. We also discuss promising avenues for future research.

Appendix A shows images from Middlebury-2005 [84] and man-made struc-

ture [62] datasets used in this thesis.

1.4 Publications

The first version of the work presented in chapter 3 for pairwise energy functions

was published in CVPR 2008 [2]. An extension of this work for higher order

functions, also presented in chapter 3, appeared in Transactions on PAMI [3].

The material presented in chapter 4 was published in CVPR 2008 [77]. The work

presented in chapter 5 appeared in CVPR 2010 [4].
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Chapter 2

Random Fields



Consider a set of random variables X = {X1, X2, . . . , Xn}, and a set of labels

L = {l1, l2, . . . , lk}. The objective of a labelling problem defined over these ran-

dom variables is to assign a label from the set L to each variable. Many computer

vision tasks, such as image segmentation [16], stereo matching [86], object recogni-

tion [43,94,95], can be viewed as labelling problems. Typically, in such scenarios,

the random variables correspond to pixels in an image, and the label set is defined

according to the problem. For example, in the stereo matching problem, the la-

bels represent disparity values, as shown in Figure 2.1. In the object recognition

problem, each label denotes an object, as shown in Figure 2.2. In the latter part

of this chapter we will discuss the formulation of these applications as labelling

problems.

Random fields provide an elegant probabilistic framework to model labelling

problems [29, 40, 70]. They provide a neighbourhood relationship between vari-

ables, and incorporate not only (noisy) image measurements, but also a prior

model over the labelling space in a principled manner. Let N represent the neigh-

bourhood of the random field, which is defined by sets Ni, ∀i ∈ {1, 2, . . . , n}. The

set Ni denotes the set of all neighbours of the random variable Xi. In other

words, Ni is the set of integers representing the indices of the neighbours of the

random variable Xi. Random fields are also able to model the complex interac-

tions between variables. Furthermore, it is possible to estimate the uncertainty in

the labelling because the model is probabilistic. In this thesis, we are interested

in two types of random field models, namely: (i) Markov random field; and (ii)

conditional random field.

2.1 Markov Random Fields

A Markov random field (mrf) models the joint probability of the labelling x

and the data y, denoted by Pr(x,y). According to the Bayes’ rule, the joint

probability is equal to the product of likelihood and prior probabilities as follows:

Pr(x,y) = Pr(y|x) Pr(x), (2.1.1)

9



2.1. Markov Random Fields

(a) (b) (c)

Figure 2.1: In the stereo matching problem, the task is to assign a disparity label

to every pixel, given a pair of images. In the Tsukuba image pair [72] shown

here, disparity gives the correspondence relationship between pixels in left and

right images along every horizontal scan-line. (a) Image from left camera, (b)

Image from right camera, and (c) The disparity map of the left camera image,

are shown here. The lighter intensities in the disparity map (c) denote larger

disparity values.

(a) (b)

Figure 2.2: In the object recognition problem, the labels represent object classes,

such as sky, road, car. (a) An image from the msrc dataset [95], and (b) The

corresponding object labelling are shown here. For instance, the region marked

in red denotes ‘building’, and the grey region is ‘sky’.

where Pr(y|x) is the likelihood and Pr(x) is the prior. A random field that models

the joint distribution (2.1.1) is said to be Markovian if satisfies the following

properties [40, 70]:

Pr(xi|{xj : j ∈ {1, 2, . . . , n} − {i}}) = Pr(xi|{xj : j ∈ Ni}), ∀i, (2.1.2)

Pr(x) > 0, ∀x ∈ Ln. (2.1.3)

The property (2.1.2) implies that the prior probability of the assignment Xi = xi

depends only on the labelling of its neighbouring random variables given by Ni.

Figure 2.3 shows example of a Markov random field with a neighbourhood system

10



2.1. Markov Random Fields

Figure 2.3: The graphical model representation of an mrf [11] consists of two

kinds of nodes and undirected edges between them. The observed nodes Yi rep-

resent the data, and are denoted by filled circles, while the hidden nodes Xi

represent the random variables, and are denoted by unfilled circles. The edges

between observed and hidden nodes represent the unary potentials. The edges

connecting the hidden nodes represent the neighbourhood system in the ran-

dom field. In this example, a hidden node is connected only to its immediate

neighbour, thus representing a clique of size two. Image courtesy of M. Pawan

Kumar [56].

of size two.

The joint distribution of an mrf in (2.1.1) can be written as follows:1

Pr(x,y) =
1

Z

∏

c∈C

exp(−φc(xc)), (2.1.4)

where C is the set of cliques formed by the neighbourhood systemN . For example,

the mrf shown in Fig. 2.3 contains cliques of size two involving every pair of

variables connected to each other. The term φc(xc) is known as the potential

function of the clique c, where xc = {xi, i ∈ c}. The term Z is the normalization

constant2, which ensures that the probabilities sum to one. For a pairwise mrf,

such as the one shown in Fig. 2.3, the probability (2.1.4) can be re-written as:

Pr(x,y) =
1

Z

∏

i∈V

exp(−φi(xi))
∏

(i,j)∈E

exp(−φij(xi, xj)), (2.1.5)

where V = {1, 2, . . . , n}, and E is the set of edges between all pairs of neighbouring

1According to the Hammersley-Clifford theorem [6,33].
2We will discuss the role of the partition function later in Chapter 5.
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2.2. Conditional Random Fields

variables. The terms φi(xi) and φij(xi, xj) are called as the unary and pairwise

potentials respectively. The Gibbs energy3 of a labelling x for this mrf is given

by:

E(x) =
∑

i∈V

φi(xi) +
∑

(i,j)∈E

φij(xi, xj). (2.1.6)

The unary potential φi(xi) models the likelihood of the label assignment Xi =

xi, while the pairwise potential φij(xi, xj) models the cost of the assignment

Xi = xi and Xj = xj . From Fig. 2.3, note that φi(xi) represents the cost of the

edge connecting the observed node Yi and the hidden node Xi, and depends on

the data. On the other hand, φij(xi, xj) represents the cost of the edge connecting

two hidden nodes Xi and Xj , and is independent of the data. A pairwise potential

commonly used in computer vision problems takes the form of Potts model, which

gives a low energy value when xi = xj , and penalizes with a high energy values

otherwise.

2.2 Conditional Random Fields

In many computer vision problems it may be necessary to use observed data for

computing the pairwise potentials. Consider the image segmentation problem as

an example (see Fig. 1.1). Constraining neighbouring pixels in the random field

to take the same label results in a smoothly varying solution, but is not always

ideal. If two neighbouring pixels are very different in their colour intensity values

(or any other features), then they should be allowed to take different labels. One

way to achieve this is by including the difference between the intensity values

of the two pixels in the pairwise potential, thus making it dependent on the

data. This idea of using data in the pairwise potential has been around for a few

years [16,81,95]. Based on the work by Lafferty et al. [64], Kumar and Hebert [62]

formalized the resulting probabilistic distribution as a conditional random field

(crf) model in the context of computer vision problems.4

A crf can also be viewed as an mrf globally conditioned on the data. It

3Energy function maps any labelling x ∈ Ln to a real number E(x).
4Kumar and Hebert [62] refer to their model as discriminative random field. It is essentially

a conditional random field model that uses a different scheme to learn the parameters of the
energy function.
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2.2. Conditional Random Fields

models the conditional probability of the labelling x given the data y, assuming

it satisfies the Markovian property, i.e.

Pr(xi|{xj : j ∈ {1, 2, . . . , n} − {i}},y) = Pr(xi|{xj : j ∈ Ni},y), ∀i. (2.2.1)

The conditional distribution of a pairwise random field is given by:

Pr(x|y) =
1

Z

∏

i∈V

exp(−φi(xi))
∏

(i,j)∈E

exp(−φij(xi, xj)), (2.2.2)

where Z is the normalization constant, and φi(xi) and φij(xi, xj) are the unary and

pairwise potentials respectively, which both depend on data. This distribution

can also be written as an energy function (similar to (2.1.6) in the mrf case).

In summary, Markov and conditional random field models provide a posterior

probability distribution5 of the labelling x, given data y. The best labelling of a

given random field is obtained by maximizing the posterior probability. This is

referred to as the problem of maximum a posteriori (map) estimation. The max-

imization problem is equivalent to minimizing the corresponding Gibbs energy as

follows:

xmap = arg min
x∈L

E(x). (2.2.3)

Before we discuss algorithms for finding map solution, we will review a couple of

relevant definitions.

Energy Reparameterization. Energy functions E1 and E2 are called repa-

rameterizations of each other if and only if ∀x, E1(x) = E2(x) [14,47]. Note that

this simply means that all possible labellings x have the same energy under both

functions E1 and E2, and does not imply that E1 and E2 are composed of the

same potential functions.

Energy Projection. A projection of any function f(·) is a function f p(·) ob-

tained by fixing the values of some of the arguments of f(·). For instance, fixing

the value of the first t variables of the energy function E(x1, x2, . . . , xn) : Ln → R

5Note that the posterior probability distribution in the case of an mrf is proportional to
the joint distribution.
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2.3. Maximum A Posteriori Estimation

produces the projection Ep(xt+1, xt+2, . . . , xn) : Ln−t → R. In other words, we

obtain a new energy function Ep(·) of n− t variables, by fixing t of the variables

in the original energy function E(·) of n variables.

2.3 Maximum A Posteriori Estimation

The most probable or Maximum a Posteriori (map) solution can be found by

minimizing the corresponding Gibbs energy, as shown in (2.2.3). The problem

of minimizing this energy is np-hard in general. However, there exist a num-

ber of powerful algorithms which the compute the exact solution for a particular

family of energy functions in polynomial time. Two such families of energy func-

tions relevant to our work are: (i) Submodular energy functions; and (ii) Energy

functions defined on tree structured mrf/crf. Submodular energy function min-

imization for certain random fields has been shown to be equivalent to a graph

cut (specifically st-mincut) problem, which has several efficient polynomial time

algorithms [31,50,88]. Energy functions defined on tree structured random fields

can be solved by a dynamic programming algorithm presented in [75]. In the

remainder of this section, we will describe these algorithms and their extensions

proposed in the literature.

2.3.1 Submodular Energy Functions

Submodular energy functions are an important family of functions which can be

minimized in polynomial time. They are discrete analogues of convex functions,

and arise in various branches of applied mathematics such as game theory, in-

formation theory, and queueing theory. Given an ordering over the label set L,

a function f(·) is submodular if all its projections on two variables satisfy the

constraint:

f p(a, b) + f p(a+ 1, b+ 1) ≤ f p(a, b+ 1) + f p(a+ 1, b), ∀a, b ∈ L. (2.3.1)
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2.3. Maximum A Posteriori Estimation

When dealing with functions of binary random variables this constraint trans-

forms to:

f p(0, 0) + f p(1, 1) ≤ f p(0, 1) + f p(1, 0). (2.3.2)

One of the first strongly polynomial time algorithms for this family was pro-

posed independently by [38] and [91]. However, this algorithm suffers from a very

high runtime complexity. Recent work by Orlin [73] has successfully reduced this

complexity to O (n6), where n is the number of random variables in the problem,

but is still impractical for vision problems involving millions of random variables.

Certain submodular functions can be efficiently minimized by solving the st-

mincut problem [14,32, 50, 88]. For example, submodular functions of order6 at

most three involving binary random variables can be minimized in this way [8,50].

Several methods have been proposed to extend the class of energy functions that

can be posed as the st-mincut problem. Certain binary higher order functions7

can be transformed into submodular functions of order two, and thus minimized

efficiently [25]. Schlesinger and Flach [88] showed how to convert a multi-label

submodular problem composed of unary and pairwise potentials into an st-mincut

problem. Since many energy functions can be transformed to binary submodular

functions of order 2, solving this class of energy functions efficiently is of great

importance. We will now explain an efficient graph cut (st-mincut) algorithm

for addressing this problem.

2.3.2 Graph Cuts

With the introduction of efficient algorithms to solve the st-mincut problem,

graph cuts have become an indispensable tool in the computer vision commu-

nity [16,17,99]. These algorithms have a low runtime complexity, and thus allow

fast computation of the globally optimal solution of an important class of en-

ergy functions, namely submodular energy functions. As we will see in the latter

sections, they can also be used to find approximate solutions of non-submodular

energy functions, with strong local optimality guarantees [18, 42, 53, 57, 109].

6The order of an energy function is k, if it can be written as a sum of potential functions,
each of which is defined on at most k random variables. For example, the order of (2.1.6) is 2.

7Potential functions composed of three or more variables.
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Figure 2.4: The st-mincut problem is defined using a directed graph with positive

edge weights, such as the one shown here. It has two special nodes, source s and

sink t, such that there are no edges into s and out of t. The set of nodes in

Vg is represented as grey circles, and the n-edges (node-node) between them are

shown in yellow. The t-edges (node-terminal) are shown in red or blue. The edge

weights are indicated by the thickness of the edges. An st-cut (shown in green)

separates the node set Vg into two disjoint sets – one containing the source and

the other containing the sink. Image courtesy of Yuri Boykov [15].

2.3.2.1 The st-mincut Problem

The st-mincut problem is defined using a positively weighted directed graph

G(Vg ∪ {s, t}, Eg, C). Here, Vg denotes the set of vertices (or nodes) and Eg de-

notes the set of directed edges in the graph. The function C : Eg → R
+ specifies

the edge weights, and maps every edge (i, j) ∈ Eg, to a non-negative real number

cij. Graphs used in the st-mincut problem have two special vertices called source

s and sink t, such that there are no incoming edges to the source, and no outgoing

edges from the sink. These special nodes are collectively referred to as terminals.

The edge set contains terminal edges (t-edges) and node edges (n-edges). The

terminal edges connect the terminal nodes to every node i ∈ Vg, and the node

edges connect a pair of nodes i, j ∈ Vg according to some neighbourhood struc-

ture. Let us consider the binary image segmentation problem as an example.

The nodes in the st-graph correspond to pixels in the image, and the terminals

represent the two labels, say 0 and 1.8 The edge weights are set according to the

energy function defined for the segmentation problem, as discussed in the latter

8We follow the convention of s representing label 0, and t representing label 1.
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part of this chapter.

Figure 2.4 shows an example of an st-graph. Given such a graph G, an st-cut

is defined as a partition of the node set Vg into two disjoint sets V0
g and V1

g , such

that Vg = V0
g ∪ V

1
g (collectively exhaustive), V0

g ∩ V
1
g = ∅ (mutually exclusive),

s ∈ V0
g , and t ∈ V1

g . All the nodes in the set V0
g are assigned label corresponding

to the source, and those in the set V1
g are assigned the sink label. The cost of the

st-cut CV0
g ,V1

g
is given by:

CV0
g ,V1

g
=

∑

i∈V0
g ,j∈V1

g

cij. (2.3.3)

The cost of an st-cut is equal to the cost of its associated labelling x, i.e. E(x).

Now, the st-mincut problem is to find the st-cut with the minimum cost. The

partitioning corresponding to the st-mincut provides the minimum cost labelling

for the nodes in Vg. According to the Ford-Fulkerson theorem [23], the st-mincut

problem is equivalent to finding the maximum flow from the source to the sink

with the weights C as edge capacities.

2.3.2.2 The Max-Flow Problem

Given a graph G(Vg ∪ {s, t}, Eg, C), the max-flow problem is to find the maximum

flow f from the source to the sink, such that the following edge capacity (2.3.4)

and mass balance (2.3.5) constraints are satisfied:9

0 ≤ fij ≤ cij , ∀(i, j) ∈ Eg, (2.3.4)
∑

j∈Ni

fij − fji = 0, ∀i ∈ Vg, (2.3.5)

where fij is the flow along the edge from node i to node j, and Ni is the set of

nodes in the neighbourhood system of node i. The residual capacity rij of an

edge (i, j), given a flow fij , is the maximum additional flow that can be passed

from node i to node j using the edges (i, j) and (j, i), i.e. rij = cij − fij + fji.

Now, a residual graph G(f), with respect to a flow f , consists of the nodes Vg,

and the edges with positive residual capacities. An augmenting path is defined

as a path from the source to the sink along unsaturated edges, i.e. edges with

9Using the notation of [1, 41].
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Figure 2.5: Here we show a graph G containing two nodes a1 and a2. The

edge weights are given by the numbers beside them. The edges shown using

dotted lines are part of the st-mincut, and the cost of this cut is 2 + 2 + 4 = 8.

We reparameterize this graph by adding a positive constant α to the t-edges

of node a2 and obtain the graph G1. Performing st-mincut/max-flow on this

reparameterized graph results in an identical st-mincut. Thus, both the graphs

induce the same partitioning in the node set, although the cost of the st-mincut

is different in the two graphs. Image courtesy of Pushmeet Kohli [46].

positive residual capacities, of the residual graph.

Max-flow algorithms typically find an augmenting path, send the maximum

possible flow through it, and repeat this process until no such paths can be

found [17]. The sum of all the flows obtained at each step is the maximum flow

for the graph. At the end of the process, certain edges will be saturated, and the

graph will be partitioned into two sets, separating the source and the sink. In

other words, it produces an st-cut. It has been shown that the maximum flow

value thus obtained is equal to the cost of the st-mincut for the graph [23]. Other

max-flow algorithms, such as push-relabel algorithm [30], also provide efficient

ways for achieving this, and are described in the excellent book by Ahuja et

al. [1]. In summary, after the max-flow algorithm has terminated, the set Vg is

partitioned into two sets: V0
g (source set) and V1

g (sink set), thus assigning labels

to all the nodes.

Graph Reparameterization. There are certain transformations, which do

not affect the labelling obtained by performing the max-flow operation. Such

transformations only result in a reparameterization of the graph. For example,

adding a constant value to the terminal edge weights csi and cit of any node i does
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not affect the labelling, as it only depends on the difference of the edge weights

(csi − cit). We show this on an example taken from [46] in Figure 2.5. Another

example of graph reparameterization is shown in Figure 3.2.

What can be solved? We mentioned earlier that all the edges in an st-graph

must be non-negative. This naturally restricts the class of energy functions that

can be represented and therefore solved using an st-graph. We now formalize this

class of st-mincut solvable energy functions. For simplicity, let us consider the

pairwise energy function in (2.1.6):

E(x) =
∑

i∈V

φi(xi) +
∑

(i,j)∈E

φij(xi, xj). (2.3.6)

Furthermore, we assume that the random variables Xi are binary valued.10 Fol-

lowing the pseudo-boolean notation in [14], we can re-write energy function (2.3.6)

as:11

E(x) =
∑

i∈V

(
φ1

ixi + φ0
i x̄i

)

+
∑

(i,j)∈E

(
φ00

ij x̄ix̄j + φ01
ij x̄ixj + φ10

ij xix̄j + φ11
ij xixj

)
, (2.3.7)

where x̄i is the binary complement of xi, i.e. x̄i = 1, if xi = 0 and vice versa. We

simplify this energy function for two binary variables xi, xj, and the edge (i, j)

between them as follows:

Ep(xi, xj) = φ1
ixi + φ0

i x̄i + φ1
jxj + φ0

j x̄j + φ00
ij x̄ix̄j + φ01

ij x̄ixj + φ10
ij xix̄j + φ11

ij xixj

= φconst +
(
φ1

i + φ11
ij − φ

01
ij

)
xi + φ0

i x̄i + φ1
jxj +

(
φ0

j + φ00
ij − φ

01
ij

)
x̄j

+
(
φ01

ij + φ10
ij − φ

00
ij − φ

11
ij

)
xix̄j , (2.3.8)

where φconst is a constant. Note that the coefficients of the unary terms can be

varied12 such that they are non-negative. It can be easily verified that the coeffi-

cient of the pairwise term will always be equal to
(
φ01

ij + φ10
ij − φ

00
ij − φ

11
ij

)
. Given

10Note that these assumptions are not restrictive, as many multi-label higher order functions
can be transformed to binary pairwise functions (§2.3.1).

