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Abstract

We introduce regularized Frank-Wolfe, a general and effective algorithm for infer-
ence and learning of dense conditional random fields (CRFs). The algorithm opti-
mizes a nonconvex continuous relaxation of the CRF inference problem using vanilla
Frank-Wolfe with approximate updates, which are equivalent to minimizing a regu-
larized energy function. Our proposed method is a generalization of existing algo-
rithms such as mean field or concave-convex procedure. This perspective not only
offers a unified analysis of these algorithms, but also allows an easy way of exploring
different variants that potentially yield better performance. We illustrate this in our
empirical results on standard semantic segmentation datasets, where several instan-
tiations of our regularized Frank-Wolfe outperform mean field inference, both as a
standalone component and as an end-to-end trainable layer in a neural network. We
also show that dense CRFs, coupled with our new algorithms, produce significant
improvements over strong CNN baselines.

1 Introduction

Fully-connected or dense conditional random fields (CRFs) [34]—combined with strong pixel-level
classifiers such as a convolutional neural network (CNN) [25, 42]—have been a highly-successful
paradigm for semantic segmentation. Top-performing systems on the PASCAL VOC benchmark [22]
used to include a CRF as either a post-processing step [13, 14, 15, 20, 43, 44, 45] or a trainable
component [4, 49, 64, 68, 73, 76]. However, as CNNs got stronger, the improvements that CRFs
brought decreased over time, and as a result they fell out of favor since 2017 [45].

In this paper, we revisit dense CRFs with two contributions. First, on the theoretical side, we pro-
pose regularized Frank-Wolfe, a new class of algorithms for inference and learning of CRFs that per-
form better than the popular mean field [34, 35, 58]—the method of choice in the aforementioned
works. Regularized Frank-Wolfe optimizes a nonconvex continuous relaxation of the CRF inference
problem (§2) by performing approximate conditional-gradient updates (§3.1), which is equivalent to
minimizing a regularized energy using the generalized Frank-Wolfe method [53] (§3.2). Several of its
instantiations lead to new algorithms that have not been studied before in the MAP inference literature
(§3.3). Moreover, we show that it also includes several existing methods, including mean field and the
concave-convex procedure [75], as special cases (§3.4). This generalized perspective allows a unified
analysis of all these old and new algorithms in a single framework (§4). In particular, we show that

they achieve a sublinear rate of convergence O(1/
√
k) for suitable stepsize schemes, and in certain

cases (such as strongly-convex regularizer or concave energy) this can be improved to O(1/k) (§4.1).
Furthermore, we provide a tightness analysis for the resulting nonconvex relaxation of the regularized
energy, recovering some existing tightness results [10, 41, 61] as special cases (§4.2). The proposed
algorithms are easy to implement, converge quickly in practice, and have (sub)differentiable iterates.
Such properties are important for successful gradient-based learning via backpropagation [47, 62].
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Our second contribution lies on the practical side. In addition to mean field and regularized Frank-
Wolfe variants, we re-implement several existing first-order inference methods [39, 41, 48]—those
that are amenable to gradient-based learning—for comparison. Remarkably, we find that dense CRFs
can still achieve important improvements over the strong DeepLabv3+ [17] CNN model for all these
solvers (§5). In particular, our best variant of regularized Frank-Wolfe achieves a mean intersection-
over-union (mIoU) score of 88.0 on the PASCAL VOC test set (§5.3), improving over DeepLabv3+.
We hope that these encouraging results could attract interest from the community in considering dense
CRFs (again) for tasks such as semantic segmentation. Our source code is made publicly available
under the GNU general public license for this purpose.1

2 Background

2.1 Inference in CRFs

Let s ∈ S1 × · · · × Sn denote an assignment to n discrete random variables S1, . . . , Sn, where each
variable Si takes values in a finite set of states (or labels) Si. Let G = (V , E) be a graph of n
nodes (V = {1, 2, . . . , n}). A Markov random field (MRF) defined by G encodes a family of joint
distributions that can be factorized as follows, where φi : Si → R+ and φij : Si × Sj → R+ are the
so-called unary and pairwise (respectively) potential functions, and Z is a normalization factor:

p(s) =
1

Z

∏

i∈V
φi(si)

∏

ij∈E
φij(si, sj). (1)

Note that (1) can also include conditional distributions, i.e., p(s |o) with observed variables o. In this
case the potentials may also depend on o, e.g., φi(si;o), and this model is referred to as conditional
random field (CRF) [37]. We will present later (§5.1) such a model for image segmentation. In the
following, we use MRF and CRF interchangeably. We assume further that all nodes have the same
set of labels: Si = S ∀i, with cardinality d = |S|. It is convenient to express p(s) as 1

Z
exp(−e(s)),

where the so-called energy e(s) is defined as

e(s) =
∑

i∈V
θi(si) +

∑

ij∈E
θij(si, sj), with θi(si) = − logφi(si) (idem for θij ). (2)

The task of maximum a posteriori (MAP) inference consists in finding the most probable joint assign-
ment, also known as energy minimization (which is NP-Hard in general [65]):

s∗ = argmax
s∈Sn

p(s) = argmin
s∈Sn

e(s). (3)

2.2 Continuous relaxation of MAP inference

Let xis be a binary variable such that xis = 1 iff label s is assigned to node i. Then, xi = (xis)s∈S ∈
{0, 1}d denotes the one-hot vector for node i. Let x ∈ {0, 1}nd be the concatenation of all xi, and let

θθθi = (θi(s))s∈S ∈ R
d, ΘΘΘij = (θij(s, t))

s∈S
t∈S ∈ R

d×d. The energy (2) is then

E(x;θθθ) =
∑

i∈V
θθθ⊤i xi +

∑

ij∈E
x⊤
i ΘΘΘijxj , (4)

where θθθ is a parameter vector composed of all θθθi andΘΘΘij . The MAP inference problem (3) transforms
to minimizing E(x;θθθ) over the new variables x. A natural approach is to relax the binary constraint
and solve the continuous relaxation minx∈X E(x;θθθ) with

X =
{

x ∈ R
nd : x ≥ 0,1⊤xi = 1 ∀i ∈ V

}

. (5)

This continuous relaxation is known to be tight [10, 41, 61]. For convenience, we represent the unary
potentials as a vector u(θθθ) = (θθθi)i∈V ∈ R

nd, and the pairwise potentials as a symmetric n× n block

matrix P(θθθ) ∈ R
nd×nd, where the (i, j) block is ΘΘΘij . The problem is reduced to

min
x∈X

E(x;θθθ) ,
1

2
x⊤P(θθθ)x+ u(θθθ)⊤x. (6)

1https://github.com/netw0rkf10w/CRF
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The reason we have made θθθ explicit in (4) and (6) is to provide more clarity when discussing the
differentiability of their solutions for the learning task. Note that an optimal solution x∗ to (4) and (6) is
a function of θθθ, and thus should be written as x∗(θθθ). Therefore, when we say a solution is differentiable,
it is understood that it is so with respect to θθθ. When there is no ambiguity, we omit θθθ and write simply
E(x),P, and u. We will be interested in problem (6) in the rest of the paper, though it should be noted
that our method also applies to the so-called linear programming (LP) relaxation, which takes the form
minx∈XLP ELP(x;θθθ), where ELP(x;θθθ) = θθθ⊤x and XLP is the so-called local polytope [72]. We refer
to Appendix A for the details.