11We denote φi(0) as φ0
i and φij(1, 0) φ10

ij for brevity.
12For example, by rewriting the equation algebraically.
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Figure 2.6: Here we construct an st-graph corresponding to the energy function

(2.3.8). In our notation, we assign label 0 if a node belongs to the source set,

and label 1 otherwise. Thus, the cost for node i taking label 0 (given by the

coefficient of the unary term x̄i) is added to the t-edge (i, t). All the other t-edge

costs are added in a similar fashion. The pairwise term xix̄j represents the cost

of the assignment xi = 1, xj = 0, and its coefficient is added to the n-edge (j, i).

As there is no pairwise term for the assignment xi = 0, xj = 1, the n-edge (i, j)

has no cost.

this form of the energy, we now construct the st-graph as shown in Figure 2.6.

For this graph to be a valid st-graph, all the edge weights must be non-negative.

The t-edge weights can be modified (either algebraically or by graph reparam-

eterization), such that they are positive. For the n-edges to have non-negative

weights, the condition
(
φ01

ij + φ10
ij − φ

00
ij − φ

11
ij

)
≥ 0 must be satisfied, which is the

binary submodularity condition (2.3.2). This equivalence of binary pairwise sub-

modular functions and st-mincut was shown by Hammer [32] and Kolmogorov

and Zabih [50].

2.3.3 Solving Non-submodular Energy Functions

So far we have seen efficient algorithms for solving submodular energy functions.

However, most multi-label energy functions encountered in computer vision do

not satisfy the constraint (2.3.1), and thus are non-submodular. For instance, it

can be clearly seen that the Potts model potential ψij(·) defined as:

ψij(xi, xj) =





0 if xi = xj ,

γ otherwise,
(2.3.9)
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does not satisfy the constraint (2.3.1). Choosing a = k and b = k + 1 in (2.3.1)

we get:

f p(k, k + 1) + f p(k + 1, k + 2) ≤ f p(k, k + 2) + f p(k + 1, k + 1). (2.3.10)

The lhs of equation (2.3.10) is equal to 2γ while the rhs is equal to γ, making the

above condition false. A number of approximate or partially optimal algorithms

have been proposed to solve this class of energy functions [14,18,47,48,54,76,83,

111]. Some of these methods provide an approximate solution either by optimizing

a related submodular energy function [76, 83], or by solving a relaxation of the

problem [47, 111]. The methods proposed in [14, 54] provide a globally optimal

solution for only a subset of the problem. The remaining part of the problem is

then solved with message passing algorithms [47,75]. Boykov et al. [18] proposed

efficient graph cut based α-expansion and αβ-swap algorithms for solving non-

submodular problems. We will provide an overview of these two algorithms in

the remainder of this section.

Move making algorithms. The α-expansion and αβ-swap algorithms are

widely used for approximate energy minimization [18, 99]. They belong to the

class of move making algorithms. These algorithms work by starting from an

initial labelling x and making a series of moves (label changes) which lower the

energy iteratively. Convergence is achieved when the energy cannot be decreased

further. At each step, the algorithms search a move space to find the optimal

move – one that decreases the energy of the labelling by the most amount. The

move search space must be as large as possible in order to make the algorithm

less likely to get stuck in local optima. Expansion and swap algorithms achieve

this by using a search space that is exponentially large in the number of variables

in the energy function. They perform this search efficiently for a certain class of

energy functions by solving an st-mincut/max-flow problem.

The α-expansion algorithm is an iterative procedure, which finds an approx-

imate map estimate by solving a series of st-mincut problems. At each step, it

considers a label α ∈ L, and allows all the random variables to either retain their

current label or change to α. This is done by solving an st-mincut problem,
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which makes the binary decision of changing or retaining the label assignment.

One iteration of the algorithm involves performing expansions for all α in some

order successively. The algorithm terminates when the energy cannot be reduced

further for any α. Boykov et al. [18] showed that α-expansion is applicable if the

pairwise potential functions φij define a metric, e.g. Potts model (2.3.9), trun-

cated linear model.

The αβ-swap algorithm also finds an approximate map estimate by solving a

series of st-mincut problems. Unlike α-expansion, it considers a pair of labels

α, β ∈ L together with all the variables currently assigned α or β. It then solves

an st-mincut problem, which can swap the label assignments of these variables.

The algorithm terminates when the energy cannot be reduced further by swapping

labels for any pairs of labels α, β. These moves can be computed if φij defines a

semi-metric [18], e.g. Potts model (2.3.9), truncated linear or truncated quadratic

models. We will revisit these move making algorithms and provide more details

in Chapter 3.

2.3.4 Message Passing Algorithms

Message passing algorithms are another important class of methods for addressing

the map inference problem. These algorithms work by passing messages between

nodes representing the random variables of the model. Belief Propagation (bp)

is a popular and well-known message passing algorithm for map inference. It

was originally proposed for a tree structured random field, where it is guaranteed

to produce the exact map estimate in two iterations [75]. In the first iteration,

messages are sent from the leaf nodes to the root, and in the second iteration,

they are sent in the opposite direction.13 For a general random field (with loops or

cycles, e.g. mrf shown in Fig. 2.3), bp is not guaranteed to converge. Variants of

bp have been proposed [20,27,112,116] to handle such models. These algorithms

have no optimality guarantees, but can provide a good estimate of the map

solution empirically, as noted in [99]. bp messages can be computed using either

a max-product [11] or a sum-product [75, 116] rule. In the former case, we take

13Similar to forward-backward passes in dynamic programming.
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the maximum over all possible label values and obtain the map estimate directly.

While, in the latter case, we take the sum of all possible label values and obtain

a set of probability estimates, which can be used to get the map solution.

Wainwright et al. [111] proposed another belief propagation variant called

tree-reweighted message passing (trw), which was motivated by the problem of

maximizing a concave lower bound on the energy. Their algorithm begins by

selecting a set of trees from the random field, and computes probability distribu-

tions over each tree. These distributions are then used to reweight the messages

being passed during loopy bp on each tree. The hope is that each step of loopy bp,

followed by reweighting increases the lower bound on the energy. Kolmogorov [47]

showed that the trw algorithm is not guaranteed to achieve this, and proposed

a sequential extension (trw-s) to address this problem. trw-s processed nodes

in a scan-line order. Each node sent messages to its right and bottom neighbours

in the forward pass, and its left and top neighbours in the backward pass. The

algorithm terminates when the lower bound cannot be increased further.

To summarize, there are many algorithms to solve the map inference prob-

lem. Efficient graph cut based methods minimize submodular energy functions.

Energy functions arising out of tree structured graphs can be solved exactly with

message passing algorithms. All other classes of energy functions can be mini-

mized approximately or partially.

2.4 Example Vision Problems

We now look at two low-level vision problems, and discuss how they can be

modelled in the energy minimization framework.

2.4.1 Image Segmentation

Consider the interactive image segmentation problem shown in Fig. 2.7 [15, 16].

In this problem, the user marks red (foreground) and blue (background) strokes

or regions, and the goal is to solve a binary mrf problem to estimate the fore-

ground and background regions in the image. Note that our discussion here is
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Figure 2.7: Here we show two examples of interactive binary image segmentation

problem. The red and blue strokes indicate the foreground and background seed

pixels respectively, which are marked by the user. These seed pixels are used

to compute the rgb histogram distributions for the two regions. Note that the

images are colour coded to show the expected foreground (red) and background

(blue) regions. Image courtesy of Yuri Boykov [15].

focussed on the binary image segmentation problem. In Chapter 3, we will re-

visit this problem using multiple labels, e.g. as shown in Fig. 1.1. The energy

corresponding to the binary segmentation problem is given by (2.1.6), where the

set of vertices corresponds to pixels in the image, and the set of edges is given by

the neighbourhood we choose. Here we use 4-neighbourhood as an example, i.e.

every pixel i is connected to its 4 immediate neighbours – to the top, the right,

the bottom, and the left of i. The unary potentials φi(xi), i ∈ V, are defined using

rgb histogram distributions Ha, a = {0, 1}, of the two segment labels as follows:

φi(xi) = − log p(xi = a|Ha). (2.4.1)

The distributions Ha are computed using the user-specified seed pixels (available

in the form of strokes or regions).

The pairwise potentials must ensure that we obtain a spatially continuous (i.e.

smooth) segmentation, without speckles. This can be achieved using the Potts

model (2.3.9), which assigns a cost γ if neighbouring pixels take different labels,

and a cost 0 if they take the same label. This potential ignores image edges, and

encourages pixels on either side of an edge to take the same label as well. Boykov

and Jolly [16] introduced a data-dependent smoothness term to overcome this

problem. Similar potentials were later used by many researchers [12, 81, 95, 101].

The edge-preserving smoothness term takes the form of a Generalized Potts model
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defined as:

φij(xi, xj) =




λ1 + λ2 exp

(
−g2(i,j)

2σ2

)
1

dist(i,j)
if xi 6= xj ,

0 if xi = xj ,
(2.4.2)

where λ1, λ2 and σ are parameters of the model. The terms g(i, j) and dist(i, j)

give the difference in rgb values and the spatial distance respectively between pix-

els i and j. It can be easily verified that this energy function satisfies the submod-

ularity condition (2.3.2), and therefore be minimized using the st-mincut/max-

flow algorithm. More sophisticated priors, such as connectivity priors [110], shape

priors [44, 66, 67] can also be included in the energy function.

2.4.2 Stereo Matching

Stereo matching is the process of taking two or more images14 and estimating

a 3D model of the scene by finding matching pixels in the images and convert-

ing their 2D positions into 3D depths [98]. An example of the stereo matching

problem is shown in Fig.2.1. The results of stereo matching algorithms are typi-

cally presented as a dense disparity map, where each pixel is assigned a disparity

value, which indicates horizontal displacement the pixel has undergone from one

image to another. It can easily seen that disparity is inversely proportional to

distance from the observer, i.e. depth [24, 34, 98]. The stereo matching problem

has been formulated as an optimization problem using an energy function similar

to (2.1.6), where each pixel takes a disparity label [9, 16, 85, 96].

In the energy function we describe here, the set of vertices corresponds to

pixels in the image, and the set of edges is given by 4-neighbourhood. The

unary potential is a similarity measure that compares the pixel values in order to

determine how likely they are to be in correspondence. This measure is computed

by considering either the pixel or a region of support, e.g. 5×5 window, around it.

A few examples of similarity measures are squared intensity difference, truncated

quadratics, entropy, filter-bank responses. Interested readers are encouraged to

see Chapter 11 in [98] for more details of similarity measures. The pairwise term

14For simplicity, we will focus on using two images in our discussion here.
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is a Generalized Potts model (2.4.2), which encourages similar pixels to take the

same label. This multi-label energy function can be minimized using the move

making or message passing algorithms discussed in this chapter.

2.5 Summary

In this chapter we presented a review of discrete optimization concepts in the

context of computer vision problems. We introduced two popular random field

models, and showed that finding optimal solutions of these models is equivalent

to minimizing the corresponding energy functions. We also provided details of

relevant energy minimization algorithms.
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Chapter 3

Efficient Energy Minimization



3.1 Introduction

Many problems in computer vision such as image segmentation, stereo match-

ing, image restoration, and panoramic stitching involve inferring the maximum

a posteriori (map) solution of a probability distribution defined by a discrete

mrf or crf [18, 49, 83, 99]. The map solution can be found by minimizing an

energy or cost function. Although, minimizing a general mrf energy function

is an NP-hard problem [18], there exist a number of powerful algorithms which

compute the exact solution for a particular family of energy functions in poly-

nomial time. For instance, max-product (min-sum) belief propagation exactly

minimizes energy functions defined over graphs with no loops [115]. Similarly,

certain submodular energy functions can be minimized by solving an st-mincut

problem [17,25, 37, 50].

Efficient approximation algorithms have also been proposed for functions

which do not fall under the above classes [18, 47, 111]. Expansion and swap

move making algorithms, sequential tree-reweighted message passing (trw-s),

and belief propagation (bp) are examples of popular methods for solving these

functions. They have been shown to give excellent results on the discrete mrfs

typically used in computer vision [18, 99]. However, these algorithms can take a

considerable amount of time to solve problems which involve a large number of

variables.

As computer vision moves towards the era of large videos and giga-pixel im-

ages, computational efficiency is becoming increasingly important. Indeed, the

last few years have seen much attention being devoted to reducing the computa-

tional complexity of minimization algorithms [20, 39, 46, 53]. In this chapter we

make two contributions to improve the efficiency of energy minimization algo-

rithms. Our first contribution is a method which works by recycling results from

previous problem instances, providing a simpler alternative to the recent work

of [53] on dynamic energy minimization. Our second contribution is a method

which simplifies the energy minimization problem by reducing the number of vari-

ables in the energy function, and can also be used to generate a good initialization
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for the dynamic α-expansion algorithm by reusing dual variables.

Recycling Solutions. Our first method is inspired by the dynamic compu-

tation paradigm [39, 46, 53]. It improves the performance of the α-expansion

algorithm by recycling results from previous problem instances. The idea of dy-

namic computation has been used in the recent work of [39, 46] on minimizing

submodular energy functions. In particular, [46] showed how flow can be reused

in maxflow algorithms, and [39] showed how cuts (or previous labelling) can be

reused. However, these methods are only applicable for the special case of dy-

namic mrfs1 that are characterized by submodular energy functions. Our work

extends these methods to non-submodular multi-label energy functions. It is

most similar to the interesting Fast-PD algorithm proposed by Komodakis et

al. [53], which generalizes the work of [46] and [52]. Fast-PD works by solving the

energy minimization problem by a series of graph cut computations. This process

is made efficient by reusing the primal and dual solutions of the linear program-

ming (lp) relaxation of the energy minimization problem, achieving a substantial

improvement in the running time. Our modified dynamic α-expansion algorithm

is conceptually much simpler and easier to implement than Fast-PD whilst giving

similar performance. Our method of initializing the α-expansion algorithm can

make both methods orders of magnitude faster.

Simplifying energy functions. Most energy minimization problems encoun-

tered while solving computer vision problems are composed of “easy” and “dif-

ficult” components [48, 54]. For instance, the variables labelled by the qpbo

algorithm [14, 48] constitute the easy component, while the rest constitute the

difficult component. The globally optimal labels for variables constituting the

easy component of the mrf energy function can be found in a few iterations of

the minimization algorithm, while those of the difficult part typically cannot be

found in polynomial time (in the number of variables). Energy minimization al-

gorithms generally do not take advantage of this decomposition, and process all

the random variables at every iteration.

We propose a novel strategy which solves a given discrete mrf in two phases.

1MRFs that vary over time [39, 46].
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1. Cow 2. Cow 3. Garden 4. Tsukuba 5. Venus 6. Cones

(a)

(b)

7. Cones 8. Plane 9. Bikes 10. Road 11. Building 12. Car

(c)

(d)

Figure 3.1: Some of the images (a,c) and their ground truth labellings (b,d) used

in our experiments. 1-3 Colour-based segmentation problems with 3, 4, 4 labels

respectively. 4-7 Stereo matching problems with 16, 20, 60, 60 labels respectively.

8-12 Object-based segmentation problems with 4, 5, 5, 7, 8 labels respectively.

(This figure is best viewed in colour.)

In the first phase a partially optimal solution of the energy function is com-

puted [14, 48, 54]. In such solutions, not all variables are assigned a label. How-

ever, the set of variables which are assigned a label, are guaranteed to take the

same labelling in at least one of the optimal solutions of the energy function.

This is referred to as the property of partial optimality. Using the partial so-

lutions to fix values of these variables results in a projection (cf. section 2.2) of

the original energy function [50]. In the second phase we minimize this simpli-

fied energy which depends on fewer variables, and is consequentially easier and

faster to minimize compared to the original energy function. This approach is

applicable to many popular energy minimization approaches such as α-expansion,

bp, Fast-PD and trw-s. We also show how to achieve a substantial speed-up in

the minimization of the simplified energy by reusing results from computations

performed to find the partially optimal solution.

3.1.1 Outline of the Chapter

In section 3.2, we briefly review the notation and the algorithms for minimizing

multi-label energy functions [14,18,47,54]. Section 3.3 presents our two methods
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to improve the running time of such algorithms. Specifically, it describes methods

to: (a) recycle the primal and dual solutions for obtaining a good initialization for

the new problem instance; and (b) reduce energy functions and reuse the resulting

residual graphs. Our methods are also applicable for certain higher order energy

functions, such as those containing the Pn model potentials proposed by Kohli et

al. [43]. We discuss this extension in section 3.4 using the problem of interactive

texture based image and video segmentation as an example. We also prove that

partially optimal solutions can be computed for this model. In section 3.5, we

evaluate the performance of our methods on the problems of colour and object

based segmentation [16, 94, 95], and stereo matching [99]. A few examples of

these problems are shown in Fig. 3.1. Summary and discussion are provided in

section 3.6.

3.2 Preliminaries

We denote each pixel i in the image with a random variable Xi, which takes a

value from the label set L = {l1, l2, . . . , lk}. A labelling x refers to any possible

assignment of labels to the random variables and takes values from the set Ln,

where n is the number of pixels. For example, the label set corresponds to

disparities in the case of stereo matching problem, and image segments in the case

of colour-based segmentation problem. Fig. 3.1 shows a few of the segmentation

and stereo matching problems we consider in this work.

Given a neighbourhood system N , a clique c is specified by a set of random

variables Xc such that ∀i, j ∈ c, i ∈ Nj and j ∈ Ni, where Ni and Nj are the

sets of all neighbours of variable Xi and Xj respectively. An energy function

E : Ln → R, which maps any labelling to a real number E(x), can be written as:

E(x) =
∑

c∈C

φc(xc), (3.2.1)

where C is the set of all cliques. The term φc(xc) is known as the potential

function of the clique c, where xc = {xi, i ∈ c}. Note that this is a generalization

of the unary and pairwise potential functions typically used in computer vision.
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The unary potential φi(xi) represents the cost of the assignment: Xi = xi, and is

defined by considering cliques of size 1 (i.e. treating each pixel as a clique). The

pairwise potential φij(xi, xj) represents the cost of the assignment: Xi = xi and

Xj = xj , and is obtained by considering cliques of size 2. We will initially explain

our methods using pairwise energy functions of the form:

E(x) =
∑

i∈V

φi(xi) +
∑

(i,j)∈E

φij(xi, xj), (3.2.2)

where V is the set of all random variables and E is the set of all pairs of interacting

variables. In section 3.4 we will provide details of the proposed methods for higher

order functions.

The unary potential φi can be obtained in many ways. For example, in a

colour-based image segmentation problem it is common to use the rgb distribu-

tion for computing the potential. In a stereo matching problem the unary poten-

tials are typically obtained using a window-based correlation measure. Object-

based segmentation problems can learn the potential using a boosting proce-

dure [103]. The exact form of all these potentials will be explained in section 3.5.

The pairwise potential φij commonly takes the form of the Potts model (or its

contrast-sensitive variant [16]), and is given by:

φij(xi, xj) =





0 if xi = xj ,

γ otherwise.
(3.2.3)

The contrast-sensitive variant modulates the cost γ of two neighbouring nodes

taking different labels with the difference in feature values and spatial distance

between the nodes. This is also referred to as an edge-preserving pairwise po-

tential, as two nodes lying on either side of an edge are likely to have different

feature values and thus can take different labels.

This fairly simple but effective energy function in equation (3.2.2) cannot be

solved exactly. Recall (§2.3.1) that multi-label energy functions can be solved

exactly iff they satisfy the submodularity condition given by:

Ep(a, b) + Ep(a+ 1, b+ 1) ≤ Ep(a, b+ 1) + Ep(a+ 1, b), (3.2.4)
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for all a, b ∈ L and for all its projections on two variables. Here Ep(·) is a

projection of the original energy function E(·). Choosing a = k and b = k + 1 in

(3.2.4) we get:

Ep(k, k + 1) + Ep(k + 1, k + 2) ≤ Ep(k, k + 2) + Ep(k + 1, k + 1). (3.2.5)

In the case of the Potts model (3.2.3), the lhs of equation (3.2.5) is equal to

2γ while the rhs is equal to γ making the above condition false. Thus, Potts

model is not submodular for multi-label energy functions, and hence cannot be

solved exactly [18,50]. Many algorithms have been proposed to find approximate

or partially optimal solutions of these energy functions [14, 18, 48, 54, 111]. We

provide a brief summary of some of these algorithms, which are relevant to our

work, in the next section.