2.3 Vanilla Frank-Wolfe algorithm for MAP inference

Since the continuous energy is differentiable, it is natural to apply first-order methods such as Frank-
Wolfe [23] to solving (6) [41]. Starting from a feasible x0 ∈ X , Frank-Wolfe approximately solves (6)
by iterating the following steps, where αk ∈ [0, 1] follows some stepsize scheme:

pk ∈ argmin
p∈X

〈

∇E(xk),p
〉

, xk+1 = xk + αk(p
k − xk). (7)

The same idea has also been successfully applied to other types of continuous relaxations of (6), such
as linear programming (LP) [52] or convex quadratic programming (QP) [21, 61].

3 Regularized Frank-Wolfe for inference

In this section, we introduce the proposed regularized Frank-Wolfe as a general class of algorithms
for MAP inference. The motivation and general framework are presented in §3.1 and §3.2. We show
that several new inference algorithms can be obtained using different regularizers (§3.3). Moreover,
regularized Frank-Wolfe also includes a number of existing algorithms as special cases (§3.4).

3.1 A smoothing perspective

We have seen in §2.3 the (vanilla) Frank-Wolfe method for solving MAP inference. Unfortunately,
from a learning perspective, this algorithm is problematic. Indeed, CRF learning with stochastic gra-
dient descent (SGD) is typically done by backpropagating through the optimization steps [35, 63, 76],
but the iterate pk in (7) is piecewise constant and thus its gradient (w.r.t. θθθ) is zero almost everywhere
(§C.1), which makes learning not possible.2 This issue will be illustrated later in the experiments. A
potential solution is to add a (typically strongly-)convex regularization term:

pk ∈ argmin
p∈X

{〈

∇E(xk),p
〉

+ r(p)
}

, xk+1 = xk + αk(p
k − xk). (8)

With appropriately chosen regularizers, (8) becomes suitable for gradient-based learning.

The technique of approximating an update step by a regularized one is quite standard in the optimiza-
tion literature. For example, the classical proximal gradient method [48] can be interpreted the same
way. Our update (8) is inspired by Nesterov’s smoothing [56], and thus is similar in spirit to its many
applications [31, 57, 66]. In the next section, we present a different, more general perspective to
view (8), which offers more flexibility in designing new algorithms, in making connections to existing
ones, and in analyzing their theoretical properties in a unified manner.

3.2 A regularized energy perspective

Instead of approximating the local updates of a given algorithm (in this case: vanilla Frank-Wolfe) to
minimize the same objective function, one may choose to keep the algorithm, and approximate instead
the objective. At first glance, however, this idea does not seem to be a good one. Indeed, if we replace
E by some function E′ and apply vanilla Frank-Wolfe, the updates (7) remains piecewise constant,
thus we have the same zero-gradient issue. It turns out that, if we choose a more appropriate “given
algorithm”, this idea can work. Such a choice is the generalized Frank-Wolfe algorithm [5, 12, 53].

2Note that backpropagation typically requires the operations to be differentiable (at least) almost everywhere,
which p

k satisfies. Therefore, the issue here does not lie in differentiability, but in the resulting zero gradients.
Blackbox differentiation [60] can deal with this scenario, but it is limited to LP relaxations.
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Consider the following problem, where f : Rm → R∪{+∞} is differentiable but possibly nonconvex,
and g : Rm → R ∪ {+∞} is proper, closed, and convex but possibly non-differentiable:

min
x

F (x) , f(x) + g(x). (9)

Generalized Frank-Wolfe solves (9) by iterating

pk ∈ argmin
p

{〈

∇f(xk),p
〉

+ g(p)
}

, xk+1 = xk + αk(p
k − xk). (10)

If g is the indicator function δX of X (i.e., δX (x) = 0 if x ∈ X and δX (x) = +∞ otherwise), then
the algorithm clearly reduces to vanilla Frank-Wolfe (7) for minx∈X f(x). Therefore, generalized
Frank-Wolfe applied to (6) with f = E and g = δX will yield exactly the same updates (7). Now
let us apply this algorithm to an approximate objective Er(x) = E(x) + r(x) for some function r.
Choosing f = E and g = r + δX , it is straightforward that (10) reduces to (8). Therefore, we have
recovered the same algorithm as in §3.1, but this time through different machinery.

This framework offers a great flexibility as one can choose f and g in many different ways to obtain new
algorithms. The only conditions are f being differentiable and g being convex, so that the subproblem
in (10) is well-defined and globally solvable.3 For example, instead of choosing f = E and g = r+δX
as above, one can choose f(x) = 1

2x
⊤Px and g(x) = u⊤x + r(x) + δX (x). We will recover later

in §3.4 some existing algorithms (as special cases) through this kind of decomposition. Finally, we
present Algorithm 1 for (approximately) solving MAP inference (6).

Algorithm 1 Generic regularized Frank-Wolfe for (approximately) solving MAP inference (6).

1: Choose a regularizer r such that there exist f (differentiable) and g (convex) satisfying f + g =

E + r + δX . Typically (but not necessarily) r is convex on X and is constant on X ∩ {0, 1}nd.
2: Initialization: k ← 0, x0 ∈ X , number of iterations N .
3: Compute pk ∈ argminp

{〈

∇f(xk),p
〉

+ g(p)
}

and compute the stepsize αk.

4: Update xk+1 = xk + αk(p
k − xk). Let k ← k + 1 and go to Step 3 until k = N .

5: Rounding: convert x to a discrete solution and return.

While the choice of (r, f, g) can be highly flexible, it would make little sense to optimize a function

that has nothing to do with the original objective (i.e., the discrete energy). Let X = X ∩ {0, 1}nd
denote the discrete domain of our problem. If we choose r such that it is constant onX (as suggested in

Step 1 above), then minimizing E on X is equivalent to minimizing E+ r on X , and thus Algorithm 1
actually solves the continuous relaxation of a (different) discrete problem that is equivalent to MAP
inference. Further discussion on this matter, as well as on the rounding Step 5, are deferred until §4.2.

Finally, we should note that adding a strongly-convex regularizer is not new in the MAP inference
literature [29, 31, 52, 67, 69]. In particular, some previous work even applied (vanilla) Frank-Wolfe
to optimizing such regularized energy [52, 67, 69]. All these algorithms, however, suffer from the
aforementioned zero-gradient issue, as already explained in the beginning of this section.