3.2.1 Approximate Energy Minimization

Approximate algorithms for solving multi-label energy functions can be broadly

classified into move-making and message passing algorithms.

Move making algorithms. The α-expansion and αβ-swap algorithms are

widely used for approximate energy minimization [18,99]. These algorithms work

by starting from an initial labelling x and making a series of label changes (moves),

which lower the energy at each step. An optimal move, which is the move de-

creasing the energy of the labelling by the most amount, is found efficiently at

every step from the large2 move space. Convergence is achieved when the energy

cannot be decreased further.

The α-expansion move allows any random variable to either retain its current

label or take a label α. One iteration of the algorithm involves performing expan-

sion moves for all α ∈ L in some order successively. The iterations are repeated

until the energy cannot be decreased any further. Boykov et al. [18] showed that

the optimal expansion moves for certain energy functions of the form (3.2.2) can

be computed in polynomial time by solving an st-mincut problem. They showed

2Exponential in the number of variables in the energy function.

33



3.2. Preliminaries

that if the pairwise potentials φij define a metric, then the energy function (3.2.2)

can be minimized using α-expansion. In other words, φij should satisfy the fol-

lowing conditions:

φij(a, b) = 0 ⇐⇒ a = b, (3.2.6)

φij(a, b) = φij(b, a) ≥ 0, (3.2.7)

φij(a, c) ≤ φij(a, b) + φij(b, c), (3.2.8)

for all a, b, c ∈ L.

The αβ-swap move allows any random variable whose current label is α or β to

either take a label α or β. One iteration of the algorithm involves performing swap

moves for all pairs of labels α, β ∈ L in some order successively. These iterations

are repeated until convergence. Optimal swap moves for energy functions of the

form (3.2.2) can be computed in polynomial time if φij defines a semi-metric, i.e.

satisfies conditions (3.2.6) and (3.2.7) [18].

Message passing algorithms. The other class of algorithms for approximate

energy minimization work by passing messages between nodes representing the

different random variables of the model. Max-product belief propagation (bp)

is one such method for map inference proposed by Pearl [75]. A message from

node Xi to Xj indicates how likely it is for Xj to take a certain label from

Xi’s perspective. The bp algorithm was originally designed for tree structured

graphs where it is guaranteed to provide the exact map solution within two

iterations [75]. In the first iteration the messages are sent from the leaf nodes

of the tree towards the root. Messages are then sent from the root towards the

leaf nodes in the second iteration. After these iterations, the belief of taking a

label lp, ∀p ∈ 1, . . . , k, is computed for every node Xi using the unary potential

φi(xi = lp) and the messages from all its neighbours corresponding to the label lp.

The node is then assigned a label according to its maximum belief. This method is

not guaranteed to converge for the grid (loopy) graphs we use in computer vision.

However, it has been applied to loopy graphs with some success [20, 26, 27, 99].

In this case, the iterations are repeated until the rate of change of messages from

one iteration to the next falls below a certain threshold, thus resulting in an
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approximate solution.

Wainwright et al. [111] proposed the tree-reweighted message passing (trw)

algorithm, which decomposes the graph into a set of trees and performs bp on

them. The messages being passed are reweighted with sets of probability distri-

butions over each tree. The trw algorithm also computes the lower bound on the

energy, and aims to increase this bound in successive iterations. Kolmogorov [47]

developed an improved sequential version of trw, referred to as trw-s, by pro-

cessing the nodes in a scan-line order. trw-s has two useful properties: (a) The

lower bound estimate is guaranteed not to decrease in every iteration; and (b)

The lower bound estimate is guaranteed to converge, unlike the original trw

algorithm. Other variants of message passing algorithms have also been pro-

posed [51, 89, 113].

3.2.2 Computing Partially Optimal Solutions

Certain algorithms for minimizing non-submodular functions (such as (3.2.3))

return a partial solution x ∈ (L ∪ {ǫ})n of the energy [14, 45, 48, 54, 82]. Here,

the assignment xi = ǫ implies that no label has been given to random variable

Xi. In other words, these algorithms assign labels to a subset of the random

variables. Consider the qpbo algorithm [14, 48] as an example. It minimizes

energy functions composed of binary random variables, and returns a partially

labelled solution x with the following property: there exists a global minimum x∗

of the energy function such that xp = x∗p for all variables Xp that are labelled, i.e.

xp 6= ǫ. This property of a partial solution is called weak persistency. There are

certain partial solutions of the energy for which a stronger condition called strong

persistency holds true. The strong persistency property states that if a variable

Xp is labelled, then it is assigned the same label in all global minima x∗ of the

energy, i.e. xp = x∗p for all x∗ ∈ {arg minxE(x)}.

Recently, there has been some interest in developing methods for comput-

ing partially optimal solutions of multi-label energy functions [45, 54]. The work

of [45] addresses this problem by transforming the multi-label energy function to

a function involving binary variables [37, 88]. The resulting binary energy func-
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tion is then minimized by applying the qpbo algorithm. This approach produced

interesting results, but is computationally expensive. The method proposed by

Kovtun [54] to find partially optimal solutions constructs a submodular subprob-

lem Pk for each label lk ∈ L. The random variables which are assigned label

lk after solving the subproblem Pk have an optimality certificate associated to

them. An additional advantage of this method is the submodularity property

satisfied by the subproblems, thus making them efficiently solvable (cf. §2.3.1).

Partially optimal solutions obtained by the methods described here help us isolate

the variables which have been assigned a label, and reduce the original energy

minimization problem.

3.3 Efficient Multi-label Methods

We now present methods to improve the performance of algorithms for minimizing

multi-label energy functions arising from discrete mrfs or crfs. For ease of

understanding, we explain the working of these techniques in the context of the

α-expansion algorithm. However, our methods are general and are applicable

to all popular algorithms such as αβ-swap, bp, Fast-PD and trw-s (sequential

trw). Experimental results using all these algorithms are presented in the latter

sections. We also limit our discussion to energy functions with unary and pairwise

terms, e.g. (3.2.2), in this section. Methods for higher order terms are presented

in section 3.4.

The techniques proposed in this chapter are inspired from the observations

that the computation time of energy minimization algorithms primarily depends

on: (a) The initialization used; and (b) The number of variables involved in the

energy function. Thus, our primary goals are:

1. To generate a good initialization for the current problem instance, which

results in a reduction in the amount of computation required for solving the

problem.

2. To reduce the number of variables involved in the energy function in an

efficient manner.
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3.3.1 Recycling Primal and Dual Solutions

We achieve our first goal of obtaining a good initialization by recycling results

from previous (related) problem instances. We call this method for α-expansion,

the dynamic α-expansion algorithm. As discussed earlier (cf. §3.2.1), the α-

expansion algorithm works by making a series of label changes, called moves,

which lower the energy at each step. This iterative algorithm starts with an initial

labelling. Each step considers a label α ∈ L, and solves the binary problem of

assigning variables this label or retaining their current label. One iteration of

the method involves performing expansion moves for all the labels in some order

successively. The iterations are repeated until the energy cannot be reduced

further for any label α. We denote the binary energy function corresponding to

a particular ‘α’ move by Eα(xα), and is defined as:

Eα(xα) =
∑

i∈V

φα
i (xα

i ) +
∑

(i,j)∈E

φα
ij(x

α
i , x

α
j ), (3.3.1)

where xα
i , x

α
j ∈ {0, 1}, and correspond to xi and xj in the multi-label energy

function respectively. The assignment xα
i = 0 implies that xi = α in the multi-

label energy function, while the assignment xα
i = 1 implies xi retains its current

label. The unary potential φα
i (xα

i ) is given by:

φα
i (xα

i ) =




φi(xi = α) if xα

i = 0,

φi(xi = xcur
i ) if xα

i = 1,
(3.3.2)

where xcur
i is the current label assignment for Xi. The pairwise potentials, for the

Potts model in (3.2.3), are defined as:

φα
ij(x

α
i , x

α
j ) =





0 if xα
i = 0, xα

j = 0,

γ(1− δ(xcur
i − x

cur
j )) if xα

i = 1, xα
j = 1,

γ otherwise,

(3.3.3)

where δ(xcur
i − x

cur
j ) = 1, if xcur

i = xcur
j , and 0 otherwise.

The above binary function is pairwise and submodular, if the pairwise po-

tentials of the original multi-label energy function satisfy the metric conditions:
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(3.2.6), (3.2.7), and (3.2.8). Thus, the binary energy function (3.3.1) can be min-

imized exactly by solving the equivalent st-mincut problem (cf. §2.3.2.1). The

st-mincut problem is called the primal problem, and its solution, i.e. the labels

assigned to all variables xα
i , ∀i ∈ V correspond to the primal solution. The st-

mincut is found by solving the dual problem of maxflow on the same graph. The

dual solution corresponds to the feasible flow solution of the maxflow problem.

A new st-graph is built for solving each α-expansion move.

Recycling Flow across Iterations. When solving an expansion move in a

particular iteration, we propose to recycle the flow from the corresponding move

in the previous iteration to make the new computation faster. In the first iteration

of the algorithm, we build one graph G1
i , i = 1, . . . , k, for each label expansion.

The optimal expansion move for a given label li is computed by solving the st-

mincut/maxflow problem on the graph G1
i . Maxflow problems corresponding to

all the labels are solved just as in standard α-expansion. In iterations u > 1 of the

algorithm, instead of creating a new graph Gu
i for a label expansion, we recycle

the corresponding graph Gu−1
i from the previous iteration exploiting the fact that

the two graphs are similar. We use dynamic graph cuts technique proposed by

Kohli and Torr [46] to achieve this. Given the solution of the maxflow problem

on a graph, their method efficiently computes the maxflow in a modified version

of the graph. Inspired by this idea, we update the maxflow solution of the graph

Gu−1
i to obtain a good initialization for the graph Gu

i .

The dynamic update step involves changing the flows and the residual edge

capacities, such that all edges satisfy the capacity constraints. In other words, we

require that the flow in an edge is not more than its capacity. We illustrate the

dynamic update step with an example in Fig. 3.2. It shows the case where the edge

capacity between two nodes changes from one iteration to another. This change

violates the capacity constraints of the edge, and is handled by reparameterizing

the graph such that the final solution is not affected. The time complexity of all

such updates is O (1), except for deleting an n-degree node where it is O (n).3

After the update operations, the maxflow algorithm is performed on the new

3A node is deleted by making the capacity of all the edges incident on it zero, which takes
O (1) time per edge.
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(a) (b) (c)

Figure 3.2: We illustrate the dynamic update step using a graph containing two

nodes i and j. Consider the expansion move in iteration u for label lm. Per-

forming maxflow computation on the graph corresponding to this move results in

a residual graph shown in (a). In this example we assume that graphs Gu+1
m and

Gu
m differ in the capacity of the edge (i, j) by 3 units. Incorporating this differ-

ence in the residual graph (a) violates the capacity constraint, i.e. residual edge

capacity of the edge is negative. The edge capacities are made non-negative by

reparameterizing the graph (cf. §2.3.2.2), without affecting the final solution. The

graph is reparameterized by adding a constant α = 1 to the capacity of the edges

(i, j), (s, i) and (j, t), and subtracting it from the capacity of the edge (j, i), as

shown in (b). The new residual graph, which corresponds to expansion move in

iteration u + 1 for label lm is shown in (c). Maxflow computation on this graph

is efficient [46]. Image courtesy of Pushmeet Kohli [46].

residual graph. The efficiency of this computation depends on the number of

update operations performed (see Fig. 9 in [46]). In the worst case, when all

the edges are updated, this approach provides no speed-up and is as fast as the

standard algorithm. However, our method is guaranteed to give some speed-up,

because the number of changes in the graphs decrease in the latter iterations [18].

An example of this is shown in Fig. 3.3, a plot of the number of label changes,

which corresponds to the changes in the graphs, against the iterations of the

α-expansion algorithm. This leads to a decrease in the number of update and

maxflow computations over time. Hence, the optimal moves in these iterations

are computed efficiently.

For large problems, i.e. when the number of labels, k, or the number of pixels,

n, is very large, maintaining multiple dual solutions may not be viable due to

memory requirements. This issue can be overcome by working with a projected
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Figure 3.3: The number of label changes in each iteration of the α-expansion algo-

rithm. We use the stereo matching problem (Tsukuba image [86]) as an example

here, and show that the number of label changes decreases in the latter iterations.

Note that the number of label changes corresponds to the changes in the expansion

move graphs from one iteration to another, i.e. Gu−1
α to Gu

α, ∀α. Our strategy of

recycling graphs in these iterations leads to a significant speed-up.

energy function obtained from a partially optimal solution (cf. section 3.3.2).

Thus our method is not only time-efficient but also memory-efficient if the pro-

jected energy function involves a small subset of random variables. The recycle

scheme for single mrfs is summarized as follows:

1. Construct graphs G1
i , i = 1, . . . , k = |L|, in the first iteration.

2. Compute the maxflow solutions to get the optimal moves.

3. For iterations u > 1,

• Update graphs from iteration u− 1.

• Compute the new maxflow solutions for the residual graphs.

Efficiently Solving Dynamic MRFs For dynamic mrfs [46, 53], the task is

to solve a problem where the data changes from one problem instance to the next.

For instance, this occurs when solving a labelling problem on the image frames

of a video sequence. The conventional method to solve such a problem is to use

the standard α-expansion algorithm on each problem instance (e.g. each time

instance) independently. This method is inefficient, given that the image frames

are highly correlated, and would require a lot of computation time. We address
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this issue by recycling both the primal and dual solutions. The primal solution is

generated by recycling the labelling of the previous problem instance, while the

dual solution is computed by recycling the residual graphs (as in the single mrf

case). Intuitively, if the data changes minimally from one problem instance to the

next, the solution of a particular problem instance provides a good initialization

for the subsequent one.

Consider a labelling problem defined on a video sequence. The first frame

in the video sequence is labelled using the single mrf method described above.

The primal and dual solutions thus obtained are used to initialize the maxflow/st-

mincut problems for the next frame. The labelling (primal solution) of a frame t is

initialized with the solution obtained for frame t−1. The graphsG1
i (t), i = 1, . . . , k,

(dual solution) corresponding to the first iteration for frame t are obtained by

dynamically updating the graphs from the last iteration for frame t − 1. With

these initializations the maxflow problem for each label is solved as in the single

mrf case. In summary,

1. Solve frame 1 as a ‘single mrf’.

2. For all frames t > 1,

• Initialize the labelling (primal) using the solution of frame t− 1.

• Initialize the graph flow (dual) from the corresponding solutions for

frame t− 1.

• Solve as a ‘single mrf’.

These techniques for α-expansion provide similar speed-ups as the Fast-PD algo-

rithm [53] as shown in section 3.5.1.

3.3.2 Reducing Energy Functions

We now propose a method to simplify (or reduce the number of unknown variables

in) the mrf by solving the easy part. Our reduce strategy is applicable to many

popular energy minimization approaches such as α-expansion, bp, trw-s and

Fast-PD, as illustrated in section 3.5. We also show how computations performed
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Algorithm 1: Pseudo-code for computing the partially optimal solution of an

energy function. An auxiliary problem Pj for each label lj is formulated as an

st-mincut problem. The solution computed is used to project the energy function

E by fixing the values of the labelled variables. After the iteration terminates we

obtain a new energy function, Ep, comprising of all the unlabelled variables.

input : X, L = {l1, . . . , lk}, E
output: Partially optimal solution

sj : Set of variables taking label lj in the partially optimal solution;

Ep ← E;
for j ← 1 to k do
Pj ← Auxiliary problem for label lj ;
sj ← Solve(Ep, Pj) (cf. §3.3.2);
Ep ← Project(Ep, sj);

end

during this procedure can be used to efficiently initialize the dynamic α-expansion

algorithm described in the previous section.

As discussed earlier (§3.2.2), there are two main algorithms for obtaining

partially optimal solutions of non-submodular multi-label energy functions. It

would be interesting to compare these partially optimal solution algorithms for

the segmentation and stereo problems, but is beyond the scope of our work. We

chose to use the algorithm proposed by Kovtun [54] because it is an order of

magnitude faster than the qpbo-based method. The key step of the Kovtun

method is the construction of k auxiliary problems Pm, one for each label lm ∈ L.

Kovtun showed that the solution of problem Pm could be used to find variables

that have the persistency property (described in §3.2.2). Thus, by solving all

subproblems Pm, ∀lm ∈ L, a partial solution which satisfies strong persistency

can be obtained.

Specifically, problem Pm is the minimization of the following binary energy

function

Em(xm) =
∑

i∈V

φm
i (xm

i ) +
∑

(i,j)∈E

φm
ij (x

m
i , x

m
j ), (3.3.4)

where xm
i , x

m
j ∈ {0, 1}, and correspond to xi and xj in the multi-label energy

function respectively. The assignment xm
i = 0 implies that xi = lm in the multi-

label energy function, while the assignment xm
i = 1 implies the optimal label for
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Xi has not been assigned yet. The unary potential φm
i (xm

i ) is given by:

φm
i (xm

i ) =




φi(xi = lm) if xm

i = 0,

φi(xi = lmin
i ) if xm

i = 1,
(3.3.5)

where lmin
i = arg minl∈L−{lm} φi(xi = l). For the case of Potts model, the pairwise

potentials are defined as:4

φm
ij (x

m
i , x

m
j ) =





0 if xm
i = 0, xm

j = 0,

0 if xm
i = 1, xm

j = 1,

γ otherwise.

(3.3.6)

Em(xm) defines a submodular energy function and can be minimized by solving

an st-mincut problem. Let xm∗ denote the optimal solution of the subproblem

Pm. We extract a partially optimal solution x ∈ (L ∪ {ǫ})n of the multi-label

function E(x) as:

xi =




lm if xm

i = 0,

ǫ otherwise.
(3.3.7)

We repeat this process for all the labels lm ∈ L, and merge the solutions to obtain

the final partially optimal solution of the original energy function E(x).

To make this procedure computationally efficient, we project the energy func-

tion after every subproblem computation. This involves fixing values of all vari-

ables whose optimal labels have already been extracted from the solution of pre-

vious subproblem Pm. This reduces the number of unknown variables in the

multi-label energy function and makes the computation of subsequent auxiliary

problems faster. We summarize this approach in Fig. 1. Our hope is that after

solving all auxiliary problems, we would be left with a projection of the original

energy function which involves far fewer variables compared to the original func-

tion E(x). The experiments described in the next section on mrfs commonly

encountered in computer vision confirm this behaviour.

The energy function projection obtained from the procedure described above

corresponds to the difficult component of the energy function. It depends on

4Although the algorithm proposed in [54] only handles Potts model energy functions, it can
be easily extended to general energy functions [55].
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3.3. Efficient Multi-label Methods

the variables whose optimal labels were not found. Thus, the original problem

is now reduced to finding the labels of these variables. This can be done using

any algorithm for approximate energy minimization. Results of this method are

shown in Table 3.2. In the rest of this section, we show how this process can

be made more efficient by reusing the solutions of the auxiliary problems solved

during the partial optimality algorithm. Again, we will describe our approach

using the α-expansion algorithm for ease of understanding.

Reusing solutions from the partial optimality algorithm. The remainder

of the original problem, which corresponds to the difficult part of the energy func-

tion, can also be solved efficiently. From (3.3.1) and (3.3.4), it can be seen that

the energy functions corresponding to the subproblems of the partial optimality

and α-expansion algorithms have the same form. Thus, we can potentially reuse

the solutions of the partial optimality subproblems to make the computation of

the α-expansion moves faster. Specifically, we use the dual (flow) solutions of the

partial optimality problems to generate an initialization for the expansion moves

of the first iteration of the α-expansion algorithm (in a manner similar to that

described in §3.3.1).