3.3 Particular instantiations

The previous section presents regularized Frank-Wolfe as a general algorithm for inference. We now
discuss concrete examples of its instantiations. To the best of our knowledge, all the algorithms pre-
sented in this section are new and have not been studied previously in the MAP inference literature.
In particular, despite some similarities with proximal gradient [48] and mirror descent [8, 55], our
following euclidean and entropic variants are actually different from these methods.4

Euclidean Frank-Wolfe Perhaps the most natural choice is ℓ2 regularization. In Algorithm 1, let us

choose f(x) = E(x) and r(x) = λ
2 ‖x‖

2
2, where λ > 0 is a regularization weight. Let ΠX (v) be the

projection of a vector v onto X . It can be shown (§D.1) that Step 3 in Algorithm 1 becomes

pk = argmin
p∈X

{

〈

Pxk + u,p
〉

+
λ

2
‖p‖22

}

= ΠX

(

− 1

λ
(Pxk + u)

)

∀k ≥ 0. (11)

3Further mild conditions are required for convergence (§4.1).
4In proximal gradient and mirror descent, the current iterate is constrained to stay close to the previous one,

while this is not the case in our method. See Appendix D for the details.
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Entropic Frank-Wolfe In Algorithm 1, let us choose f(x) = E(x) and r(x) = −λH(x), where
λ > 0 is a regularization weight and H(x) = −∑i∈V

∑

s∈S xis log xis is the entropy of x over X . It
can be shown (§D.2) that Step 3 in Algorithm 1 becomes

pk = argmin
p∈X

{〈

Pxk + u,p
〉

− λH(p)
}

= softmax

(

− 1

λ
(Pxk + u)

)

∀k ≥ 0, (12)

where v = softmax(x) with x ∈ R
nd means v ∈ R

nd and vis = exp(xis)∑
t∈S

exp(xit)
∀i ∈ V , ∀s ∈ S. The

resulting algorithm has a tight connection with (parallel) mean field [34, 35] (discussed in §3.4).

Other variants One can consider more sophisticated regularizers, e.g., a weighted combination of
ℓ2 norm and entropy. Other options include the many different regularizers that have been used in
diverse machine learning applications, such as ℓp norm [57], lasso variants [57], or binary entropy [3].
Although these variants also lead to new MAP inference algorithms, their implementations are more
sophisticated since their subproblems (10) require numerical solutions as no closed form ones exist.

3.4 Recovering existing algorithms as special cases

In addition to the above new algorithms, regularized Frank-Wolfe also includes several existing ones
as special cases. We present some of them below and refer to Appendix A for further details.

Mean field This is a special case of the above Entropic Frank-Wolfe. Indeed, if we choose λ = 1
in (12) and a constant stepsize αk = 1 ∀k ≥ 0 in Algorithm 1, then it is straightforward that this
algorithm is reduced to the following update step, whereNi is the set of neighbors of node i:

xk+1 = softmax(−Pxk − u) ⇐⇒ xk+1
is = 1

Zi
exp

(

− θi(s)−
∑

j∈Ni

∑

t∈S θij(s, t)x
k
jt

)

∀i ∈ V , s ∈ S.

This is precisely a (parallel) mean field update [34, 35]. To conclude, parallel mean field is an instance
of Entropic Frank-Wolfe with unit regularization weight and unit stepsize. Interestingly, the update (12)
is the well-known softmax function with temperature in the deep learning literature [28]. One could
have easily come up with such a simple extension of mean field by adding a temperature to softmax
(yet surprisingly this has not been tried before), but here we have provided a principled way to achieve
that. As shown later in the experiments, with suitable λ, this extension yields much better results
than vanilla mean field. Finally, we should note that the tight connection between mean field and
first-order methods has been noticed before. Krähenbühl and Koltun [35] proposed several mean-field-
type variants based on the concave-convex procedure [75], while closely similar variants can also
be obtained through proximal gradient [2, 6], but unlike our generalized algorithm, these algorithms
cannot recover exactly the original mean field of Krähenbühl and Koltun [34].

Concave-convex procedure CCCP [75] solves (9), assuming f is concave and g is convex, by up-
dating xk+1 as a solution to −∇f(xk) ∈ ∂g(xk+1),5 which is precisely (10) with stepsize αk = 1.
We conclude that CCCP is a special case of generalized Frank-Wolfe with f concave and unit stepsize.
As a result, many existing CCCP-based inference algorithms [21, 35] can be seen as special cases of
regularized Frank-Wolfe. For example, the ones presented by Desmaison et al. [21] are instantiations
of the proposed algorithm with either f(x) = −x⊤ diag(c)x and r(x) = E(x)+x⊤ diag(c)x (where

c ∈ R
nd is large enough so that r(x) is convex), or f(x) = x⊤(P −C)x and r(x) = u⊤x+ x⊤Cx

(where C is some matrix such that f is concave and r is convex). Note that in these instantiations,
Step 3 in Algorithm 1 requires an iterative (numerical) solution. Finally, all the algorithms presented
by Krähenbühl and Koltun [35] are also instantiations of the proposed method because they are based
on CCCP. We refer to Appendix A for further details.

Vanilla Frank-Wolfe This is trivially a special case of regularized Frank-Wolfe and we briefly
discuss it for completeness. Choosing f(x) = E(x) and r(x) = 0 we obtain the algorithm
by Lê-Huu and Paragios [41]. Likewise, the one by Desmaison et al. [21] corresponds to f(x) =
E(x) − c⊤x + x⊤ diag(c)x and r(x) = 0, where c ∈ R

nd is large enough for f to be convex. In
addition, we can also recover existing LP-based algorithms by choosing X = XLP, r(x) = 0, and
f(x) = ELP(x) + R(x) with suitable R(x). Indeed, the one by Meshi et al. [52] takes R(x) as the
squared ℓ2-norm of linear constraints, while the ones by Sontag and Jaakkola [67] and Tang et al. [69]
correspond to R(x) being an entropy approximation and its generalization, respectively (see §A).

5In the original CCCP [75], g is differentiable, thus the update becomes −∇f(xk) = ∇g(xk+1).
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4 Theoretical analysis

4.1 Convergence

We provide a convergence analysis for the generalized Frank-Wolfe algorithm, and the results for CRF
inference special cases will then follow as a consequence. Convergence of vanilla Frank-Wolfe has
been well studied in the literature [24, 30, 36, 38]. For generalized Frank-Wolfe, different analyses
exist for the case where both f and g in (9) are convex [5, 26, 51, 74]. We are particularly inter-
ested in the general case where f is nonconvex,6 as the CRF energy is often highly so in practice.
Mine and Fukushima [53] (and subsequently Bredies et al. [12]) proved the global convergence of the
algorithm under mild conditions, though no rate of convergence was given. Recently, Beck [7] ob-

tained an O(1/
√
k) rate of convergence for convex g under adaptive or line-search stepsizes. We

extend their analysis with several contributions. First, we include the case where g is strongly convex,
which is important as our main variants for inference (e.g., mean field or ℓ2-Frank-Wolfe) use strongly-
convex regularizers. Second, to also include CCCP [75] as a special case, we relax their Lipschitz
smoothness assumption on f to semi-concavity (which is weaker, as any L-smooth function is also L-
concave). Third, we also consider much weaker stepsize schemes such as constant or non-summable
ones. We show that for either concave f or strongly-convex g, a better O(1/k) rate of convergence
can be achieved, even under the (weak) constant stepsize. It should be noted that our results are new.

All the results in this section are stated under the following assumptions, where Lf and σg are non-
negative constants and ‖·‖ denotes the ℓ2 norm. Their proofs are given in Appendix B.

Assumption 1. f is differentiable and Lf -semi-concave (i.e., f(x)− Lf

2 ‖x‖
2

is concave) on dom f ,
which is assumed to be open and convex. When Lf = 0, f is concave.

Assumption 2. g is proper, closed, and σg-strongly-convex (i.e., g(x) − σg

2 ‖x‖
2

is convex), and
dom g ⊆ dom f is compact. When σg > 0, g is strongly convex.

Let px denote a solution of minp {〈∇f(x),p〉 + g(p)} and let pk = pxk . The following quantity,
called the conditional gradient norm [7], will serve as an optimality measure:

S(x) = 〈∇f(x),x − px〉+ g(x)− g(px). (13)

Lemma 1. S(x) ≥ σg

2 ‖x− px‖2 ∀x ∈ dom f , and S(x) = 0 iff x is a stationary point of (9).

The following theorem contains our convergence results for the most common stepsize schemes, in-
cluding the following adaptive and line-search stepsizes, respectively:

αk = min

{

1,
1

Lf + σg

(

S(xk)

‖pk − xk‖2
+

σg

2

)}

, αk = argmin
α∈[0,1]

F (xk + α(pk − xk)). (14)

Theorem 1. Let F ∗ be the minimum value of F , Ω be the diameter of dom g, ∆k = F (xk) − F ∗,

ω =
σg

Lf+σg
, ρ(α) = αmin

{

1, 2− α
ω

}

, η(α) = 1
2 [(Lf + σg)α− σg], and µ =

√

2Lf∆0. For any

k ≥ 0, we have min0≤i≤k S(x
i) ≤ Bk, where the bound Bk is given as follows:

constant stepsize constant step length non-summable adaptive or
line search (14)αk = α > 0 ∀k αk = α

‖pk−xk‖ ∀k ∑+∞
k=0 αk = ∞

convex g ∆0
α(k+1)

+
LfΩ2α

2
∆0Ω

α(k+1)
+

LfΩα

2

∆0+
LfΩ2

2

∑k
i=0 α2

i∑
k
i=0

αi
max

(

2∆0
k+1

, µΩ√
k+1

)

strongly
convex g

∆0
α(k+1)

+ η(α)Ω2 ∀α≥2ω

∆0
ρ(α)(k+1)

∀α<2ω

(

∆0

α
√

2σg(k+1)
+

(Lf+σg)α

2
√

2σg

)2 ∆k(ω)
∑

k
i=k(ω)

αi

∆0
ω(k+1)

concave f ∆0
α(k+1)

∆0Ω
α(k+1)

∆0∑
k
i=0 αi

2∆0
k+1

In the above, k(ω) = min {k : αi < 2ω ∀i ≥ k}, with further assumption that limk→∞ αk =
0 for (jointly) non-concave f and non-summable αk. For the non-highlighted cases, we have
limk→∞ S(xk) = 0 and any limit point of the sequence (xk)k≥0 is a stationary point of (9).

The table in Theorem 1 also provides rates of convergence for the algorithm. Prior to our work, the

O(1/
√
k) rate for the adaptive or line-search stepsizes (top-right cell of the table, due to Beck [7]) was

6Note that g is still assumed to be convex, so that the subproblem (10) can be solved to global optimality.
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the best for nonconvex objectives.7 We have improved this rate to O(1/k) when f is concave or g is
strongly convex, even under weaker stepsize schemes. In particular, convergence is guaranteed for all
considered stepsize schemes when f is concave, for which the best bound is obtained when αk = 1 ∀k,
which explains the default unit stepsize in CCCP [75] (see §3.4). Convergence is also guaranteed for
the (diminishing) non-summable scheme (which includes common stepsizes such as αk = 2/(k + 2)

or αk = 1/
√
k), but the rate depends on the rate of divergence of

∑k

i=0 αi. More detailed results and
analyses can be found in Appendix B.

Convergence for MAP inference For all the instantiations of regularized Frank-Wolfe presented in
§3.3 and §3.4, it is easy to check that Assumptions 1 and 2 are satisfied. In addition, the regularizers in
most of them (euclidean or entropic variants, including mean field) are strongly convex, thus we would
expect a rate of convergence of at leastO(1/k) in practice for these algorithms under the adaptive, line
search, or (suitable) constant stepsizes. Note that the adaptive scheme requires to know Lf and σg ,
which is possible in our case: a lower bound on σg is λ for both euclidean and entropic variants, while
an upper bound on Lf is ‖P‖2 for the energy (6). In practice, however, these bounds could be too
loose to yield good convergence.

Convergent mean field It is well-known that parallel mean field may diverge [35]. Our En-
tropic Frank-Wolfe can be viewed as an improved variant of mean field that is globally con-
vergent for different stepsize schemes, without resorting to a concave approximation as done by
Krähenbühl and Koltun [35]. Our above analysis also provides an explanation for a known phe-
nomenon [6]: damped mean field (corresponding to Entropic Frank-Wolfe with λ = 1 and αk =
α < 1 ∀k) is more likely (than mean field) to guarantee convergence when the energy is not concave.

4.2 Tightness of the relaxation

We have seen that regularized Frank-Wolfe (Algorithm 1) minimizes a modified continuous energy.
It is thus reasonable to ask whether doing so also minimizes the original discrete energy (which is
the main objective). In this section, we partially answer this question by providing some tightness
guarantee for this regularized continuous relaxation. Our analysis is quite general and also includes
several existing tightness results [10, 41, 61] as special cases. All proofs can be found in Appendix C.2.

The last step in Algorithm 1 consists in converting x to a discrete solution. We consider two
such rounding schemes. The simplest one is perhaps nearest rounding, which assigns each node
i with the label si ∈ argmaxt∈S xit. Intuitively, this sets xi to the nearest vertex of the simplex
{

xi ∈ R
d
+ : 1⊤xi = 1

}

. The second scheme, called BCD rounding [41, 61], consists in minimizing

E(x) over xi while keeping all xj (j 6= i) fixed (i.e., block coordinate descent), which amounts to

iteratively assigning each node i with label si ∈ argmins∈S
{

θi(s) +
∑

j∈Ni

∑

t∈S θij(s, t)xjt

}

. In

practice, we only use nearest rounding because BCD rounding is too expensive for dense graphs. How-
ever, an important property of the latter is that it does not increase the energy, which is useful for our
theoretical analysis. The following theorem provides an additive bound on the energy.

Theorem 2. Let x∗
r be a global minimum of Er(x) = E(x)+r(x) over X , x̄∗

r be the discrete solution
rounded from x∗

r , andE∗ be the minimum discrete energy. Assume that r(x) is bounded:8 m ≤ r(x) ≤
M ∀x ∈ X . We have E∗ ≤ E(x̄∗

r) ≤ E∗+M −m+C, where C =
√

n
(

1− 1
d

)

(‖u‖2 +
√
n ‖P‖2)

for nearest rounding and C = 0 for BCD rounding.

Let us derive the energy BCD bound for some particular cases (see §C.2 for details). Obviously
with no regularization (r = 0), we have M = m = 0 and thus E(x̄∗

r) ≤ E∗ ≤ E(x̄∗
r), yielding

E(x̄∗
r) = E∗, i.e., the relaxation is tight. We have thus recovered a previously known result [10, 41, 61].