As discussed before, the potential improvement in computation time depends

on the similarity of the two subproblems. Therefore, by making the subproblems

of the partial optimality and the α-expansion algorithms similar, we can improve

the running time. We note that for unassigned labels we have some choice as to

their initialization, and a natural question arises as to whether any particular ini-

tialization is better. Consider the expansion and partial optimality subproblems

with respect to a label α ∈ L, i.e. lm = α in (3.3.5). From (3.3.2) and (3.3.5) it

can be seen that the unary potentials of the partial optimality and α-expansion

subproblems are identical if the current label assignment for Xi, x
cur
i = lmin

i .

This can be done by initializing the labelling for the α-expansion algorithm as:

xi = lmin
i , where lmin

i = arg minl∈L φ(xi = l). The pairwise potentials may differ at

most by the constant γ for the case xα
i = 1, xα

j = 1 (cf. (3.3.3) and (3.3.6)). This

change makes the two problems similar, and potentially provides an improve-

ment in computation time using our reuse strategy. Experimental results shown

in Fig. 3.8 confirm this expected behaviour. Our proposed methods—reduce,
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reuse and recycle—can be used jointly as follows:

1. Compute the partially optimal solution and project the energy function.

(Reduce)

2. To label the remaining nodes using α-expansion,

• Initialize the labelling of each node i to lmin
i = arg min

l∈L
φi(xi = l).

• Update the residual graphs from the k auxiliary problems to construct

graphs for the first α-expansion iteration. (Reuse)

• Restart the maxflow algorithms to compute optimal moves, using flow

recycling between expansion moves. (Recycle)

So far, we have seen efficient methods to minimize multi-label energy func-

tions composed of unary and pairwise potentials. Such energy functions are,

however, unable to capture the rich statistics of natural scenes, making them

severely restrictive [65]. Higher order clique potentials, which are defined on

sets of interacting random variables, have been shown to overcome this limita-

tion [42,43,65,74,79], but with a large computational cost typically. The following

section aims to address the computational issues of higher order energy functions.

3.4 Solving Pn Potts Model Efficiently

Consider the problem of minimizing energy functions which contain higher order

clique potentials. Specifically, we are interested in clique potentials which take

the form of a Pn Potts model introduced in [42]. The Pn Potts model potential

for cliques of size n is defined as:

φc(xc) =




γk if xi = lk, ∀i ∈ c,

γmax otherwise,
(3.4.1)

where γmax > γk, ∀lk ∈ L. It can be easily verified that the standard Potts

model in (3.2.3) is a special case of this model with n = 2 and γk = 0, ∀k.

Energy functions containing Pn Potts model potentials can be solved using the

α-expansion and αβ-swap move making algorithms. The optimal expansion/swap
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move is computed by minimizing a binary energy function using the st-mincut

algorithm as shown in [42]. Although our methods are applicable to both these

move making algorithms, we describe them in the context of α-expansion for ease

of understanding. The higher order binary energy function corresponding to a

particular ‘α’ move will be denoted by Eα
h (xα). It is defined as:

Eα
h (xα) =

∑

i∈V

φα
i (xα

i ) +
∑

(i,j)∈E

φα
ij(x

α
i , x

α
j ) +

∑

c∈C
|c|>2

φα
c (xα

c ), (3.4.2)

where xα
i , x

α
j ∈ {0, 1}, xα

c = {xα
i , ∀i ∈ c}. The unary potential φα

i (xα
i ) and the

pairwise potential φα
ij(x

α
i , x

α
j ) are given in equations (3.3.2) and (3.3.3) respec-

tively. The clique potential φα
c (xα

c ) forms a Pn Potts model, and is given by:

φα
c (xα

c ) =





γα if xα
i = 0, ∀i ∈ c,

γ if xα
i = 1, ∀i ∈ c,

γmax otherwise,

(3.4.3)

where γ = γβ if xcur
i = β ∈ L, for all i ∈ c, and γ = γmax otherwise. This move

energy function is submodular and can be solved using the st-mincut algorithm

on the graph shown in Fig. 3.4. The reader is referred to [42] for more details of

the graph construction.

Recycling Solutions. Once the st-mincut graph corresponding to the higher

order move energy is built, our methods for recycling primal and dual solutions

(cf. §3.3.1) are directly applicable. When solving an expansion move in a partic-

ular iteration, we recycle the flow from the corresponding move in the previous

iteration to make the new computation faster.

Computing Partially Optimal Solutions. We now propose a method to

efficiently compute partially optimal solutions of energy functions containing Pn

Potts potentials. As in §3.3.2, our method is based on the algorithm proposed

by Kovtun [54]. An auxiliary problem Pm, for label lm ∈ L, is the minimization
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Figure 3.4: Graph construction for computing the optimal α-expansion move for

the Pn Potts model is shown here. The nodes v1, v2, · · · , vn represent the pixels in

the clique. There are also two auxiliary nodes Ms and Mt. After the computation

of st-mincut, if vi is connected to the source then xα
i = 0, and if vi is connected

to the sink then xα
i = 1. The weights of the graph are given by wd = γmax − γα

and we = γmax − γ.

of the following higher order binary energy function:

Em
h (xm) =

∑

i∈V

φm
i (xm

i ) +
∑

(i,j)∈E

φm
ij (x

m
i , x

m
j ) +

∑

c∈C
|c|>2

φm
c (xm

c ), (3.4.4)

where xm
i , x

m
j ∈ {0, 1}, x

m
c = {xm

i , ∀i ∈ c}. Note that xm
i , x

m
j correspond to xi and

xj respectively in the multi-label energy function. The unary potential φm
i (xm

i )

and the pairwise potential φm
ij (x

m
i , x

m
j ) are given by equations (3.3.5) and (3.3.6)

respectively. The Pn Potts clique potential φm
c (xm

c ) is defined as:

φm
c (xm

c ) =





γm if xm
i = 0, ∀i ∈ c,

min
k∈L,k 6=m

γk if xm
i = 1, ∀i ∈ c,

γmax otherwise.

(3.4.5)

It can be easily verified that Em
h (xm) is a submodular energy function [88]. We

now provide the relevant notation to prove Theorem 1 in [54], which leads to the

persistency property, for the case of Pn Potts model.
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For every auxiliary problem Pm we consider any ordering of the label set

L = {l1, l2, . . . , lk}, such that label lm is the highest label. This allows us to define

a partial ordering on the set of label pairs (a, a′) ∈ L × L. The maximum and

minimum for any two label pairs (a, a′) and (b, b′) are defined as (a, a′)∨ (b, b′) =

(a ∨ b, a′ ∨ b′) and (a, a′) ∧ (b, b′) = (a ∧ a′, b ∧ b′) respectively. Similarly, the

maximum and minimum of any pair of labellings xc and x′
c is denoted by xc

∨
x′

c

and xc

∧
x′

c respectively. We also define the lowest optimal labelling x̂m
c as follows:

x̂c =
∧

x∗
c=arg minxc E(xc)

x∗
c . (3.4.6)

Using this notation, the submodularity condition in equation (3.2.4) can be writ-

ten as:

f(xc) + f(x′
c) ≥ f(xc

∨
x′

c) + f(xc

∧
x′

c). (3.4.7)

Let ym ∈ Ln denote the partially optimal solution after solving the auxiliary

problem corresponding to label lm (i.e. Em
h (x)). In other words, the labelling

xm
i = 0 is equivalent to ym

i = lm, and xm
i = 1 to the random variable Xi retaining

the initial label.

Theorem 3.4.1 An arbitrary solution of the initial problem x∗ = arg min
x
Eh(x)

satisfies the following condition: x∗ ∧
ŷm = ŷm, where ŷm denotes the lowest

optimal labelling for the auxiliary problem Pm.

This theorem states that the lowest optimal labelling for a pixel in the orig-

inal problem is not lower than the label given to the corresponding pixel in the

auxiliary problem solution. This allows us to assign optimal labels to all pixels

which take the label lm in the solution for the auxiliary problem Pm, thus showing

that the persistency property holds for our higher order energy function. We use

the following Lemma to prove the theorem.

Lemma 3.4.2 Let x̂ be the lowest optimal labelling for a submodular problem,

and x∗ be any arbitrary labelling satisfying the condition: x∗ ∧
x̂ 6= x̂, then

Eh(x
∗) > Eh(x

∗ ∨
x̂).5

5The lemma can be proved easily using the submodularity condition in equation (3.4.7) and
the definition of lowest optimal labelling, i.e. Eh(x∗

∧
x̂) > Eh(x̂). See [54] for more details.
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Proof of Th. 3.4.1: Our proof is similar to that given in [54]. Let us assume

for any labelling x, x
∧

ŷm 6= ŷm. From Lemma 3.4.2 it follows that:

Em
h (x

∨
ŷm) < Em

h (x). (3.4.8)

The following inequality is obtained from equations (3.4.1) and (3.4.5):

φm
c (xc ∨ ŷm

c )− φm
c (xc) ≥ φc(xc ∨ ŷm

c )− φc(xc). (3.4.9)

Also, from [54],

φm
ij (xi ∨ ŷm

i , xj ∨ ŷm
j )− φm

ij (xi, xj) ≥ φij(xi ∨ ŷm
i , xj ∨ ŷm

j )− φij(xi, xj). (3.4.10)

Using inequalities (3.4.8), (3.4.9) and (3.4.10) it can be easily shown that,

Eh(x
∨

ŷm) < Eh(x), (3.4.11)

which proves that any labelling x that does not satisfy the condition x
∧

ŷm =

ŷm has a higher energy compared to x
∨

ŷm, which is a solution containing the

auxiliary problem solution.

Thus, the persistency property holds for our higher order energy function.

We extract a partially optimal solution of the multi-label function Eh(x) using

equation (3.3.7). The final partially optimal solution is obtained by repeating

this process for all the labels, and merging the solutions.

3.5 Experiments

We evaluated our methods on a variety of multi-label mrf problems such as stereo

matching [18], colour-based [16], object-based [94, 95], and texture-based [42]

segmentation. The details of the unary and pairwise potentials of the energy

functions used for formulating these problems are given below.

Colour-based Segmentation. For the colour-based segmentation problem,

we used the energy function defined in [16]. The unary potentials φi(xi), i ∈ V,
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(a) (b) (c) (d)

Figure 3.5: (a) The key frame of the ‘Dayton’ video sequence, and (b) its seg-

mentation. (c) An image from the msrc-21 database, and (d) the brush strokes

marked by the user indicating the segment labels. The key frame segments and

brush strokes are used to learn the colour histogram models and the patch dictio-

naries.

are defined using the rgb distributions Ha, a = l1, . . . , lk, of the k segment labels

as follows:

φi(xi) = − log p(xi = a|Ha). (3.5.1)

The distributions Ha are obtained using user-specified constraints. These con-

straints can be segmentation seeds marked by the user to indicate segment labels

(see Fig. 3.5(d)). The pairwise potentials encourage contiguous segments while

preserving the image edges [16], and take the form of a Generalized Potts model

defined as:

φij(xi, xj) =




λ1 + λ2 exp

(
−g2(i,j)

2σ2

)
1

dist(i,j)
if xi 6= xj ,

0 if xi = xj ,
(3.5.2)

where λ1, λ2 and σ are parameters of the model. The terms g(i, j) and dist(i, j)

give the difference in rgb values and the spatial distance respectively between

pixels i and j. We used the following parameter values for all our experiments

with this energy function: λ1 = 5, λ2 = 100 and σ = 5. Segmentation results are

shown on the well-known garden image and a cow image used in [39, 46].

Stereo Matching. We used the pairwise energy function in [54] for the stereo

matching problem. The unary potentials of the energy are computed with a

fixed size window-based method. Windows of size 15 × 15 centred over every

pixel i in the left image and its corresponding pixel in the right image (for a

given disparity) are used. The cost of labelling pixel i with this disparity is

given by the normalized sum of squared colour intensity differences between the
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left and right image window pixels. The pairwise potentials take the form of a

Potts model (3.2.3). Stereo matching results are shown on “Tsukuba”, “Venus”,

“Cones”, “Teddy” images from the Middlebury stereo data set [86]. The Potts

model smoothness cost γ was set to 20 for all our experiments on this energy

function.

Object-based Segmentation. For this problem we used the energy function

defined in [95]. The unary potentials of this energy are based on shape-texture,

colour, and location features. It is given by:

φi(xi) = θTφT (xi) + θcolφcol(xi) + θlφl(xi), (3.5.3)

where θT , θcol, θl are model parameters. The component φT (xi) is learnt using a

boosted classifier [103]. The classifier combines discriminative texture and shape

filter response features and models the texture, layout, and textural context of

object classes. The colour component potential φcol(xi) is computed using Gaus-

sian Mixture Models (gmms) in the CIELab colour space. The location potential

φl(xi) captures the relation between absolute location of the pixel and the object

class label. The reader is referred to [95] for more details on computing these

potentials. The pairwise potentials take the form of a contrast sensitive Potts

model (3.5.2). We evaluated our algorithms on this energy function using images

from the msrc-21 database.

Texture-based Segmentation. In this problem, the task is to segment an im-

age, given a set of distinct textures, such as texton histograms [92] or a dictionary

of rgb patches, together with their object class labels. The unary potential is

specified by rgb distributions, while the pairwise potential is a contrast sensitive

Potts model (3.5.2), similar to the colour-based segmentation example. The rich

statistics of natural images provide by texture information [68, 107] are encoded

in the form of Pn Potts higher order potential. Following the work of [42], we

represent the texture of each object class s ∈ {1, 2, · · · , n}, using a dictionary Ps

of np × np rgb patches. The higher order potential φc(xc) of a clique patch c is
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Figure 3.6: Recycling primal and dual solutions for (a), (b) single and (c) dynamic

mrf problems: Comparison of run-times of standard and dynamic versions of α-

expansion, and Fast-PD are shown for (a) object-based segmentation problem:

‘Building’ image from the msrc-21 data set [95], (b) stereo matching problem:

Tsukuba (Left image), and (c) colour-based segmentation problem: cow video se-

quence [39,46]. In (a), (b) reusing the dual solution provides a speed-up of at least

4-10 times in subsequent iterations. In some cases, the first iteration of Fast-PD

was slightly slower compared to both versions of α-expansion algorithm, but the

overall computation time was better than ‘standard’ and comparable to ‘dynamic’.

For example, times for the ‘Building’ image are: Fast-PD: 0.65s, dynamic: 0.64s,

standard: 1.88s. Note that the run-times of Fast-PD and our dynamic version

are very similar in (a) and (b). In (c) the dynamic version reuses primal and

dual solutions from the previous frames in the video sequence and results in 3-4

times speed-up. We also show that the strategy of maintaining only one graph

while recycling solutions (denoted by ‘1 Graph’) provides insignificant speed-up

(see text).

given by:

φc(xc) =




λ3G(c, s) if xi = s, ∀i ∈ c,

λ4 otherwise,
(3.5.4)

where λ3 and λ4 are model parameters. The function G(c, s) is the minimum

difference between the rgb values of clique patch c and all patches in the dic-

tionary Ps. The patch dictionaries are learnt from a manually segmented key

frame in the case of video segmentation, e.g. Dayton sequence (Fig. 3.5(b)), or

user-marked brushed strokes in the case of an image segmentation, e.g. Bench

image (Fig. 3.5(d)). We used patches of size 4×4, with the following parameters:

λ1 = 0.6, λ2 = 6, λ3 = 0.6, λ4 = 6.5 and σ = 5. More details of the higher order

potential can be found in [42].

The following sections describe the results of primal and dual, and partially

optimal solution initializations. Standard, publicly available implementations are
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Figure 3.7: Comparison of run-times and solution energy of standard and dynamic

versions of α-expansion and Fast-PD are shown for (a) ‘Building’ image, (b)

Tsukuba (Left image). Although there is a small change in energy after iteration 1,

Standard α-expansion spends much more time compared to our Dynamic version

to obtain a new lower energy solution. The time vs energy plot for Fast-PD is

very similar to dynamic α-expansion, except for iteration 1 in (a), where Fast-PD

takes 0.07 seconds more than our dynamic algorithm.

used for comparison.6 All experiments were performed on a Intel Core 2 Duo, 2.4

GHz, 3GB RAM machine. Source code for the proposed methods is available at

http://cms.brookes.ac.uk/research/visiongroup.

3.5.1 Dynamic α-expansion

We now discuss the effect of various primal and dual solution initializations on

the α-expansion algorithm. We tested a simple of way of using the flow/cut

from the solution of the previous expansion move (i.e. with a different label)

as an initialization for the current move. From (3.3.1) it can be observed that

the energy functions corresponding to two consecutive moves are substantially

different. Hence, this scheme provides no significant speed-up. Fig. 3.6 confirms

this expected behaviour.

In Figures 3.6(a) and 3.6(b) we show the results of the proposed ‘recycle’

strategy for two single mrf examples. The primal and dual solutions are recycled

across iterations (cf. §3.3.1). The standard and dynamic versions take the same

time in the first iteration, as no flow is recycled. In the subsequent iterations, the

6We thank V. Kolmogorov, N. Komodakis and M. Pawan Kumar for providing the original
implementation of their methods for comparison.
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Time (in seconds)
α-exp dyn α-exp opt α-exp

Dayton (3) 1.31 0.49 0.21
Garden (4) 1.20 0.44 0.19
Bench (3) 1.76 0.59 0.38
Beach (4) 1.59 0.51 0.25

Table 3.1: Running times (in seconds) for various examples (from [43]) using the

Pn Potts model. Results are shown for the α-expansion algorithm. ‘α-exp’ refers

to the times obtained using the standard alpha expansion algorithm and ‘dyn α-

exp’ refers to the dynamic version (which recycles primal and dual solutions).

‘opt α-exp’ refers to the optimized version which computes the partially optimal

solution followed by α-expansion on the energy projection. It is observed that both

‘dyn’ and ‘opt’ methods provide a speed-up of at least 3-6 times compared to the

standard method. The numbers in () denote the number of labels in the problem.

dynamic version provides a speed-up of 4-10 times. Similar results were observed

for other problems as well. The approach of initializing both primal and dual

solutions in a dynamic mrf was tested on the cow video sequence [39,46]. These

run-times for a sequence of 6 images are shown in Fig. 3.6(c). Our initialization

method provides a speed-up of 3-4 times in this case. The graphs also compare

the dynamic methods with Fast-PD [53]. Note that our methods resulted in very

similar run-times compared to Fast-PD. Fig. 3.7 shows a comparison of run-time

and solution energy for standard and dynamic versions of α-expansion. From

Fig. 3.6 and Fig. 3.7 we see that the speed-up achieved by our dynamic version

is due the fact that small changes in energy can be computed very efficiently.

Table 3.1 shows the speed-up obtained for the Pn Potts model. Our approach

provides a speed-up of at least 3-5 times compared to the standard α-expansion

algorithm.

3.5.2 Using Partially Optimal Solutions

We now show the results of our partially optimal solution based method (cf.