For r(x) = −c⊤x + x⊤ diag(c)x with c ≥ 0, we have M = 0 and m = − 1
41

⊤c, which recovers
exactly the additive bound given by Ravikumar and Lafferty [61] for the convex QP relaxation. For the

ℓ2 regularizer r(x) = λ
2 ‖x‖

2
2, we have M = λn

2 and m = λn
2d , thus we obtain a bound of λn

2

(

1− 1
d

)

.

For the entropy regularizer r(x) = −λH(x), we have M = 0 and m = −λn log d, thus the bound is
λn log d, which is worse than the ℓ2 bound for any d ≥ 5.

7If both f and g are convex, a better rate of O(1/k) exists [5, 7, 74]. In addition, if g is the indicator function
of a convex set X (i.e., vanilla Frank-Wolfe) and either f or X is strongly convex, a linear rate can be obtained [32,
50, 59]. Note that we use quite different machinery from all these analyses, due to the nonconvexity.

8A sufficient condition is r being continuous, as X is compact.
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Note that the bound provided by Theorem 2 is achieved from a global minimum of the regularized re-
laxation. This can be attained in some cases, e.g., when the energy is submodular or when the (convex)
regularizer is large enough to make the objective convex. In the general case, however, the algorithm is
only guaranteed to reach a stationary point, and the (theoretical) quality of such point remains unknown.
It would be interesting to investigate whether the algorithm can provide an approximation guarantee
for some classes of energies (e.g., supermodular ones), similar to some existing algorithms [11]. These
open questions are left for future work.

5 Experiments

We compare regularized Frank-Wolfe with existing methods on the semantic segmentation task, in
terms of both inference and learning performance. Two variants, namely Euclidean Frank-Wolfe
(ℓ2FW) and Entropic Frank-Wolfe (eFW) (§3.3), will be compared to the following methods: Mean
field (MF) [34, 35] (which is our baseline), nonconvex vanilla Frank-Wolfe (FW) [41] (§2.3), pro-
jected gradient descent (PGD) [39, 41], fast proximal gradient method (PGM) [9, 48], and alternating
direction method of multipliers (ADMM) [40, 41]. Convex vanilla Frank-Wolfe [21] and (entropic)
mirror descent [8, 55] were found to perform poorly in our experiments, and thus excluded from the
presentation. Other methods based on CCCP [21] or LP relaxation [1, 21] are also excluded due to
their sophisticated implementations. For all methods, we set the initial solution to x0 = softmax(−u),
following previous work [34]. Further details on implementation, running time, and memory footprint
can be found in Appendices D–E.

5.1 Experimental setup

Our segmentation model is a standard combination of a CNN and a CRF [35, 76] (Appendix E.1).
For the CNN part, we consider two strong architectures: DeepLabv3 with ResNet101 backbone [16],
and DeepLabv3+ with Xception65 backbone [17]. The CRF part is a fully-connected one [34] in
which any pair of pixels (i, j) is an edge with potential θij(s, t) = µ(s, t)k(fi, fj) ∀s, t ∈ S, where
µ : S × S → R is called label compatibility function, and k is a Gaussian kernel over image features
based on pixel coordinates and colors. The setup of our models are similar to Zheng et al. [76]. We
use the Potts compatibility function: µ(s, t) = w1[s6=t] with w = 1 for the inference experiments in
§5.2, and also for CRF initialization in the learning experiments in §5.3. For all experiments, a fully-
trained CNN is needed. We follow closely the published recipes [16, 17] for this task. We first pretrain
DeepLabv3 and DeepLabv3+ on the COCO dataset [46] and then finetune them on PASCAL VOC
(trainaug) and Cityscapes (train) to obtain similar results to previous work [16, 17] (Table 1, CNN
column). Finally, we perform experiments on two popular datasets: (augmented) PASCAL VOC [22]
and Cityscapes [19]. Further details are given in Appendix E.

5.2 Inference performance

In this section, we compare the performance of regularized Frank-Wolfe against the competing meth-
ods in terms of inference. We consider a Potts CRF on top of a CNN, which is the typical setup for
using dense CRF in post-processing. Figure 1a shows the discrete energy per inference iteration for
each method, averaged over the 1449 val images of PASCAL VOC, using DeepLabv3+. One can
observe that Frank-Wolfe variants completely outperform the other methods. In addition, regularized
Frank-Wolfe outperforms all the other methods for a large range of λ, as shown in Figure 1b.

Table 1 shows the performance on the validation sets of PASCAL VOC and Cityscapes, for a Potts
CRF with both DeepLabv3 and DeepLabv3+ as backbone. In this experiment, we run all the methods
for 10 iterations. One can observe that ℓ2FW achieved the best performance, followed by eFW.

CNN PGD PGM ADMM MF FW eFW.7 eFW.3 ℓ2FW

V
O

C DL3 81.83 82.23 82.23 82.22 82.21 82.27 82.26 82.29 82.29

DL3+ 82.89 83.36 83.37 83.38 83.45 83.43 83.45 83.48 83.50

C
IT

Y DL3 76.73 76.88 76.86 76.95 76.97 76.86 76.99 76.99 77.03

DL3+ 79.55 79.64 79.63 79.66 79.63 79.64 79.65 79.66 79.66

Table 1: Validation mIoU using a Potts CRF on top of the pre-
trained CNN models. DL means DeepLab.

We should note some inconsistency
compared to the energy results pre-
viously presented in Figure 1a. For
example, eFW achieved much lower
energy than MF, yet the mIoU gap
is marginal; also, FW accuracy is
slightly worse than MF while the en-
ergy is much better (lower). This can
be explained by the fact that the Potts
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Figure 1: Results on PASCAL VOC validation set using DeepLabv3+ and Potts dense CRF. (a) Comparison
between CRF solvers (αk↓ means αk = k/(k + 2) ∀k) shows that Frank-Wolfe variants clearly outperform
the other methods in terms of energy minimization. (b) Performance of regularized Frank-Wolfe can be greatly
affected by λ, but it can still achieve lower energies than the other methods for a large range of λ. (c) Vanilla
Frank-Wolfe completely fails to learn because of the zero-gradient issue.

model is not a perfect representation (i.e., lower energy in this model does not necessarily translate to
higher accuracy). In the next section, we will see how the methods perform when the CRF parameters
are learned from data.

5.3 Learning performance

In this section, we evaluate the performance of the methods for joint CNN-CRF end-to-end training.
The CNN is initialized with its fully-trained weights on the corresponding dataset, and the CRF is
initialized with the Potts model with random noise added. We train the model for 20 epochs with 5
CRF iterations,9 using the same poly schedule as before. As the CNN has been already fully-trained,
we set its learning rate to a small value of 0.0001. For the CRF, we tried 4 different values of initial
learning rates η0 ∈ {1.0, 0.1, 0.01, 0.001} and found that 1.0 is too high (training diverges quickly)
while 0.001 is too low (slow progress) for all methods. For the remaining candidates {0.1, 0.01}, we
perform 4 additional trainings for each method (i.e., a total of 5 runs for each configuration).

Let us summarize our findings. First, we observe that (vanilla) FW fails to learn. This is illustrated in
Figure 1c, where we show the validation accuracy per epoch on PASCAL VOC for each method: FW
did not make any progress. We tried a different optimizer (Adam [33]) and obtained similar results.
This is expected as the gradient in vanilla FW is zero almost everywhere, as previously discussed in
§3.1 (see also §C.1). Our second observation is that training is quite unstable for PGD, PGM, ADMM,
eFW.3, and ℓ2FW. In particular, η0 = 0.1 is still too high for these methods, and even with η0 = 0.01,
some of the runs produced bad results. By contrast, MF and eFW.7 are stable for both learning rates,
with 0.1 being slightly better. A possible explanation is that PGD, PGM, ADMM, and ℓ2FW all
employ a simplex projection step that is not fully differentiable (but only so almost everywhere). For
eFW.3 (which is fully differentiable), we hypothesize that the low regularization makes the problem
less “smooth”, which may also harm gradient-based training. Finally, with the above training scheme,
we observe that none of the CRF methods could improve over the CNN (but rather the opposite)
on Cityscapes. We have seen that the Potts CRF was able to achieve some marginal improvements
(Table 1), thus it is reasonable to expect even better performance with end-to-end training.

In view of the above observations, we present a simple trick to make CRF training more stable. The
idea is to replace the CRF output x∗ with 1

2 (x
∗ + x0), where we recall that the initialization x0 is the

softmax of the CNN logits. Intuitively, this adds a skip connection from the CNN to the CRF output in
the computation graph, which makes the gradient of the loss propagate directly to the CNN. We found
that this trick also slightly improves eFW.7, but has a negative effect on MF. Therefore, it is applied to
all methods except MF. Finally, as Cityscapes requires a very high number of epochs, we set this value
to 100. Also because training on Cityscapes requires a lot more computing resources, we only perform
a single run on DeepLabv3+. The results are presented in Table 2.

9While we use the same number of iterations at test time to simplify the evaluation protocol, it should be noted
that using more iterations could be beneficial. See Appendix F.3 for some results.
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CNN PGD PGM ADMM MF eFW.7 eFW.3 ℓ2FW

VOC
DL3 81.83 83.69

±0.20
83.75
±0.23

83.68
±0.06

83.69
±0.10

83.50
±0.10

83.25
±0.20

83.75
±0.13

DL3+ 82.89 84.82
±0.23

84.79
±0.20

84.83
±0.06

84.87
±0.17

84.64
±0.23

84.50
±0.16

85.14
±0.09

CITY DL3+ 79.55 79.80 79.62 79.62 79.74 79.70 79.58 79.95

Table 2: Validation mIoU under joint training. For PASCAL
VOC, we report the mean and standard deviation from 5 runs.

Again, ℓ2FW consistently achieves the
best results. Interestingly, while eFW.3

achieved similar performance to ℓ2FW
in terms of energy minimization (Fig-
ure 1a and Table 1), its performance is
worse in joint training. Compared to
Table 1, we see that joint training pro-
duced much larger improvements over
the CNNs, up to 2.25% on PASCAL VOC and 0.4% on Cityscapes.

Model VOC CITY

DeepLabv3+ [17] 87.8 82.1
DeepLabv3+ (this work) 87.6 83.5
DeepLabv3+ with ℓ2FW CRF 88.0 83.6

Table 3: Performance on the test sets. Sub-
mission URLs are given in Appendix F.1.

Performance on the test sets We select the best perform-
ing method (DeepLabv3+ with ℓ2FW CRF) for evaluation
on the test sets. For PASCAL VOC, we further train our
model on the union of the train and val subsets for 50
epochs. For Cityscapes, we further train 200 epochs on
train and train_extra, using the high-quality annotations
provided by Tao et al. [70] (for train_extra). At the 150th

epoch, we replace train_extra with val. For this fine-tuning
step, learning rates were set to 0.001 for CNN and 0.1 for CRF. For prediction, we apply test time aug-
mentation including left-right flipping and multi-scales. For reference, we train DeepLabv3+ alone
using the same recipes. Table 3 shows that we were able to closely match the performance reported
by Chen et al. [17]. Adding the ℓ2FW CRF yields an improvement of 0.4 points on PASCAL VOC.
Unfortunately we only observe a marginal improvement on Cityscapes.

5.4 Ablation studies

Trainable αk and λ It is possible to learn αk and λ from data by simply setting them to be trainable.
We carried out such an experiment with ℓ2FW and eFW but did not observe significant improvements,
though we should note that a more sophisticated training recipe (e.g., using custom learning rates for
these variables) might lead to better results. Details are provided in Appendix F.2.

Fine-grained analysis We observe that CRF improved over CNN on most of the semantic classes.
In particular, on bicycle (known to be the most challenging class of PASCAL VOC [16]), ℓ2FW and
eFW achieved improvements of over 10% absolute in mIoU. See Appendix F.3 for the details.

6 Discussion & conclusion

Why does it work? Theoretically, all the methods in §5 should reach a stationary point, so how
can one be better than another? In fact, Figure 1a only shows that Frank-Wolfe variants work better
than the other methods in the first few iterations, but not necessarily in a later stage. Indeed, the same
conclusion no longer holds after 100 iterations (see §F.4), but this long regime is not practical because it
would lead to vanishing/exploding gradients [76] and to potentially prohibitive memory consumption.
As to why Frank-Wolfe achieves lower energy in the early stage, we hypothesize that this could be due
to the discreteness of its iterates (7). With small λ, the solution by regularized Frank-Wolfe should
be close to the vanilla one, and thus also benefits from this property. It is important to note that the
benefit of regularized Frank-Wolfe does not lie in the extra (sometimes small) energy improvement
over vanilla Frank-Wolfe, but in its ability to seamlessly solve the zero-gradient issue.

How to tune λ? We found that similar curves to Figure 1b can be obtained using a small random
subset (e.g., 10 samples) of the data, which suggests a quick way of tuning λ by random subsampling.
In practice, this step takes only a few seconds, which is negligible in most training scenarios.

Limitations While one variant of regularized Frank-Wolfe (ℓ2FW) consistently achieves the best re-
sults, the difference compared to the other methods is sometimes small. In addition, the improvement
of dense CRFs over CNNs is marginal on the Cityscapes test set. Nevertheless, we hope the encourag-
ing results on PASCAL VOC could attract interest from the community in CRF research, potentially
leading to creative ways of overcoming these limitations.

Societal impact Semantic segmentation models can be used in surveillance systems, which might
raise potential privacy concerns. Furthermore, the datasets that our models were trained on are known
to present strong built-in bias [71], thus they should be used with caution.
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A Details on special cases of regularized Frank-Wolfe inference

We have seen in §3 multiple instantiations of regularized Frank-Wolfe, leading to new algorithms for
MAP inference, as well as recovering many existing ones. In this section we provide further details on
this matter.

Recall the notation n = |V| ,m = |E| , d = |S|, where V , E and S are the sets of nodes, edges, and
labels, respectively.

A.1 Algorithms based on QP relaxation with vanilla Frank-Wolfe

Nonconvex vanilla Frank-Wolfe This algorithm, previously studied by Lê-Huu and Paragios [41],
was already presented in §2.3. It consists in applying vanilla Frank-Wolfe directly to the energy (6).