§3.3.2) on a variety of energy minimization algorithms for the problems defined

above. Specifically, α-expansion, bp and trw-s algorithms are used in the ex-

periments. Optimized versions of bp and trw-s refer to the computation of
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Time (in seconds)
α-exp Fast-PD opt α-exp bp opt bp trw-s opt trw-s

Colour-based Segmentation:

Cow (3) 2.53 1.31 0.21 95.93 0.32 98.36 0.33

Cow (4) 3.75 1.72 0.38 108.32 0.42 111.69 0.43

Garden (4) 0.28 0.14 0.04 5.59 0.17 5.89 0.21

Stereo:

Tsukuba (16) 5.74 1.47 0.84 38.19 4.47 41.74 4.67

Venus (20) 11.87 3.07 3.03 67.04 14.97 71.46 16.02

Cones (60) 42.23 9.48 4.36 173.35 29.41 182.66 30.70

Teddy (60) 44.25 9.56 8.27 172.30 60.35 182.50 63.77

Object-based Segmentation:

Plane (4) 0.39 0.35 0.15 9.41 0.29 9.89 0.30

Bikes (5) 0.82 0.54 0.22 10.69 0.64 11.19 0.70

Road (5) 0.91 0.51 0.18 10.67 0.60 11.26 0.62

Building (7) 1.32 0.89 0.38 12.70 2.57 13.52 2.66

Car (8) 0.99 0.53 0.11 13.68 0.23 14.42 0.24

Table 3.2: Running times for various single mrf problems: Comparison of

the run-times (in seconds) of the standard and optimized (opt) versions of α-

expansion (α-exp), bp, trw-s is shown. The optimized version refers to com-

puting the partial solution followed by solving the energy projection with the cor-

responding algorithm. The optimized versions are significantly faster in all the

examples. The speed-up obtained depends on the nature and difficulty of the prob-

lem. The run-times shown for both bp and trw-s versions correspond to the first

70 iterations. The number of iterations was chosen such that acceptable quali-

tative results (segmentation or stereo map) were obtained for all the problems.

Some of the smaller problems produce results after 30-40 iterations, while others

take 70-80 iterations. A better comparison of time vs energy is shown in Fig. 3.7

and Fig. 3.10. The numbers in () denote the number of labels in each problem.

partially optimal solution followed by running the corresponding algorithm on

the projected energy function. A comparison of the run-times for all these algo-

rithms is shown in Table 3.2. It is observed that our method achieves a speed-up

is 10-15 times for most of the examples. In some cases (e.g. Cow image with

3 labels), the speed-up is more than 100 times for optimized versions of trw-

s and bp algorithms. The amount of speed-up depends on the strength of the

pairwise terms and the number of labels in the problem. The speed-up increases

with a decrease in both the number of labels and the strength of the pairwise

terms. This is because the pairwise potential of the partial optimality auxiliary

problem (3.3.6) is closely related to that in the original problem (3.2.3). Images
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Figure 3.8: (a) The percentage of nodes labelled by the partially optimal solution

algorithm by varying the smoothness cost for two energy functions. The Tsukuba

stereo matching problem with energy functions given in [54] (Energy 1) and [99]

(Energy 2) is used as the example here. For the smoothness cost γ = 20, only

13% of the nodes are labelled in the case of ‘Energy 2’. (b) The energy function

in [99] (Energy 2) with smoothness cost γ = 20 is used for this experiment on the

Tsukuba sequence. The speed-up obtained by reusing the flows from the partially

optimal solution auxiliary problems (Par-opt) for this smoothness cost is shown.

Reusing the flows provides a run-time improvement of at least 5 times in the last

two iterations, and more than 2 times overall improvement. Note that even when

the partially optimal solution algorithm fails, we obtain a significant speed-up.

with highly textured regions also show orders of magnitude speed-up for segmen-

tation and stereo problems. Table 3.1 shows the speed-up obtained for the Pn

Potts model for various examples (from [42]). Using partially optimal solutions

provides a speed-up of at least 4-6 times compared to standard α-expansion.

An analysis of the partially optimal solution algorithm shows that in some

cases very few nodes may be labelled. One such case is when the smoothness

cost γ is very high, as shown in Fig. 3.8(a). For illustration purposes we chose

the Tsukuba stereo problem, which showed the most significant change in the

number of labelled nodes. We used two energy functions [54, 99] on the stereo

problem to demonstrate the effect of varying the smoothness term. The unary

potential in [54] is computed using a normalized cross correlation approach on

pixel windows of size 15 × 15, while [99] uses the sub-pixel window approach

proposed by [10]. The pairwise potential in both cases is the Potts model given

by (3.2.3). As the smoothness cost is increased, the percentage of labelled nodes

decreases, and the projected component of the energy function remains large.
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(a) (b) (c)

Figure 3.9: A sample result of object-based segmentation is shown in (a) Plane.

Some of the stereo matching results are shown in (b) Tsukuba-Left and (c) Teddy-

Left. The first row shows the original images. The second row shows the partially

optimal solution. The regions marked in red denote the unlabelled pixels, which

have low texture detail. Our method provides more than 6× speed-up even when

majority of the nodes are unlabelled in the Teddy example. (This figure is best

viewed in colour.)

The decrease is more dramatic using the energy function in [99]. This effect is

perhaps because the partially optimal solution algorithm relies on strong unary

potentials. In the case of [99], a large smoothness term dominates the unary

potentials, and leads to many unlabelled nodes. Thus, only a small improvement

in run-time performance is achieved. However, our strategy of reusing the flow

from the partially optimal solution auxiliary problems always provides improved

performance in these cases (see Fig. 3.8(b)).

Segmentation and stereo matching results of some of the images used in our

experiments are shown in Fig. 3.9. Note that even when majority of the nodes are

unlabelled in the partially optimal solution, e.g. Teddy sequence in Fig. 3.9(c),

our method provides more than 6 times speed-up. The proposed method is not
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Figure 3.10: (a) Energy of the solution and lower bound obtained by running

trw-s algorithm on the Road image example [95]. Note that optimized trw-s

algorithm finds better energies (lower solution energy and higher lower bound) at

any given point in time. It also finds an optima in only 0.64 seconds. Standard

trw-s converged to this energy after 37.24 seconds. Thus, the optimized version

is more than 50 times faster. (b) Solution energies obtained by running standard

and optimized bp algorithm on the Building image example [95]. Optimized bp

refers to the computation of partially optimal solution followed by running the bp

algorithm on the projected energy function. It finds an energy closer to the global

optimum, while standard bp does not reach this energy even after 30 seconds.

only computationally efficient, but also provides a lower energy solution empiri-

cally in the case of trw-s and bp. Furthermore, the optimality of the solutions is

not compromised. Fig. 3.10(a) compares the energies of the solutions and lower

bounds obtained using standard and optimized versions of trw-s. The optimized

version using the energy function projection converges to the global optima of the

energy in only 0.64 seconds. Fig. 3.10(b) compares the energies of the solution

obtained using the standard and optimized bp algorithms. Optimized bp con-

verges to a low energy, although not the global optima, in 0.85 seconds, while

standard bp converges to a much higher energy in 11.12 seconds. Standard bp

solves the original (large) problem and converges to a local optima. On the other

hand, optimized bp solves the projected energy function defined on a subset of

nodes and converges to a better local optima. Empirically, we observe that bp

is more likely to provide a better local optima on the smaller problem (defined

by the projected energy function), which is easier to solve compared to the orig-

inal large problem. The solutions corresponding to these energies are shown in

Fig. 3.11. Note that the optimized bp solution is closer to the global optima in
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(a) (b) (c) (d)

Figure 3.11: (a) Building image [95], and (b) the global optimum solution com-

puted by the trw-s algorithm. Solutions obtained using (c) standard bp, and (d)

optimized bp with an 8-neighbourhood. Neither the optimized nor the standard

versions converge to the optimal solution. However, optimized bp is closer to the

optima.

this case.

3.6 Summary

This chapter proposes techniques for improving the performance of algorithms for

solving multi-label mrfs. As there are no disadvantages in using them and many

advantages we would expect them to become standard. Our methods work by

recycling solutions from previous problem instances, and reducing energy func-

tions utilizing algorithms for generating partially optimal solutions. Our work

on recycling the dual (flow) solution for computing optimal label moves across

successive iterations of the α-expansion algorithm results in a dynamic algorithm.

It can be seen as an extension of the work of [39, 46] for minimizing multi-label

non-submodular energy functions. Experimental results show that our methods

provide a substantial improvement in the performance of α-expansion, trw-s,

and bp algorithms. Our method also provides similar or better performance com-

pared to Fast-PD. We expect that our techniques for simplifying energy functions,

and the subsequent recycling of computations performed during this procedure

can also be used to make Fast-PD faster. The main contributions of this chapter

are:

1. Proposing novel efficient methods for solving multi-label energy functions.

2. Extending the work on dynamic graph cuts to a certain class of non-

submodular energy functions.
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3. Proving that partially optimal solutions can be computed for Pn Potts

model.

4. Demonstrating that our efficient methods are widely applicable.
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Chapter 4

Exact Inference for Higher Order

CRFs



In the previous chapter we have addressed the problem of efficient approximate

inference for energy functions involving certain higher order potentials. This

chapter addresses the problem of exactly inferring the map solution of such multi-

label higher order energy functions. We present a framework to transform special

classes of multi-label higher order functions to submodular second order boolean

functions (referred to as F2
s ), which can be minimized exactly using graph cuts,

and we also characterize those classes. The basic idea is to use two or more

boolean variables to encode the states of a single multi-label variable. There

are many ways in which this can be done and much interesting research lies in

finding ways which are optimal or minimal in some sense. We study the space of

possible encodings and find the ones that can transform the most general class

of functions to F2
s .

4.1 Introduction

Recall (§2.3.1) that a special class of functions called submodular functions can be

minimized globally in polynomial time. These functions are discrete analogues of

continuous convex functions. The current best algorithm for general submodular

function minimization has complexity O (n5Q+ n6), where n is the number of

random variables and Q is the time taken to evaluate the function [73]. This

makes their use infeasible for problems in computer vision which, in general, in-

volve a large number of variables. However, certain subclasses of submodular

functions can be minimized much more efficiently. For example, boolean sub-

modular functions of order1 at most three can be minimized by solving an st-

mincut problem, for which efficient algorithms are known [8, 32, 50]. Freedman

and Drineas [25] extended this work and proved that a subclass of submodular

boolean functions of order four or more can be minimized. It was also shown that

multi-label crfs with convex energy functions of order two can be minimized in

polynomial time [37, 88]. However, it has not been known what the analogue of

this is for higher order cliques. We aim to study this in the chapter.

Most labelling problems in computer vision involve multi-label mrfs or crfs [18,

1Clique size in a crf corresponds to order of the energy function.
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86]. Furthermore, the use of higher order clique structures has proved benefi-

cial [43,65,79] for solving certain computer vision problems. However, efficient st-

mincut based algorithms used for minimizing submodular second order boolean

functions are not directly applicable to these functions. Our work overcomes

this restriction by showing how we can transform some submodular multi-label

higher order functions to submodular boolean functions, thus enabling their exact

minimization. Before proceeding further, we briefly introduce our notation for

denoting different classes of energy functions. Let Fk
s and F̄k

s denote the class of

submodular and non-submodular boolean energy functions of order k respectively.

Similarly, let Mk
s and M̄k

s denote the class of submodular and non-submodular

multi-label energy functions of order k respectively.

A generic transformation framework. The basic idea of our framework is

to use two or more boolean variables to encode the states of a single multi-label

variable. While doing this, we have to ensure that the minimum cost labelling of

the boolean problem also encodes the minimum cost labelling of the multi-label

energy function. There are several possible ways to encode a multi-label variable

using boolean variables. In the rest of the chapter, we use the term encoding

to refer to the mapping between the labellings of a multi-label variable and its

corresponding binary variables. The term transformation refers to the conversion

of multi-label energy functions to functions of binary variables.

It is important to study different transformations because the choice of trans-

formation dictates the size of the resulting boolean function, and the class of

multi-label functions that can be transformed to F2
s . For example, Ishikawa [37]

described a transformation that used l boolean variables to encode a single l-label

variable. Using this transformation pairwise convex functions of the difference of

labels, which is a subclass of M2
s, can be transformed to F2

s . Later, Schlesinger

and Flach [88] gave a concise definition of submodularity for (ordered) multi-label

functions, and used l − 1 boolean variables to transform any function in M2
s to

F2
s . In this chapter, we study the space of all possible transformations and find

the subclasses of multi-label functions that they can transform to F2
s . In other

words, the transformations we develop will lead to submodular boolean functions

under some constraints. These constraints will serve to characterize the class of
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Mk that can be minimized exactly.

The main novelties of our work are as follows:

• A principled framework for transformingMk
s functions to F2

s .

• The identification of constraints that enable the transformation of Mk
s of

any order into F2
s in polynomial time.

• The result that there exists no polynomial transformation from submodular

multi-label functions of order four or more (Mk≥4
s ) to submodular boolean

second order functions (F2
s ).

• The use of higher order functions to improve the performance of single view

3D reconstruction algorithms [36].

4.1.1 Outline of the Chapter

In section 4.2 we describe the basic theory of pseudo-boolean optimization and

its relation to minimizing multi-label higher order functions with st-mincut al-

gorithms. The problem statement is formalized in section 4.3. Section 4.4 shows

how to encode multi-label variables using boolean (or binary) ones. A charac-

terization of multi-label higher order functions that can be transformed to F2
s in

polynomial time is given in section 4.5. We describe the single view 3D reconstruc-

tion problem, and provide details of our solution in section 4.6. In this section

we also present a comparison with the work of [36]. Other potential applications

of our work and directions for future research are discussed in section 4.7.

4.2 Notation and Preliminaries

Let B denote the boolean set {0, 1}, and R the set of reals. Let the vector

x = (x1, ..., xn) ∈ B
n, and V = {1, 2, ..., n}, be the set of all boolean variables and

their indices respectively. A pseudo-boolean function f : B
n → R, is a function

which takes a boolean vector as an argument and returns a real number. These

functions can be uniquely represented using a multi-linear polynomial form [14].
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The following is an example of a pseudo-boolean function:

f(x1, x2, x3, x4) = 2− 4x2x4 + 7x1x2x3, (4.2.1)

containing four boolean variables. Another useful representation known as posi-

form involves the complements (x̄1, ..., x̄n) of variables. Such a representation for

the above example is:

φ(x1, x2, x3, x4) = −2 + 4x̄4 + 4x̄2x4 + 7x1x2x3. (4.2.2)

An important property of the posiform representation is that all the coefficients,

except the constant, are non-negative [14].

4.2.1 Graph Cuts for Energy Minimization

Here we recap some of the graph cuts and st-mincut concepts introduced in sec-

tion 2.3.2. We denote the st-mincut graph with G = (V, E), which has directed,

non-negative edge weights and two special nodes, namely, the source s and the

sink t representing labels 0 and 1 respectively. The st-mincut problem involves

finding the st-cut with the minimum cost. Any F2
s function can be minimized

exactly by computing the st-mincut in an equivalent graph [50]. The key idea

is to design a graph such that cuts in the graph correspond to labellings of the

binary variables, with the cost of the cut equal to the cost of the labelling (plus

a constant). We call this an equivalent graph.

Consider a second order boolean energy:

Eb(x) =
∑

i∈V

Eb(xi) +
∑

(i,j)∈E

Eb(xi, xj), (4.2.3)

where Eb(xi) and Eb(xi, xj) represent the first and second order terms of the

binary energy function respectively. Let θi;a be the cost of assignment xi = a,

and θij;ab be the cost of the assignment xi = a, xj = b (a, b ∈ B). The graph

constructed for minimizing a F2
s function has a vertex i for each boolean random

variable xi ∈ B. There is a mapping between st-cuts in the graph and label
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(a) (b) (c)

Figure 4.1: Converting an energy minimization problem to an st-mincut prob-

lem [50]. (a) and (b) show how unary potentials are represented using edges in

the graph, while (c) shows the same for submodular pairwise potentials.

assignments. A node i in the source set implies xi = 0, while i in the sink set

implies xi = 1. We now show how to create the equivalent graphs for functions

belonging to the classes F1
s and F2

s .

The class F1
s . The unary term Eb(xi) of the energy can be written as: Eb(xi) =

θi;0x̄i +θi;1xi. If θi;1−θi;0 ≥ 0, we write the energy as: Eb(xi) = (θi;1−θi;0)xi +θi;0.

The minimization of this energy is equivalent to finding the st-mincut in the

graph shown in Fig. 4.1(a). Cutting the edge (s, i) is equivalent to the assignment

xi = 1. Similarly, if θi;1−θi;0 < 0, we write the energy as Eb(xi) = (θi;0−θi;1)x̄i +

θi;1, and the corresponding graph is given in Fig. 4.1(b).

The class F2
s . The pairwise energy Eb(xi, xj) = θij;00x̄ix̄j+θij;01x̄ixj+θij;10xix̄j+

θij;11xixj can be written as: Eb(xi, xj) = cij x̄ixj + (θij;10 − θij;00)xi + (θij;10 −

θij;11)x̄j + θij;00 + θij;11 − θij;10, where cij = (θij;01 + θij;10 − θij;00 − θij;11). The

equivalent graph construction is given in Fig. 4.1(c). Since our overall goal is to

transform multi-label functions to F2
s , we do not focus on F3

s and higher order

functions [25, 50].

Multi-label functions. Let Gm = (Vm, Em) be a directed graph with a set of

vertices Vm = {1, 2, ..., m}, and edges Em. Let yi be a variable taking values

in some discrete space L = {1, 2, ..., l}, and let y = {y1, ..., ym}. We use Θ to

denote the set of higher order potentials whose sum defines the energy function.

The unary potential is denoted by Θi;a, pairwise by Θij;ab, where i, j ∈ Vm, and
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a, b ∈ L. Let i = i1i2...ik ∈ Vk
m = Vm × Vm...Vm (k times) and a = a1a2...ak ∈

Lk = L × L...L (k times). Under this notation, a kth order energy function is

written as:

Em(y) =
∑

i∈Vk
m,a∈Lk

Θi;a

∏

i∈i,a∈a

δ(yi, a), (4.2.4)

where

δ(yi, a) =





1 if yi = a,

0 otherwise.
(4.2.5)

4.2.2 Submodular functions

Submodular functions are set functions f : 2n → R, satisfying the following

condition:

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ), (4.2.6)

whereX and Y are subsets of the set V, and ∪ and ∩ denote union and intersection

of sets respectively. We briefly describe how the above definition of submodularity

maps to functions of boolean variables [50]. A function of one boolean variable

is always submodular. A function θ : B
2 → R of two boolean variables {xi, xj} is

submodular if and only if:

θij:00 + θij:11 ≤ θij:01 + θij:10. (4.2.7)

A function θ : B
n → R, is submodular if and only if all its projections on 2

variables are submodular [14,50]. The submodularity conditions can be extended

to multi-label variables. Let L be a completely ordered set, where between every

pair of states l1 and l2, an ordering (above/below) is present. A function Θ :

L2 → R, is submodular if:

Θij:l1l2 + Θij:(l1+1)(l2+1) ≤ Θij:(l1+1)l2 + Θij:l1(l2+1), (4.2.8)

for all l1, l2 [88]. Using the work of Schlesinger [87] on permuted submodular func-

tions we can find an ordering (if it exists) for which the functions become submod-

ular. Thus, we can work with a notion of submodularity of multi-label functions

which is independent of the ordering of the labels. A function Θ : Lm → R is
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submodular if and only if all its projections on 2 variables are submodular [22].

4.3 Problem Statement

The main goal of this chapter is to obtain a boolean second order function Eb(x),

equivalent to a given multi-label higher order function Em(y), in polynomial time.

The boolean function also needs to satisfy the following conditions:

• There is an encoding T : L|Vm| → B
|V| which is 1-1 between the feasible

labellings of x and y, and bijective between the set of optimal labellings of

the boolean and multi-label variables.

• The minimum value of Em(y) over y is equal to the minimum value of Eb(x)

over x:

min
x
Eb(x) = min

y
Em(y). (4.3.1)

The energy functions need not be equal at labellings that are not their

respective minima.

We also want to answer the following questions:

1. What is the class of multi-label higher order functions for which we will

always be able to find an equivalent F2
s function? We characterize the class

by finding the constraints on the potentials Θ of the function.

2. How can the boolean function with the smallest number of variables be

obtained?

We now summarize the three important steps in our algorithm, before pro-

ceeding to explain them in detail.

1. A second order pseudo-boolean function is constructed which enforces 1-1

mapping between the feasible labellings of y and x (See §4.4).

2. Encoding functions that can replace all occurrences of y in Em(y) using x

are computed (See §4.5).
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3. We transform the problem of minimizing the multi-label energy function

into that of minimizing a F2
s function (See §4.5).