Convex vanilla Frank-Wolfe This involves the convex QP relaxation of MAP inference introduced
by Ravikumar and Lafferty [61]. The idea is to add a sufficiently large vector c to the diagonal of P to

make it positive semidefinite. If x ∈ {0, 1}nd then it is easy to check that x⊤ diag(c)x = c⊤x for any

c ∈ R
nd. Therefore, the (discrete) energy can be written as

E(x) =
1

2
x⊤(2 diag(c) +P)x + (u− c)⊤x. (15)

It can be shown that the above function is convex if c is chosen as follows:

cis =
1

2

∑

j∈Ni

∑

t∈S
θij(s, t) ∀i ∈ V , s ∈ S, (16)

where Ni denotes the set of neighbors of node i. Applying vanilla Frank-Wolfe to minimizing the
above convex energy over X yields the algorithm presented in section 4 of Desmaison et al. [21].
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A.2 Algorithms based on LP relaxation with vanilla Frank-Wolfe

Let us first present the LP relaxation of MAP inference. We use the same notation leading to the energy

formulation (4), namely the indicator variables xis ∈ {0, 1}, the indicator vectors xi ∈ {0, 1}d, and

the potential vectors θθθi ∈ R
d for all nodes i ∈ V and labels s ∈ S. In addition, define for all edges

ij ∈ E and pairs of labels (s, t) ∈ S2:

• New pairwise indicator variables xijst = xisxjt ∈ {0, 1}.

• New pairwise indicator vectors xij = (xijst)s∈S,t∈S ∈ {0, 1}d
2

.

• New pairwise potential vectors θθθij = (θij(s, t))s∈S,t∈S ∈ R
d2

, which can be viewed as the
flatten version of the potential matricesΘΘΘij in (4).

Then, the energy (4) can be rewritten as a linear function:

ELP(x;θθθ) =
∑

i∈V
θθθ⊤i xi +

∑

ij∈E
θθθ⊤ijxij , (17)

where by slight abuse of notation, we let x and θθθ again denote the vectors of all variables and parame-
ters, respectively. Note that x and θθθ are now (nd+md2)-dimensional vectors and not nd-dimensional
as in (4). The LP relaxation consists in minimizing ELP over the following local polytope [72]:

XLP =




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
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∣
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∣

∣
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∣
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x ≥ 0,

1⊤xi = 1 ∀i ∈ V ,
∑

t∈S
xijst = xis ∀ij ∈ E , ∀s ∈ S,

∑

s∈S
xijst = xjt ∀ij ∈ E , ∀t ∈ S.
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
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
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














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. (18)

The last two constraints in the above (called local consistency) can be written as Ax = 0 for some
(2md)× (nd+md2) matrix A. We can thus rewrite the LP relaxation compactly as:

minELP(x;θθθ) , θθθ⊤x, s.t. x ∈ XLP ,

{

x ∈ R
nd+md2

+ : 1⊤xi = 1 ∀i ∈ V ,Ax = 0
}

. (19)

As presented in §3.4, Sontag and Jaakkola, Meshi et al., Tang et al. [67, 52, 69] apply vanilla Frank-
Wolfe to minimize a regularized LP energy:

min
x∈XLP

ELP(x;θθθ) + r(x) (20)

for some regularizer r. These works differ in the choice of r.

Local-consistency regularization Choosing r(x) = λ
2 ‖Ax‖22 we obtain the algorithm presented

by Meshi et al. [52] (which corresponds to the primal algorithm in the top-right cell of their Table 1).

Bethe and TRW entropic regularization Sontag and Jaakkola [67] also apply vanilla Frank-Wolfe
to a regularized LP energy (corresponding to Step 3 in their Algorithm 1; note that we consider only
the first outer iteration of their algorithm). They consider regularizers of the form

r(x) = −H̃(x), (21)

where H̃(x) is some approximation to the entropy H(x) of the distribution over x.

Define the singleton entropy

H(xi) = −
∑

s∈S
xis log xis ∀i ∈ V , (22)

and the pairwise mutual information

I(xij) =
∑

s∈S

∑

t∈S
xijst log

xijst

xisxjt

= −H(xij) +H(xi) +H(xj) ∀ij ∈ E . (23)
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The so-called Bethe approximation is defined as:

H̃Bethe(x) =
∑

i∈V
H(xi)−

∑

ij∈E
I(xij). (24)

The second approximation considered by [67] is called tree-reweighted (TRW) approximation. To
achieve this, we decompose the the graph into a convex combination of spanning trees according to
some distribution (over the trees), and let ρij be the so-called edge appearance probability, which is
computed as the number of spanning trees containing the edge ij in the current decomposition, divided
by the total number of all possible spanning trees containing ij (in the entire distribution). The TRW
approximation is then given by

H̃TRW(x) =
∑

i∈V
H(xi)−

∑

ij∈E
ρijI(xij). (25)

ρρρ-reweighted entropic regularization Tang et al. [69] consider a more general term than the previ-
ous ones, based on the following approximation to z log z for z ∈ [0, 1], parameterized by η ∈ [0, 1]:

Hη(z) =

{

−z log z if z ∈ [η, 1],

−η log η − (1 + log η)(z − η)− (z−η)2

2η if z ∈ [0, η].
(26)

Define a similar version for vectors:

Hη(z) =

p
∑

i=1

Hη(zi) ∀z ∈ R
p. (27)

Their ρρρ-reweighted approximation to the entropy H(x) is given by:

H̃ρ
η (x) =

∑

i∈V
Hη(xi)−

∑

ij∈E
ρij [−Hη(xij) +Hη(xi) +Hη(xj)] (28)

Tang et al. [69] apply vanilla Frank-Wolfe to ELP + r where r = −H̃ρ
η . Note that their work consists

in learning parameters of graphical models through maximum likelihood estimation. Here we only
consider the inference part presented in their Section 3.2, which is used as a subroutine for learning.

A.3 Algorithms based on the concave-convex procedure

In the dense CRF model proposed by Krähenbühl and Koltun [34], the pairwise potentials consist of
weighted sums of Gaussian kernels:

θij(s, t) =

C
∑

c=1

µ(c)(s, t)k(c)(fi, fj) ∀i, j ∈ V , ∀s, t ∈ S, (29)

where C is the number of components, µ(c) : S × S → R are the so-called label compatibility

functions, and k(c) are Gaussian kernels over some image features (fi, fj) (§E.1 presents a concrete
example implemented for our experiments).

Define kernel matrices K(c) ∈ R
n×n with elements K

(c)
ij = k(fi, fj) and compatibility matrices

M(c) ∈ R
d×d with elements M

(c)
st = µ(c)(s, t). Let

M =
C
∑

c=1

M(c). (30)

If we assume that K(c) ∈ R
n×n has unit diagonal: K

(c)
ii = 1 ∀i, ∀c, then our pairwise potential matrix

P can be written as

P =

C
∑

c=1

(

K(c) − In

)

⊗M(c) = −In ⊗M +

C
∑

c=1

K(c) ⊗M(c), (31)

where ⊗ denotes the Kronecker product, and In is the n× n identity matrix.