For simplicity, we demonstrate our method on a specific 4-label energy func-

tion. The algorithm is presented as an interplay between graph constructions

and transformation of energy functions. As studied in §4.2.1, both operations are

closely related.

4.4 Boolean encoding for multi-label variables

In this section we propose a method to construct a second order pseudo-boolean

function such that the labellings of the boolean variables have a 1-1 mapping with

the labellings of the original multi-label variables. For example, in Fig. 4.2(a) we

show a graph construction2 to encode a 4-label variable y1 using three boolean

variables {x1, x2, x3}. The encoding representing the change of variables is:

{y1 = 1} ↔ {x1 = 1, x2 = 1, x3 = 1}, (4.4.1)

{y1 = 2} ↔ {x1 = 0, x2 = 1, x3 = 1}, (4.4.2)

{y1 = 3} ↔ {x1 = 0, x2 = 0, x3 = 1}, (4.4.3)

{y1 = 4} ↔ {x1 = 0, x2 = 0, x3 = 0}. (4.4.4)

Since three binary variables can take eight (23) different labellings, the re-

maining four labellings (23 − 4) are not mapped to any labellings of y1. In order

to ensure a bijective encoding between the binary variables and the multi-label

variable, these labellings need to be made infeasible. This can be achieved by

assigning a very high cost to the unused labellings. In the above encoding the

unused labellings are given by x1x2x3 = {010, 101, 100, 110}. Thus, we have the

following penalty term:

P (x) = λ(x̄1x2x̄3 + x1x̄2x3 + x1x̄2x̄3 + x1x2x̄3), (4.4.5)

where λ → ∞. This can also be seen as using the following third order penalty

2This is sometimes referred to as the battleship construction.
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(a) (b)

Figure 4.2: (a) The battleship transformation [37,88,108]: The cuts in the graph

are annotated by green arrows. Four possible cuts are shown and each cut corre-

sponds to the assignment of one of the four labels to y1. For example, if the edge

(x1, x2) is cut then the labelling for x1x2x3 is 011 and the corresponding labelling

for y1 is 2. Overall, the four labels of a multi-label variable y1 = {1, 2, 3, 4} are

mapped to the labellings of three binary variables x1x2x3 = {111, 011, 001, 000}.

(b) The log transformation: The four labels of y1 = {1, 2, 3, 4} are mapped to the

labellings (cuts) of two binary variables x1x2 = {11, 10, 01, 00}.

function: 


φ123;000 φ123;001

φ123;010 φ123;011

φ123;100 φ123;101

φ123;110 φ123;111




=




0 0

∞ 0

∞ ∞

∞ 0




. (4.4.6)

It can be easily verified that the above function is submodular. It has four (23−4)

penalty terms (corresponding to ∞ values in (4.4.6)) to restrict the infeasible

labellings. The penalty function in (4.4.5) can be simplified to:

P (x) = λx1x̄2 + λx2x̄3, (4.4.7)

using simple boolean algebra. The two pairwise terms in P (x) correspond to the

edges (x2, x1) and (x3, x2) with ∞ costs in Fig. 4.2(a).3

A natural question to ask would be whether a different encoding is possible

for a 4-label problem. To address this question we consider Fig. 4.2(b), where

two boolean variables are used to encode a 4-label problem. We refer to this

graph construction as the log transformation, since it uses log(l) boolean nodes

3In practice, we do not need an edge with infinite cost, but some edge having a cost greater
than the sum of all edge costs.
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to encode an l-label variable. In this work, we chose a specific transformation to

describe our algorithm. So from this point onwards, we will propose algorithms

specific to the battleship transformation shown in Fig. 4.2(a). It can be shown

that this transformation handles the most general class of energy functions [77].

4.5 Encoding Functions

Our overall goal is to transform a given multi-label higher order energy function

into a boolean one. To do this, we need to define a boolean function which maps

the labels of the multi-label variable to that of the encoding boolean variables. We

refer to these functions as encoding functions. They enable us to replace multi-

label variables in the energy function by boolean ones. More precisely, an encoding

function is defined as fy1;a(x1, x2, x3) : B
3 → B, such that fy1;a(x1, x2, x3) = 1,

when y1 = a, and 0 otherwise. The following example is shown to illustrate the

key ideas.

Let us assume that the function fy1;a(x1, x2, x3) is linear.4 We assume the

following representation for the linear function using four unknown parameters

c0, c1, c2, and c3:

fy1;a = c0 + c1x1 + c2x2 + c3x3. (4.5.1)

Returning to our example (4.4.1−4), the possible solutions for the triplet x1x2x3

are (111, 011, 001, 000). When y1 = 1, x1x2x3 = 111. This can be written as

fy1;1(x1 = 1, x2 = 1, x3 = 1) = 1 and fy1;1(x1, x2, x3) = 0 for other values of x1,

x2 and x3. Since there are only four possible solutions for the boolean variables

x1x2x3, we obtain the following conditions:

fy1;1(x1 = 1, x2 = 1, x3 = 1) = c0 + c1 + c2 + c3 = 1,

fy1;1(x1 = 0, x2 = 1, x3 = 1) = c0 + c2 + c3 = 0,

fy1;1(x1 = 0, x2 = 0, x3 = 1) = c0 + c3 = 0,

fy1;1(x1 = 0, x2 = 0, x3 = 0) = c0 = 0.

4The function fy1;a need not always be linear, e.g. the log construction has a bilinear encoding
function.
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On solving the above linear system, we get fy1;1 = x1. Using the same ap-

proach we solve for fy1;2, fy1;3 and fy1;4.




δ(y1, 1)

δ(y1, 2)

δ(y1, 3)

δ(y1, 4)




=




fy1;1

fy1;2

fy1;3

fy1;4




=




x1

x2 − x1

x3 − x2

1− x3




. (4.5.2)

With the encoding functions in place, we can finally address the energy trans-

formation problem. The main idea is straightforward; the encoding functions are

used to replace all occurrences of the multi-label variable in the energy function

by boolean variables. This substitution produces a pseudo-boolean higher order

function. We study this reduction and give a characterization of the class of

multi-label higher order energy functions that can be transformed to F2
s , and

thus be minimized exactly using graph cuts.

We first show that it is possible to transform all functions in class Mk
s to

functions in F2
s , if k ≤ 2. This is not a new result and follows from [87, 88]. We

then go on to show that it is not possible to transform all functions inMk
s to F2

s

in polynomial time when k ≥ 4.

The class M1
s. We now show how to transform a first order energy function

Em(y), involving a single 4-label variable y1, to a first order boolean energy

function Eb(x), composed of three boolean variables x = {x1, x2, x3}. Let L =

{1, 2, 3, 4}. The energy Em(y) can be written as:

Em(y) =
∑

a∈L

Θ1;aδ(y1, a). (4.5.3)

We replace all occurrences of δ(y1, a) using the corresponding boolean functions

fy1;a(x1, x2, x3) given in (4.5.2). This results in an energy function that depends

only on x as shown below:

Eb(x) = Θ1;1x1 + Θ1;2(x2 − x1) + Θ1;3(x3 − x2) + Θ1;4(1− x3). (4.5.4)
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Since the above energy function belongs to F1
s , all multi-label first order functions

can be minimized exactly.

The class M2
s. Let y1 and y2 be two 4-label random variables in the following

second order energy function:

Em(y) =
∑

a,b∈L

Θ12;abδ(y1, a)δ(y2, b). (4.5.5)

We transform this energy into a boolean energy function Eb(x), involving triplets

(x1, x2, x3) and (x′1, x
′
2, x

′
3) replacing y1 and y2 respectively. The encoding function

fi;a, given by (4.5.2), is used to replace δ(yi, a), resulting in the following boolean

energy function:

Eb(x) =
∑

i,j∈{1,2,3}

αijxix
′
j + L1, (4.5.6)

where αij = (Θ12;ij − Θ12;(i+1)j − Θ12;i(j+1) + Θ12;(i+1)(j+1)), and L1 stands for

some first order terms. According to [25, 32], if the coefficients of all quadratic

terms in a boolean second order energy function are non-positive, then the energy

function is submodular. Thus, for the above energy function in equation (4.5.6)

to be submodular, we need to ensure that αij ≤ 0, i.e.

Θ12;ij −Θ12;(i+1)j −Θ12;i(j+1) + Θ12;(i+1)(j+1) ≤ 0. (4.5.7)

Note that the above condition is nothing but the submodularity condition for sec-

ond order multi-label functions (See (4.2.8)). Thus we prove that all submodular

four-label second order functions M2
s can be transformed to F2

s . Similarly, we

can show that this approach generalizes to functions with more than four labels.

The classM3
s. Here we focus on transforming energy functions involving cliques

of size three. Let y1, y2 and y3 be three multi-label variables in a third order en-

ergy function Em(y), given by:

Em(y) =
∑

a,b,c

Θ123;abcδ(y1, a)δ(y2, b)δ(y3, c). (4.5.8)
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αijk

Θ123;ijk + Θ123;(i+1)(j+1)k −Θ123;(i+1)jk −Θ123;i(j+1)k−
Θ123;ij(k+1) −Θ123;(i+1)(j+1)(k+1) + Θ123;(i+1)j(k+1) + Θ123;i(j+1)(k+1)

αij Θ123;ij4 + Θ123;(i+1)(j+1)4 −Θ123;(i+1)j4 −Θ123;i(j+1)4

βij Θ123;4ij + Θ123;4(i+1)(j+1) −Θ123;4(i+1)j −Θ123;4i(j+1)

γij Θ123;i4j + Θ123;(i+1)4(j+1) −Θ123;(i+1)4j −Θ123;i4(j+1)

αi Θ123;i44 −Θ123;(i+1)44

βi Θ123;4i4 −Θ123;4(i+1)4

γi Θ123;44i −Θ123;44(i+1)

L0 θ123;4,4,4

Table 4.1: Coefficients in the third order binary energy function (equation

(4.5.9)).

We use three boolean triplets (x1, x2, x3), (x′1, x
′
2, x

′
3) and (x′′1, x

′′
2, x

′′
3) to encode

y1, y2 and y3 respectively. After replacing δ(yi, a) with fi;a and applying algebraic

transformations we can rewrite the energy function using boolean variables as:

E(x) =
∑

i,j,k∈{1,2,3}

αijkxix
′
jx

′′
k +

∑

i,j∈{1,2,3}

αijxix
′
j +

∑

i,j∈{1,2,3}

βijx
′
ix

′′
j +

∑

i,j∈{1,2,3}

γijxix
′′
j +

∑

i∈{1,2,3}

αixi +
∑

i∈{1,2,3}

βix
′
i +

∑

i∈{1,2,3}

γix
′′
i + L0, (4.5.9)

where the coefficients of the trilinear, bilinear and unary terms are functions of

Θ, and are given in Table 4.1.

We observe that the transformed energy function E(x), is of order three. We

are interested in reducing this energy function to a second order one in order to

minimize it using any st-mincut algorithm. To do this we will first transform

the above function involving the sum of first order, second order and third order

terms to a function involving only third order terms. We can always rewrite a

first order term, such as x1, as x1x2+x1x̄2 using simple boolean operations, where

x2 can be any variable other than x1. Similarly, it is also possible to rewrite a

second order term, such as x1x2, as x1x2x3 + x1x2x̄3. Thus, the above function

shown in (4.5.9) can also be written as a sum of third order binary functions:

Eb(x) =
∑

i,j,k∈{1,2,3},a,b,c∈B

θijk;abcδ(xi, a)δ(x
′
j , b)δ(x

′′
k, c), (4.5.10)

where δ(xi, a) = xi, if a = 1, and δ(xi, a) = x̄i, if a = 0. Now, the function
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(4.5.10) is a sum of third order terms of the form:

Eb(xi, x
′
j, x

′′
k) = θijk;abcδ(xi, a)δ(x

′
j , b)δ(x

′′
k, c). (4.5.11)

If each third order function belongs to the class F3
s , then we can obtain a graph

construction for the whole function using the techniques described in [25, 50].

However, the individual third order functions in (4.5.10) need not be submodular.

We use the following result from [22] to express Eb(x) as a sum of submodular

third order functions along with a constant.

Lemma 4.5.1 Let G be a function in M3
s defined as a sum of third order func-

tions, as given below:

G =
∑

i,j,k∈Vm,a,b,c∈L

Θijk;abcδ(yi, a)δ(yj, b)δ(yk, c), (4.5.12)

where each Θijk;abc need not be inM3
s. Then, there exists an equivalent transfor-

mation satisfying the following condition:

Θ̃ijk;abcδ(yi, a)δ(yj, b)δ(yk, c) = Θijk;abcδ(yi, a)δ(yj, b)δ(yk, c) +
∑

l,m∈{i,j,k}

Ψlm;abδ(yl, a)δ(ym, b), (4.5.13)

where Θ̃ijk;abc is a function in M3
s, and the sum of pairwise energy terms intro-

duced during the transformation is a constant.

Using this lemma, we transform our energy function in (4.5.10) as shown

below:

E(x) =
∑

i,j,k∈{1,2,3};a,b,c∈B

θ̃ijk;abcδ(xi, a)δ(xj, b)δ(xk, c)−Ψ, (4.5.14)

where Ψ, a constant, refers to the spawned pairwise potentials during the transfor-

mation, and all θ̃ belong to F3
s . Each individual θ̃ijk;abc in F3

s is now transformed

to F2
s using the method given in [25, 50]. Note that the above transformation

is only possible when the original multi-label energy function, Eb(x) in (4.5.10),

belongs toM3
s. We now provide the conditions which will ensure this. In order to
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do this, we first explain the notion of submodularity using the concept of deriva-

tives [22]. The derivative of a kth order function Θi;a with respect to a variable

yj is given by:5

∆jΘi;a =





Θi;a −Θi;a1...aj−1(aj−1)aj+1...ak
aj > 1,

0 aj = 1.

Derivatives can also be obtained with respect to several variables as shown below:

∆jΘi;a = ∆j1 ...∆jk
Θi;a, j1, ..., jk ∈ j. (4.5.15)

The submodularity condition is equivalent to saying that the second derivative

of E(x) with respect to any two variables xi and xj is less than or equal to zero,

for all values of the remaining variables [22]. Using this definition, the energy

function in (4.5.10) is submodular, if the following condition is satisfied:

αij +
∑

k∈{1,2,3},ck∈B

ckαijk ≤ 0. (4.5.16)

In summary, submodular multi-label third order functions M3
s can be trans-

formed to F2
s , if they satisfy the additional constraint (4.5.16).

The class Mk
s . We now consider the problem of transforming fourth or higher

order functions. We will show that not all functions in Mk
s , k ≥ 4, can be

transformed to the class F2
s in polynomial time. To prove this we need the

following lemma.

Lemma 4.5.2 The recognition of submodularity in quartic (degree 4) posiforms

is co-NP-complete6 [28].

In other words, this lemma shows that it is a hard problem to say whether a

general posiform, involving quartic or higher order terms, defines a submodular

function or not.

5Recall that aj specifies the label taken by variable yj .
6A problem X is co-NP if and only if its complement X̄ is in NP.
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Theorem 4.5.3 There is no preserving transformation with respect to Fk (F̄k
s ∪

Fk
s ) for k ≥ 4, which works in polynomial time7 unless P = NP .

We say that a transformation Tp : Fk → F2 is a preserving transformation, if

it satisfies the following conditions:

• If f ∈ Fk
s , then T (f) ∈ F2

s .

• If f /∈ Fk
s , then T (f) /∈ F2

s .

Proof of Th. 4.5.3: If such a transformation exists, we can transform any

function in Fk to F2. Since submodularity can be checked in F2 in polynomial

time8, this gives a way to check whether any function in Fk is submodular or not

in polynomial time, which is in contradiction with the Lemma 4.5.2.

The above theorem states that it is not possible to transform all functions in

Mk
s to F2

s in polynomial time. However, we show that a subclass ofMk
s can still

be transformed to F2
s .

Characterizing F2
s -transformableMk functions: We will now characterize

some Mk functions that can be transformed to F2
s function in polynomial time.

The characterization will be specified by a set of constraints on the potentials of

the multi-label higher order functions. We will refer to these constraints as ξ ≤ 0.

Using the derivative definition of submodularity [22], the constraints ξ ≤ 0 that

will enable us to transformMk
s functions to F2

s functions are:

∆jΘi;a ≤ 0, j ⊆ i, |j| ≥ 2. (4.5.17)

For illustrative purposes we now present the graph construction for functions

belonging to a subclass of theMk
s family. The functions belonging to this subclass

have the form:

Θk;i =




α ∃i ∈ i : yi < li,

0 otherwise.
(4.5.18)

7We say that a transformation works in polynomial time when we can compute a second
order multi-linear polynomial expression for Ts(f) in O(nk) time, where n is the number of
variables, and k is the order of the boolean function.

8The recognition of submodularity in F2 can be done in polynomial time by checking the
coefficients of the quadratic terms [32].
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Figure 4.3: The graph construction for characterizing a general kth order multi-

label energy function. The variable z is an auxiliary node that is connected to k

boolean nodes and the source with the same edge cost α. As a result if all the

k boolean nodes take the label 0 then the cost of the cut is 0. In all other cases

there is a uniform cost of α. This can be seen as a generalization of the graph

construction given in [50].

The corresponding graph construction is shown in Fig. 4.3. We connect a set of

encoding variables to an auxiliary node z, and connect z to the source node s

with edges having the same cost α. It is important to observe the functionality

of z: for a group of variables yj, j ∈ i, if any variable yi takes a label less than a

specified label li there is a penalty of α. Our method can automatically find the

required auxiliary nodes and various edge costs for the graph needed to minimize

anyMk
s-function that satisfy constraints (4.5.17).

4.6 Application: Single View Reconstruction

We now show how the higher order functions characterized in the previous sec-

tion can be used to improve single view reconstruction results. Given a 2D image

of a scene, the goal is to recover a theatre stage representation containing ma-

jor surfaces and their geometrical relationships to each other. Hoiem et al. [36]

formulated this as a classification problem, where every pixel in the image is as-

signed one of the three labels, namely, support (surfaces that lie parallel to the
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(a) (b)

(c)

Figure 4.4: (a) Original image. (b) Triplets of vertically aligned superpixels

are chosen from the superpixel segmented images. The labellings for individual

triplet combinations are studied from several ground truth images. Negative log-

likelihoods are computed for each of these triplets and used as third order priors in

the labelling problem, formulated as an energy minimization task. (c) The three

columns, from left to right, show the unary likelihood images of ground, vertical

and sky respectively.

ground plane), vertical (surfaces that rise from the ground plane), and sky. They

obtained impressive results by learning appearance based models of the three

classes. Their method works as follows. The given image is first segmented into

superpixels [20] (see second column of Fig. 4.5), which provide spatial support

for computing features like texture filter responses and vanishing points. Using

boosted decision tree classifiers, geometrical likelihoods are computed for indi-

vidual superpixels (cf. Fig. 4.4). The final geometrical labelling is achieved using

these likelihoods along with pairwise smoothness priors in an energy minimization

framework.

In this work, we focus on improving the results in [36] using priors obtained

from natural statistics. Such priors can only be imposed through crfs with

higher order cliques [65, 79]. The superpixels extracted from the image act as
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Figure 4.5: Original image, superpixel segmentation, ground truth labelling, re-

sults from [36] and our results are shown (left to right). Street, highway, buildings

and road are the images in rows 1 to 4 respectively. (Best viewed in colour)

nodes (variables) in a higher order crf. The most probable labelling of the

superpixels is found by minimizing an equivalent energy function. We minimize a

third order three-label energy function, where the three labels for each superpixel

correspond to ground, vertical and sky.

The unary likelihoods θi;a of the energy function are computed using boosted

decision tree classifiers.9 Motivated by the work of [114], we compute the second

and third order energy terms using natural statistics. Yang and Purves [114]

study the distribution of geometrical features like size, shape and depth of planar

surfaces, from a large training database. Using a similar approach, the second

order terms are computed by learning the statistics of all neighbouring superpixel

pairs in the training dataset.

As the images are generally taken by people standing on the ground, with the

optical axis approximately parallel to the ground, there is a natural ordering of the

superpixels labels in the vertical direction. To capture this ordering, we study the

9http://www.cs.cmu.edu/~dhoiem/projects/software.html.
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Image Results of [36] Our method

street 20.78 5.82
highway 19.47 7.32
buildings 31.94 13.36

road 18.52 10.82
college 29.47 13.26

Table 4.2: Here we show the error percentages obtained by our method in compar-

ison to [36]. It is computed using the ground truth provided in the dataset. Note

that our method significantly improves the accuracy of single view reconstruction.

distribution of the labelling of vertically-aligned superpixel triplets from several

ground truth labelled images. These statistics, in the form of negative log likeli-

hoods, are shown in Fig. 4.4(b). The likelihoods are directly used as the higher

order potential θijk;abc in the energy function. As an example, to see the effective-

ness of natural statistics, consider the cost of the triplet labelling [Top:Ground,

Middle:Vertical, Bottom:Sky] from the figure. Given the label ordering, this con-

figuration is unlikely to occur naturally, and thus has a high cost. We use our

algorithm explained in §4.5 to construct the equivalent boolean graph. A simple

truncation method is used to remove the negative edges in the graph [83].

We observed significant improvement over the results of [36], as shown in

Fig. 4.5. The labelling accuracy is summarized in Table 4.2. The accuracy is

reported in terms of the misclassification of individual pixels in the image. In

Fig. 4.5 we show the original image, superpixel segmentation, results using only

pairwise clique potentials, and our results using higher order clique potentials.

In the street image shown in the first row of Fig. 4.5, the ground between the

two buildings is incorrectly labelled as vertical, when only pairwise smoothness

prior is used. On the other hand, the usage of higher order priors results in the

correct labelling. The major advantage comes from the ability to impose priors

based on natural statistics. For example, in the second row of Fig. 4.5, unary

potentials favour the labelling sky for the van due to its high similarity to the

‘sky’ region. However, our method using priors learned from natural statistics

obtains the correct labelling.
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4.7 Summary

We presented a principled framework to transform a certain class of multi-label

higher order functions to submodular second order boolean functions, which can

be minimized exactly using graph cuts. Our key idea is to use two or more boolean

variables to encode the states of a single multi-label variable. Our transformations

can be used for other vision problems, such as stereo [37], panoramic stitching [69],

image restoration. Recently, the transformation proposed by [37] was used to

develop a new move algorithm [108]. Similar techniques can be proposed for

the transformations proposed in our work. Our framework can also transform

any higher order multi-label function, for instance, potentials learnt using the

fields of experts model [79], to a boolean second order function. If the resulting

second order boolean energy function is non-submodular, then we can use qpbo

techniques [14]. The main contributions of this chapter are:

1. A principled way to incorporate natural image statistics into the single view

reconstruction problem, and to show that they can be solved efficiently.

2. Demonstrating that our novel priors provide a significant improvement.

3. Presenting the constraints that enable the transformation of Mk
s into F2

s

in polynomial time, and thus extending the subclass of st-mincut-solvable

submodular energy functions.
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Chapter 5

Efficient Piecewise Parameter

Learning



In the previous chapters we have addressed the problem of inference in Con-

ditional Random Field models, assuming that the model parameters are given

or set empirically. This chapter deals with the problem of learning the model

parameters efficiently from training data. Although several methods have been

proposed to deal with this problem, they suffer from various drawbacks. Learning

the parameters involves computing the partition function, which is intractable for

several low-level vision problems. To overcome this, state-of-the-art structured

learning methods frame the problem as one of large margin estimation. Iterative

solutions have been proposed to solve the resulting convex optimization problem.

Each iteration involves solving an inference problem over all the labels, which

limits the efficiency of these structured methods. In this chapter we present an

efficient large margin piecewise learning method which is widely applicable. We

show how the resulting optimization problem can be reduced to an equivalent

convex problem with a small number of constraints, and solve it using an efficient

scheme.

5.1 Introduction

A Conditional Random Field (crf) is defined over a graph G = (V, E), where

V denotes a set of vertices and E is the set of edges, which specifies a pairwise

relationship between the vertices.1 The vertices represent discrete random vari-

ables X = {X1, · · · , XN}. A labelling of a crf corresponds to a classification

of the vertices by assigning a label to each vertex (variable) from a set of la-

bels L = {1, · · · , K}. In other words, a labelling is specified by a binary vector

x = {x1:1, · · · , x1:K , x2:1 · · · , xN :K}, where N is the number of vertices, i.e. |V| =

N . Each binary indicator variable xi:k = 1, if the corresponding random variable

xi takes the label k ∈ L, and xi:k = 0 otherwise. Also,
∑

k xi:k = 1, ∀i. In the

context of the vision problems we have seen so far, the vertices correspond to

image pixels, and the labels can be image segments, disparity, object categories,

etc. Given some observed data (denoted by D), a crf models the conditional

1Note that we have assumed a pairwise crf. However, this assumption is not restrictive
since any crf can be converted to an equivalent pairwise crf, e.g. using a method similar to the
one described in [116], and efficient inference algorithms are available for many such crfs [63].
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probability of a labelling x as follows2:

Pr(x|D, θ) =
1

Z(θ)

∏

i∈V

k∈L

exp(xi:kθ
⊤
k hi(D))

∏

(i,j)∈E

k,l∈L

exp(xi:kxj:lθ
⊤
klνij(D)), (5.1.1)

where θ = (θk, θkl) ∈ Rd×1 are the parameters of the crf. The vectors hi(D)

and νij(D) represent features for the vertex i ∈ V and the edge (i, j) ∈ E respec-

tively. The unary potential exp(xi:kθ
⊤
k hi(D)) denotes the cost of the assignment

Xi = k, while the pairwise potential exp(xi:kxj:lθ
⊤
klνij(D)) denotes the cost of the

assignment: Xi = k and Xj = l. The normalizing factor Z(θ) given by:

Z(θ) =
∑

y′∈LN

∏

i∈V

k∈L

exp(x′i:kθ
⊤
k hi(D))

∏

(i,j)∈E

k,l∈L

exp(x′i:kx
′
j:lθ

⊤
klνij(D)), (5.1.2)

is the partition function. When using a crf model (with known priors), there

are two main issues that need to be addressed: (i) How to set the value of the

parameters θ; and (ii) How to perform inference in order to obtain the optimal

labelling, i.e. the labelling with the maximum conditional probability Pr(x|D, θ).

The latter issue has received great attention and several inference algorithms have

been proposed in the literature (for an overview, see [99]). Our work described in

the previous chapters also addresses the inference problem. However, parameter

estimation in a crf model still remains a challenging problem, with considerable

progress being made in the past few years.

Consider the partition function in (5.1.2), which contains a sum over the

entire label space LN . To estimate the cost of computing the partition function,

let us assume a crf defined over a 300× 200 image with |L| = 10. In this case,

the partition function is a sum of 1060000 terms, and its computation is clearly

intractable. Hence, methods for estimating parameters of a crf model must be

designed to overcome this issue. Based on the way in which the partition function

is handled, recent parameter learning methods can be broadly classified into three

categories – maximum likelihood based methods [62, 84, 97], large margin based

approaches [71, 100, 102], and other iterative methods [90,117].

2Using the notation of [5].
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Owing to the intractability of computing the partition function Z(θ) for com-

puter vision applications, maximum likelihood based methods resort to using

approximations, such as pseudo-likelihood [62], some form of local training [97],

mode of the model distribution [84], or sampling [80]. While these likelihood

approximation methods have shown encouraging results, they can lead to poor

accuracy due to noisy estimates, as noted in [84,97]. Methods using a large margin

approach pose parameter estimation as a convex optimization problem.3 The con-

vex problem is solved iteratively, and each iteration involves performing inference

for every training image, which can be computationally expensive. By restricting

themselves to a subset of random field models, some methods [100, 102] provide

efficient solutions. The method proposed by Taskar et al. [102] uses approxi-

mate inference for multi-label problems, and exact inference for binary labelling

problems in each iteration. Szummer et al. [100] use dynamic graph cuts [46] to

perform inference in successive iterations efficiently.4

Another large margin approach [71] uses the structured output regression

formulation proposed by Tsochantaridis et al. [105]. The algorithm employs a

cutting-plane method to solve the quadratic optimization algorithm. The model

parameters are updated using the most violated constraint (in this case, the

labelling with the smallest cost value) in every iteration. Finding the exact most

violated constraint is not tractable for random fields commonly encountered in

computer vision, thus approximation algorithms are used. Other iterative based

methods are either limited to crfs with a few hundred nodes, thus impractical

for the labelling problems we consider [90], or require an initial model with pre-set

parameters [117].

In summary, previous methods can lead to poor accuracy due to approxima-

tions, or are restricted to a subset of random field models. We aim to address

these issues in this chapter. To obtain an efficient and accurate learning scheme,

we decompose the random field into tree-structured graphs, where each graph

comprises of variable Xi and its corresponding Markov blanket, which is the set

3Large margin based parameter learning approaches eliminate the partition function by
considering the gain of the true labels over any other labelling. We will discuss this in more
detail in §5.2.2.

4Note that this work can extended to a larger class of energy functions using our efficient
dynamic α-expansion (§3.3.1).
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of its neighbours. This decomposition results in an optimization problem with

a large number of constraints. We reduce this problem to an equivalent con-

vex problem with a small number of constraints, similar to the approach of [60].

An efficient method to solve it using stochastic gradient descent is then proposed.

One of the main advantages of our method is the ease of training, as demonstrated

in the sections to follow.

5.1.1 Outline of the Chapter

In section 5.2 we formulate the parameter learning problem. We also describe

two methods – pseudo-likelihood and max-margin learning – related to our work.

Section 5.3 explains our piecewise large margin approach for parameter learning.

Details of the optimization problem and the gradient descent approach are also

given here. Implementation details and experimental results on the man-made

structure [62] and Middlebury-2005 [84] datasets are shown in section 5.4. In this

section we also present a comparison with other parameter learning methods.

Section 5.4.3 presents a few generalizations of our model. Concluding remarks

are provided in section 5.5.

5.2 Preliminaries

We begin by formulating the crf parameter estimation problem. The unary

and pairwise potentials are given by exp(xi:kθ
⊤
k hi(D)) and exp(xi:kxj:lθ

⊤
klνij(D))

respectively (from (5.1.1)). The unary and pairwise feature vectors (hi(D) and

νij(D)) can be defined in many ways. For example, in case of the image segmen-

tation problem, the unary feature vector of a vertex can be composed of functions

of the intensity, colour and texture, while the pairwise feature of an edge can be

a difference of the feature vectors of the two vertices the edge connects.

Given a set of training data D = {Dm, m = 1, · · · ,M}, along with their ground

truth labels X = {xm, m = 1, · · · ,M}, the problem of parameter estimation is to

obtain a value for the parameter θ, such that the model assigns a high probabil-

ity to the correct labelling and a low one to all possible incorrect labellings. In
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(a) (b) (c) (d)

Figure 5.1: We consider a binary image segmentation problem in this example.

(a) Toy example of a 3 × 3 image, (b) Ground truth labelling showing the two

segments – foreground (white) and background (black), and (c,d) Two incorrect

segmentations from the set of possible 29 − 1 segmentations. The training data

consists of images, their ground truth labels, and all the possible incorrect la-

bellings.

the context of foreground-background segmentation problem, an element of the

training set, Dm, corresponds to an image, and the ground truth labels contain

binary values representing foreground or background at each pixel. The model

is learnt such that we obtain a high probability to the correct segmentation and

a low one to all other possible segmentations. Fig. 5.1 shows a toy example of

a 3 × 3 image grid. Here, we consider a binary image segmentation problem

and illustrate a training image, its ground truth segmentation, and a few pos-

sible incorrect segmentations. The image and its ground truth segmentation is

referred to as the positive training example, while the image and an incorrect

segmentation is the negative training example. Note that the number of negative

examples is exponentially large. Pseudo-likelihood and Max-margin learning are

two popular methods to learn the parameters in this setting.

5.2.1 Pseudo-likelihood

The maximum likelihood estimate of the parameters θ̂ (using equation (5.1.1))

is given by:

θ̂ = arg max
θ

M∑

m=1

∑

i∈V

k∈L

xm
i:kθ

⊤
k hi(D

m)+
∑

(i,j)∈E

k,l∈L

xm
i:kx

m
j:lθ

⊤
klνij(D

m)−logZm(θ), (5.2.1)
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where m indexes over the training images and M denotes the number of train-

ing images. Solving this estimation problem for loopy random fields commonly

encountered in computer vision is intractable, as discussed in §5.1.

A common approach to overcome this issue is the use of pseudo-likelihood [7]

to approximate the likelihood [12, 62]. The estimation problem now becomes:

θ̂ = arg max
θ

M∑

m=1

∑

i∈V

PL(i,Dm). (5.2.2)

Here PL(·) is the pseudo-likelihood, and is given by:

PL(i,Dm) =
∑

k∈L

xm
i:kθ

⊤
k hi(D

m) +
∑

j∈Ni
k,l∈L

xm
i:kx

m
j:lθ

⊤
klνij(D

m)− zm
i + b, (5.2.3)

where

zm
i = log

∑

xm
i
∈L

∏

k∈L

exp(xm
i:kθ

⊤
k hi(D

m))
∏

j∈Ni
k,l∈L

xm
i:kx

m
j:lθ

⊤
klνij(D

m), (5.2.4)

is the local partition function, b is a constant, and Ni is the Markov blanket at

vertex i, i.e. the set of its neighbours in the random field model. For example, in

the 4-neighbourhood case used for crf based image segmentation, the Markov

blanket of a pixel i is the set of 4 pixels—above, below, left of, and right of the

pixel. This problem can be solved by gradient-descent like approaches [62] or

auto-regression [12]. One of the main advantages of using pseudo-likelihood is

the asymptotic guarantee (i.e. as the size of the data tends to infinity) that its

maximum matches that of the original likelihood. However, parameter learning

methods using pseudo-likelihood can lead to poor accuracy due to noisy estimates,

as noted in [84, 97].

Another approach to approximate the likelihood estimation in (5.2.1) is to

use the piecewise pseudo-likelihood (pwpl) model proposed by Sutton and Mc-

Callum [97]. Here, the likelihood is conditioned on all the variables in the factor

graph associated with the variable. Figure 5.2 illustrates the difference between

pwpl and pseudo-likelihood models. They show interesting results on linear-

chain crfs. However, it is not clear if this method generalizes to large random
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(a) (b)

Figure 5.2: Difference between pseudo-likelihood (pl), in (a), and piecewise

pseudo-likelihood [97] (pwpl), in (b) is shown here. In pl, a variable is condi-

tioned on all its neighbours in the Markov blanket, while in pwpl it is conditioned

only on the neighbours within a single factor. Figure taken from [97].

field problems, involving millions of variables, commonly occurring in computer

vision.

5.2.2 Max-Margin Learning

Taskar et al. [102] proposed an alternative approach to learn the parameters of

a random field discriminatively. Consider the logarithm of the probability in

equation (5.1.1). It can be re-written, according to the notation in [5], as:

log Pr(x|D, θ) = θFx− logZ(θ), (5.2.5)

where θ = (θk; θkl) with the operator (;) denoting vector concatenation. The

vector x contains the labels of all the variables in the random field, and the

matrix F is composed of unary and pairwise features, i.e. hi(D) and νij(D).

Given a training image5 (D, x̂), the goal is to maximize the confidence in the true

label assignment x̂ with respect to all other possible assignments x 6= x̂.6 This

gain of the true label assignment x̂ over a possible assignment x is defined by:

log Pr(x̂|D, θ)− log Pr(x|D, θ) = θF(x̂− x). (5.2.6)

5For ease of understanding we describe this approach using one training image. It can be
easily extended to multiple images easily, e.g. by concatenation.

6This objective is similar to that in support vector machines [106].
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The problem of maximizing the gain of the true label assignment can be

formulated as the following quadratic program (qp):

max γ s.t. θF(x̂− x) ≥ γℓ(x̂,x); ‖θ‖2 ≤ 1, (5.2.7)

where the gain depends on the number of misclassified labels in x, and is denoted

by ℓ(x̂,x). This optimization problem can be re-formulated as the following qp

by dividing through by γ and adding a slack variable ξ for non-separable data:

min
1

2
‖θ‖2 + Cξ, (5.2.8)

subject to θF(x̂− x) ≥ ℓ(x̂,x), ∀x ∈ LN . (5.2.9)

This quadratic program has a constraint for every possible label assignment x,

resulting in an exponentially large optimization problem. Taskar et al. [102] re-

placed the exponential set of linear constraints with a single equivalent non-linear

constraint using maxx∈LN x. Finding this single constraint7 involves performing

inference at every step of the algorithm. The advantage of max-margin framework

is that it eliminates the partition function by using the gain (5.2.6). However,

it can be computationally expensive if the inference step to find the constraint

cannot be performed efficiently.

In summary, pseudo-likelihood learning approximates the partition function

and is easy to compute. However, it can lead to poor accuracy. On the other hand,

max-margin learning eliminates the partition function, but suffers from compu-

tational issues for certain random fields. Inspired by the successes of pseudo-

likelihood and max-margin learning, we present a new method, which has the

benefits of the two approaches. We first decompose the random field into dis-

tinct pieces (according to pseudo-likelihood structure), and treat each piece as an

individual training exemplar. We then perform efficient discriminative learning

(similar to the max-margin approach) with these exemplars. In other words, our

proposed approach is a max-margin piecewise learning method, which exploits

the pseudo-likelihood graph structure. Our discriminative approach is not only

efficient, but also applicable to any random field model. We describe the details

7Also referred to as the most violated constraint.
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of our method in the following section.

5.3 The Piecewise Model

Consider the pseudo-likelihood method to approximate the joint likelihood of the

labelling discussed in §5.2.1. The joint likelihood of the image labelling is ap-

proximated as product of pseudo-likelihood terms defined over each pixel. The

pseudo-likelihood term for a pixel i, denoted by PL(i,Dm), is given by equation

(5.2.3). This term depends only on the labels taken by the pixel i and its imme-

diate neighbours, i.e. its Markov blanket. We can interpret pseudo-likelihood as

the (exact) likelihood of the vertex i in a new tree-structured graph consisting of

the pixel i and its Markov blanket. In our piecewise framework we consider each

of these new graphs8 as an individual training exemplar to learn the parameters.

The energy function defined on the tree-structured graph for a vertex i, in vector

form, is given by9:

Ei(x) = θ
⊤f(i, j,D,x) + b, (5.3.1)

where i is the set of all nodes in the tree-structured graph, θ = (θk; θkl), ∀k, l ∈ L,10

is the parameter vector, which is to be learnt, and j = {j|j ∈ Ni}, is the set of

neighbours of the vertex i. The feature vector f(i, j,D,x) is formed by concate-

nating the unary and the pairwise features of all the nodes in the tree-structured

graph. The number of possible labellings for each pseudo-likelihood tree structure

is given by |L|Np, where Np is the number of vertices in the tree. For example, the

number of vertices in the tree is 5 when using a 4-neighbourhood crf. Among

the set of possible labellings, one of them is the ground truth labelling, which

is referred to as the positive training example. All the other labellings form the

negative example set, which is exponentially large. Let M+ and M− denote the

number of positive and negative training examples in the entire training dataset

respectively. Furthermore, the feature vectors corresponding to the mth positive

and the nth negative training example are denoted by fm
+ (·) and fn

−(·) respectively.

8One for each pixel in the image.
9For brevity we have dropped the index m over training images.

10The operator (;) denotes vector concatenation.
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5.3.1 Parameter Learning

The parameter vector θ and the bias b should ideally satisfy the following margin

constraints:

θ
⊤fm

+ (i, j,D,x) + b ≥ 1, ∀m ∈ {1, · · · ,M+},

θ
⊤fn

−(i, j,D,x) + b ≤ −1, ∀n ∈ {1, · · · ,M−}. (5.3.2)

These constraints ensure that the parameters discriminate between the positive

and negative examples with respect to the quality function Ei(·) in equation

(5.3.1). The most discriminative parameter vector is obtained by maximizing the

margin. This is equivalent to minimizing ‖θ‖2, the L2 norm of the parameter

vector. However, it is not always possible to separate the data by solving this

hard-margin optimization problem. It is common to introduce slack variables

in such cases [106]. The optimal parameter vector is then learnt by solving the

following soft-margin optimization problem:

(θ∗, b∗) = arg min
θ,b

1

2
‖θ‖2 + C

( ∑

m

ξm
+ +

∑

n

ξn
−

)
, (5.3.3)

subject to θ
⊤fm

+ (i, j,D,x) + b ≥ 1− ξm
+ , ∀m, (5.3.4)

θ
⊤fn

−(i, j,D,x) + b ≤ −1 + ξn
−, ∀n, (5.3.5)

ξm
+ ≥ 0, ∀m ∈ {1, · · · ,M+}, (5.3.6)

ξn
− ≥ 0, ∀n ∈ {1, · · · ,M−}. (5.3.7)

The tradeoff between the accuracy and regularization of the parameter vector is

controlled by the user-defined constant C ≥ 0. The slack variables ξm
+ and ξn

−

denote the hinge loss for positive and negative examples respectively.

The above convex problem is seemingly easy to solve. However, it cannot

be solved efficiently because the inequality (5.3.5) specifies |L|Np − 1 constraints

for each tree-structured training example. Felzenszwalb et al. [21] and Kumar et

al. [60] proposed methods to address similar issues in other learning problems.

An iterative method proposed for the supervised case in [21] approximates the
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large optimization problem using a small subset of constraints. The algorithm

alternates between two steps: (i) Given a current estimate of the parameters, a

subset of labellings that maximize θ
⊤fn

− for each negative example is found using

max-sum belief propagation (bp) [75]; and (ii) Using the subset of labellings

obtained in step (i), a new parameter vector and bias are computed. As noted

in [60], this method is susceptible to local minima and is heavily dependent on

obtaining a good initial estimate of the parameters. Recently, Kumar et al. [60]

proposed an efficient algorithm to obtain the globally optimal solution to this

problem. The key step in their approach is reducing the original large problem

to an equivalent one with a polynomial number of constraints. We explain this

reduction step in the context of our learning problem in the next section.

5.3.2 Constraint Reformulation

The main bottleneck in solving problem (5.3.3) is the inequality (5.3.5), which

specifies an exponentially large number of constraints. For example, consider a

stereo matching problem where every pixel in the image can be assigned any one of

25 disparity labels. Assuming that the crf is defined using the 4-neighbourhood

structure, each tree-structured negative exemplar results in nearly 10 million con-

straints. The inequality (5.3.5) can be reduced to an equivalent set of O (Np|L|2)

constraints, where Np is the number of nodes in the pseudo-likelihood graph, and

|L| is the number of labels [60]. We begin by reformulating inequality (5.3.5) as

follows:

tn + b ≤ −1 + ξn
−, (5.3.8)

tn ≥ θ
⊤fn

−(i, j,D,x), ∀n. (5.3.9)

In other words, we introduce tn, which is an upper bound on the set of values

θ
⊤fn

−(i, j,D,x), ∀n. We now show that this upper bound can be specified by a

polynomial number, specifically O (Np|L|2), of constraints. We define variables

Sn
ij;yi:k

using |L| constraints such that,

Sn
ji;xi:k

≥ θ
⊤
l xj:lhj(D) + θ

⊤
kl xi:kxj:lνij(D), ∀xj:l, l ∈ L, (5.3.10)
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where j ∈ i − {i} and k ∈ L. Note that i is the set of vertices in the pseudo-

likelihood graph. Since one Sn
ij;yi:k

is defined for each j ∈ i− {i} and l ∈ L, the

number of constraints is O (Np|L|2). The smallest value of Sn
ji;xi:k

which satisfies

the above inequality is the message that j passes to i when performing max-sum

bp on the pseudo-likelihood graph with potentials given in (5.1.1). Thus, the

upper bound is specified by:

tn ≥ θ
⊤xi:khi(D) +

∑

j∈Vp−{i}

Sn
ji;xi:k

, ∀xi:k, k ∈ L, (5.3.11)

The inequality (5.3.5) can now be replaced by inequalities (5.3.9), (5.3.10),

and (5.3.11) in the soft-margin optimization problem (5.3.3). The original opti-

mization problem is now reformulated as:

(θ∗, b∗) = arg min
θ,b

1

2
‖θ‖2 + C(

∑

m

ξm
+ +

∑

m

ξn
−), (5.3.12)

s.t. θ
⊤fm

+ (i, j,D,x) + b ≥ 1− ξm
+ , ξm

+ ≥ 0, ∀m,

tn + b ≤ −1 + ξn
−, ξn

− ≥ 0, ∀n,

tn ≥ θ
⊤xi:khi(D) +

∑

j∈Vp−{i}

Sn
ji;xi:k

, ∀xi:k, n,

Sn
ji;xi:k

≥ θ
⊤
l xj:lhj(D) + θ

⊤
kl xi:kxj:lνij(D), ∀xj:l, n.

The number of constraints can be further reduced if the pairwise features

νij(x) are restricted to form a Potts model, as shown in [60]. In fact, this is

applicable to other commonly used pairwise features such as truncated linear,

and truncated quadratic models using the distance transform technique of [20].

The optimization problem (5.3.12) can be solved using the dual decomposition

method as shown in [60]. We follow an alternative method and solve the problem

in the primal itself.

Stochastic Gradient Descent. The form of the problem (5.3.12) is very sim-

ilar to the Support Vector Machine (svm) learning problem. Many methods exist

in literature to solve the svm learning problem. We use a Stochastic Gradient De-

scent algorithm because of its efficiency [13]. It is an iterative algorithm to solve
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linear svms, where every iteration consists of choosing a random training sample,

and updating the weight vector. The iterative updates are chosen according to

the quasi-Newton method described in [13]. Empirically, we found that using a

vanilla stochastic gradient descent provided a very similar result, but required a

larger number of iterations. The gradient at every step is computed by perform-

ing max-sum bp on the chosen training sample. We repeated the update step

over the entire training set a few times until convergence. Note that any other

efficient online svm solver can be used instead of this gradient descent method.

We chose to use this algorithm owing to its theoretical and empirical advantages

when solving max-margin problems similar to (5.3.12). The reader is referred

to [78] for a discussion on these advantages.

5.4 Experimental Results

We evaluated the proposed learning framework on two publicly available datasets,

namely man-made structure database [62] and the Middlebury-2005 stereo vision

data in [84].11 Images from these datasets are shown in Appendix A. We compare

our results with those reported in [62, 71].

5.4.1 Man-made Structure Database

This dataset contains images of man-made structures, such as houses, cathedrals,

buildings. The task is to detect these structures in natural scenes, and assign

structured or non-structured labels to the pixels in the image. The training and

the test set contain 108 and 129 images respectively. The images are selected

from the Corel image database, and are of size 256×384 pixels. Each image is di-

vided into non-overlapping 16×16 pixel-blocks, and each such block is assigned a

ground truth annotation (structured or non-structured) manually. The block-level

quantization introduces noise in the labels of the blocks lying on object bound-

aries, which leads to errors in quantitative evaluation. Kumar and Hebert [62]

circumvent this problem by not counting a misclassification that is adjacent to

11We thank S. Kumar and Y. Li for help with datasets used in this work.
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a block with ground truth label structured as false positive. We follow the same

procedure in order to perform a fair comparison with their work. In all, the

training set contains 3, 004 structured and 36, 269 non-structured blocks. Each

pixel-block is represented as a node (random variable) in the crf framework,

thus resulting in a 16× 24 grid structure.

Feature computation. We used the feature set described in [62]. The unary

feature hi(D) of a node (pixel-block) i was computed using histograms of intensity

gradients at various scales. Each histogram count was weighted by the gradient

magnitude at that pixel. The histograms were also smoothed to alleviate the

problem of hard binning. The average spikeness (computed using central-shift

moments) of the smoothed histogram was used an indicator of the structuredness

of the pixel-block. An orientation based feature obtained by passing the abso-

lute difference between the locations of the two highest peaks of the histogram

through sinusoidal non-linearity was also used. Three scales (16 × 16, 32 × 32,

and 64× 64 pixel windows) were considered to compute the features, and in each

scale, three moment and two orientation based features were computed. Two

features were additionally chosen from these multiscale features using highest

peaks from the histograms. A 14-dimensional vector is composed by taking the

first two moments and orientation based features at each scale, and the two ad-

ditional ‘peak’ features. The unary feature vector contains the 14 moment and

orientation features, their squares and all their pairwise products. Thus, hi(D)

is a 119-dimensional unary feature vector. The pairwise feature vector νij(D) is

a difference of unary feature vectors hi(D) and hj(D).

Results. The weight vectors corresponding to the unary and pairwise features

have 119-dimensions each. These were learnt using our piecewise model (§5.3).

The algorithm was run until convergence (on average 120 iterations, depending on

the initialization). The learnt unary parameters are used as is, but the pairwise

terms are truncated using a common approximation [83] such that graph cut

inference is possible [17, 50]. The qualitative results are shown in Figure 5.3.

It can be observed that our performance is comparable to the state-of-the-art

results [62] on this dataset. Table 5.1 shows a quantitative evaluation of our

97



5.4. Experimental Results

(a) (b) (c)

Figure 5.3: Qualitative results on the man-made structure database. We show (a)

the original image; (b) result of [62]; and (c) result of our method on three sample

images from this database. The white squares overlaid on the image denote the

presence of a structure. Our results correspond to an average false positive per

image of 1.40. It can be observed that our performance is comparable to, if not

better than, [62].

method in terms of false positive and detection rates. We obtain a similar false

positive rate and better detection percentage compared to [62]. However, our

approach is computationally efficient. Our training procedure takes 409 seconds

to converge compared to 627 seconds of their method on a 1.5 GHz Pentium

machine. Furthermore, our approach can be easily generalized to multi-class

problems, as demonstrated in the following section.

5.4.2 Middlebury-2005 Dataset

This dataset contains 9 stereo pairs (left and right images constitute a pair) in all.

The problem is to compute the disparity between the left and the right image, i.e.

for every pixel in the left image find a corresponding pixel in the right image.

Since ground truth disparities are not available for three of the pairs (Computer,

98



5.4. Experimental Results

Method fp per image dr %

mrf shown in [62] 2.36 57.20
drf [62] 1.37 70.50
drf [61] 1.76 72.54
Our method 1.40 72.60

Table 5.1: Quantitative results on the man-made structure database. We show the

average False Positive (fp) and Detection Rates (dr) on the test set containing

129 images. A comparison with both the Discriminative Random Field (drf)

methods proposed in [62] and [61] is also shown. Bold fonts indicate the lowest

false positive error rate or the highest detection rate. Note that our performance

is comparable to these methods. In fact, we provide a better false positive (per

image) measure and similar detection rate accuracy. However, our method is

computationally efficient and scales well to multi-class problems.

Method Art Books Dolls Laundry Moebius Reindeer Average

Grid structure in [71] 14.66 19.12 12.70 19.16 10.88 11.72 14.71
Long-range in [71] 12.11 15.68 12.14 15.82 10.80 15.26 13.64
Our method (without

long-range edges)
12.94 16.24 12.21 16.72 10.82 11.10 13.34

Table 5.2: Quantitative results showing the error rates measured as the percentage

of bad pixels in the non-occluded regions on the Middlebury-2005 database. We

compare our results with the models using the standard loss function ( i.e. ignore

the pixels in the occluded region when comparing with ground truth result) in [71].

‘Grid structure’ refers to the model without long-range edges, and ‘Long-range’

is the one with these edges. Average denotes the average error rate over all the

images. Bold fonts indicate the best performance (or lowest error rate). Note

that our method shows better results than ‘Grid structure’ on all the images, and

shows comparable performance to ‘Long-range’ on most of the images.

Drumsticks, Dwarves), they were discarded for this performance evaluation. We

used the other images, namely, Art, Books, Dolls, Laundry, Moebius, Reindeer, in

a leave-one-out training framework (i.e. for each stereo pair problem, we train the

model on all the other pairs). As noted in [71], these scenes are more challenging

than the previous ones on the Middlebury Stereo Evaluation page [86]. This

experimental setup is identical to that in [71]. The unary features are composed

of Birchfield-Tomasi matching costs for each disparity label, and the pairwise

term is a difference of disparity labels. The number of disparity levels for each

image pair is identical to that used in [71]. Inference is performed on the learnt

energy function using the α-expansion move making algorithm [18].
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Results. A quantitative evaluation of our method is shown in Table 5.2. Er-

ror rate is measured as the percentage of incorrectly labelled pixels in the non-

occluded regions. Our piecewise method performs better than the ‘Grid struc-

ture’ model proposed in [71]. We achieve an average error rate of 13.34 compared

to 14.71 of ‘Grid structure’ model. As we do not use long-range edges in our

approach, we perform slightly worse than the ‘Long-range’ model. We believe

including these edges in our energy function will significantly improve the results.

5.4.3 Discussion

In the formulation discussed so far, we restricted ourselves to decomposing a crf

into sub-graphs corresponding to the Markov blanket of a single pixel. This is not

an inherent limitation of the framework. Any other tree structured sub-graph,

including scan-lines, can be solved in the same way. In these cases, our approach

will efficiently find the most violating constraint using the trick proposed by [60].

Under our formulation, each Markov blanket (or sub-graph) is an individual

training exemplar, and a unique slack variable corresponds to each sub-graph,

while existing max-margin approaches treat the entire image as a single exem-

plar [100]. Of the two approaches, ours should be more robust to errors in data

annotation — for example consider the problem of learning models for image

segmentation. In these problems [62, 95], annotation of the training and test set

must be done by hand, and it is common to find inaccurate ground truth labelling

in large regions of the image, particularly near object boundaries. Such data is

often inseparable in these regions, and global approaches such as [100] can only

learn a limited amount from these images. By way of contrast, our decomposi-

tion of the image into sub-graphs allows us to disregard some of these mislabelled

exemplars while learning from the remainder of the image.

5.5 Summary

This chapter presents a novel method to compute the parameters of a Condi-

tional Random Field model. Inspired by the advantages of pseudo-likelihood and
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max-margin learning methods, we propose a piecewise discriminative learning

framework. Our method first decompose the random field into sub-graphs, and

treats each sub-graph as an individual training exemplar. We then perform effi-

cient discriminative learning with these exemplars. We show the effectiveness of

our approach on two publicly available datasets. The main contributions of the

chapter are:

1. Proposing a parameter learning method applicable for large random fields

commonly used in computer vision.

2. Demonstrating the efficiency of the method in terms of memory and com-

putation.

3. Presenting an efficient max-margin based method for a larger class of ran-

dom field models.

4. Showing that our method is easily applicable for multi-label problems.
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Chapter 6

Discussion



In this thesis, we addressed three main issues that arise when formulating la-

belling problems in an energy minimization framework, viz. (i) How to perform

efficient inference to compute the optimal solution; (ii) How to incorporate prior

knowledge into the model; and (iii) How to learn the parameters of an energy

function. Specifically, our work is focussed on modelling computer vision labelling

problems, such as image segmentation, stereo matching, single view reconstruc-

tion, object recognition.

6.1 Our Contributions

In Chapter 3, we presented methods to improve the efficiency of energy mini-

mization algorithms. Our first method works by recycling results from previous

problem instances. The second method simplifies the miniminization problem by

reducing the number of variables in the energy functions. We also showed how

the reduction step can be used to generate effective problem initializations. We

demonstrated that our methods for improving computational efficiency can be

used for a wide range of miniminization algorithms, such as α-expansion, αβ-

swap, bp, and trw-s. Our method for recycling solutions extended the work

on dynamic graph cuts1 to certain non-submodular energy functions. We also

proved that our method for reducing the number of variables is applicable for an

important class of higher order energy functions. A substantial improvement in

the running time of many large labelling problems was demonstrated.

In Chapter 4, we demonstrated how natural image priors can be used to

improve single view 3D reconstruction results. We introduced a new class of multi-

label higher order functions to model these priors, and showed that the resulting

energy function can be solved exactly. There are three main contributions of

this work. Firstly, we presented a framework to transform certain multi-label

higher order functions to boolean submodular second order functions, which can

be minimized exactly using graph cuts. Secondly, we extended the sub-class

of submodular energy functions that can be formulated as st-mincut problems.

1Recall that the original dynamic graph cuts was only limited to binary submodular energy
functions.
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Thirdly, we introduced higher order potential for single view reconstruction, based

on the distribution of geometrical features of planar surfaces.

In Chapter 5, we addressed the important problem of learning the parameters

of energy functions. Previous attempts to solve this problem suffer from various

drawbacks, such as limited applicability or noisy estimates due to poor approxi-

mations. Our proposed method is applicable for any pairwise Markov/conditional

random field model, and shows impressive results on challenging publicly avail-

able datasets. We can also interpret our approach as extending the class of energy

functions where efficient max-margin learning methods are viable. We demon-

strated that our learning method can be used with equal ease for binary and

multi-label energy functions. Lastly, we showed that our method is efficient in

terms of memory and computational complexity.

6.2 Future Work

Recently, many new energy minimization algorithms have been proposed in the

literature. New move making algorithms [57, 59, 108] have extended the class of

energy functions efficiently solved by α-expansion and αβ-swap. There has also

been a renewed interest in proposing integer programming relaxation methods

for discrete energy minimization [58]. All these methods provide a very promis-

ing direction for solving a large class of energy functions with approximation

guarantees. However, solving them for large computer vision problems can be

computationally expensive. It would be interesting to explore our proposed ideas

for making algorithms efficient in light of these recent advancements.

We believe that our work on extending the sub-class of submodular higher

order functions that can be solved exactly is of great interest to the community.

However, there is still a large set of functions for which no algorithms with poly-

nomial run-time exist. Existing algorithms can only provide a locally or partially

optimal solution. In fact, most of these algorithms provide no or very loose ap-

proximation guarantees. The development of exact or approximation algorithms

with tighter bounds on the solutions for these problems remains a challenging

problem.
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Our work in chapter 5 is focussed on learning parameters of a pairwise random

field. In the past few years there has been much interest in using higher order

random fields, where the potentials can be functions of hundreds of random vari-

ables. These include potentials defined on groups of pixels (superpixels) [43, 63].

It is possible to learn parameters in this context by converting these random fields

to equivalent pairwise models. However, such an approach is limited to a small

class of energy functions due to the lack of widely applicable and efficient infer-

ence algorithms. Therefore, learning parameters in higher order energy functions

is still an interesting and challenging problem to be explored.

Another potential direction for future research is to learn the structure of

the random field. At the moment, we are imposing a structure on the labelling

problem in terms of unary, pairwise, and higher order potentials. It would be

more appropriate to learn the order and structure of the random field from a set

of training data. There has been some work [90] in this area, but is limited to

very small random fields with a few hundred variables. It is not clear if their

approach is scalable to the large models in computer vision. In the future, the

hope is to be able to give all our supervised training data to a black box, which

would come up with the best random field structure for the task, and also provide

solutions for unseen (test) data.

105



Appendix A

Datasets



(a) (b) (c)

Figure A.1: Images from Middlebury-2005 dataset used in our experiments in

Chapter 5. (a) The left image, (b) The right image, and (c) Ground truth dis-

parity map for ‘Arts’, ‘Books’, ‘Dolls’, ‘Laundry’, ‘Moebius’, and ‘Reindeer’ are

shown (top to bottom).
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Datasets

Figure A.2: Some of the images from man-made structure dataset used in our

experiments in Chapter 5. This dataset is available for download at: http://

www.cs.cmu.edu/~skumar.
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