In the following, the concave-convex procedure (CCCP) [75] is applied to minimizing f(x) + g(x)
where f is concave and g is convex. (We integrate the constraint set X into g using its indicator
function δX , for consistency with our presentation of regularized Frank-Wolfe.)
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Convergent mean field Krähenbühl and Koltun [35] proposed (in their section 3.1) to minimizing a
regularized energy E(x) + x⊤ logx (entropic regularizer) by applying CCCP to:

f(x) =
1

2
x⊤(P+ In ⊗M)x+ u⊤x, (32)

g(x) = −1

2
x⊤(In ⊗M)x+ x⊤ logx+ δX (x). (33)

Convergent mean field using concave approximation Krähenbühl and Koltun [35] proposed (in
their section 3.2) a more efficient algorithm using:

f(x) =
1

2
x⊤(P+ In ⊗M)x+ u⊤x, (34)

g(x) = x⊤ logx+ δX (x) (35)

CCCP for QP relaxation 1 Desmaison et al. [21] proposed (in their section 5.1) the following ap-
plication of CCCP:

f(x) = −x⊤ diag(c)x, (36)

g(x) =
1

2
x⊤(2 diag(c) +P)x+ u⊤x+ δX (x), (37)

where c is defined by (16).

CCCP for QP relaxation 2 Inspired by Krähenbühl and Koltun [35], Desmaison et al. [21] also
proposed (in their section 5.2) another more efficient variant:

f(x) =
1

2
x⊤(P+ In ⊗M)x, (38)

g(x) = −1

2
x⊤(In ⊗M)x+ u⊤x+ δX (x). (39)

A.4 Summary of special cases

We provide in Table 4 a summary of special cases discussed in this section as well as in §3.3 and
§3.4. There we show how these algorithms can be obtained from regularized Frank-Wolfe by suitably
choosing f, g and r in Algorithm 1. Recall that f + g = E + r + δX .

B Detailed convergence analysis

In this section, let ‖·‖ denote the ℓ2 norm. The following lemma is useful for the proofs.

Lemma 2. If f and g satisfy Assumption 1 and 2, then

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ Lf

2
‖y − x‖2 ∀x,y ∈ dom f, (40)

g(y) ≥ g(x) + 〈d,y − x〉+ σg

2
‖y − x‖2 ∀x,y ∈ dom g, ∀d ∈ ∂g(x). (41)

Proof. For a convex function h, we have

h(y) ≥ h(x) + 〈d,y − x〉 ∀x,y, ∀d ∈ ∂h(x). (42)

Applying the above inequality with, respectively, h(x) = −f(x) + Lf

2 ‖x‖
2
2 and h(x) = g(x) −

σg

2 ‖x‖
2
2, we obtain (40) and (41). (Note that for the second case, h is convex and thus ∂g(x) =

∂h(x) + σgx.)

B.1 Proof of Lemma 1

First we show that

S(x) ≥ σg

2
‖x− px‖2 ∀x ∈ dom f. (43)
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Algorithm f(x) g(x)− δX (x)

Parallel mean field
Krähenbühl and Koltun [34]

E(x) x⊤ logx

Convergent mean field 1
§3.1 in Krähenbühl and Koltun [35]

E(x) + 1
2x

⊤ (In ⊗M)x − 1
2x

⊤ (In ⊗M)x+ x⊤ logx

Convergent mean field 2
§3.2 in Krähenbühl and Koltun [35] E(x) + 1

2x
⊤ (In ⊗M)x x⊤ logx

Nonconvex Frank-Wolfe
Lê-Huu and Paragios [41]

E(x) 0

Convex Frank-Wolfe
§4 in Desmaison et al. [21]

E(x)− c⊤x+ x⊤ diag(c)x 0

CCCP for QP relaxation 1
§5.1 in Desmaison et al. [21]

−x⊤ diag(c)x E(x) + x⊤ diag(c)x

CCCP for QP relaxation 2
§5.2 in Desmaison et al. [21]

E(x) + 1
2x

⊤ (In ⊗M)x− u⊤x − 1
2x

⊤(In ⊗M)x+ u⊤x

LP local-consistency Frank-Wolfe
Meshi et al. [52]

ELP(x) +
λ
2 ‖Ax‖22 0

LP Bethe Frank-Wolfe
Sontag and Jaakkola [67]

ELP(x) + H̃Bethe(x) 0

LP TRW Frank-Wolfe
Sontag and Jaakkola [67]

ELP(x) + H̃TRW(x) 0

LP ρρρ-reweighted Frank-Wolfe
Tang et al. [69]

ELP(x) + H̃ρ
η (x) 0

Euclidean Frank-Wolfe
(This work)

E(x) λ
2 ‖x‖

2
2

Entropic Frank-Wolfe
(This work)

E(x) λx⊤ logx

Lasso Frank-Wolfe
(This work, not implemented)

E(x) λ ‖x‖1

Table 4: Summary of special cases of regularized Frank-Wolfe.

Notice that

px ∈ argmin
p

{〈∇f(x),p〉 + g(p)} ⇐⇒ −∇f(x) ∈ ∂g(px). (44)

Hence, applying (41) we obtain

g(x) ≥ g(px) + 〈−∇f(x),x− px〉+
σg

2
‖x− px‖2 , (45)

which is precisely (43).

To complete the proof, we need to show that S(x∗) = 0 if and only if x∗ is a stationary point of (9),
i.e., −∇f(x∗) ∈ ∂g(x∗). The following is due to Beck [7]. Notice that

S(x) = max
p
{〈∇f(x),x − p〉+ g(x)− g(p)} , (46)

we have

S(x∗) = 0 ⇐⇒ S(x∗) ≤ 0 ⇐⇒ 〈∇f(x∗),x∗ − p〉+ g(x∗)− g(p) ≤ 0 ∀p (47)

⇐⇒ g(p) ≥ g(x∗) + 〈−∇f(x∗),p− x∗〉 ∀p (48)

⇐⇒ −∇f(x∗) ∈ ∂g(x∗). (49)

The proof is completed.
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B.2 Proof of Theorem 1

We need an additional lemma.

Lemma 3. For any x ∈ dom f and any α ∈ [0, 1] we have

F (x+ α(px − x))− F (x) ≤ −αS(x) +K(α) ‖px − x‖2 , (50)

where K(α) = 1
2

[

(Lf + σg)α
2 − σgα

]

.

Proof. On one hand, from (40) we have

f(x+ α(px − x)) ≤ f(x) + α 〈∇f(x),px − x〉+ Lfα
2

2
‖px − x‖2 . (51)

On the other hand, from the σg-strong-convexity of g:

g(x+ α(px − x)) ≤ (1− α)g(x) + αg(px)−
σgα(1− α)

2
‖px − x‖2 . (52)

Summing up the above two inequalities, we obtain (50).

Let Sk = S(xk), rk =
∥

∥pk − xk
∥

∥

2
, and Fk = F (xk). Applying (50) we have

Fk − Fk+1 ≥ αkSk −K(αk)rk. (53)

Therefore,

∆0 = F0 − F ∗ ≥ F0 − Fk+1 =

k
∑

i=0

(Fi − Fi+1) ≥ S

k
∑

i=0

αi −
k
∑

i=0

riK(αi), (54)

which implies

S ≤ ∆0 +
∑k

i=0 riK(αi)
∑k

i=0 αi

. (55)

This is an important inequality that will help us to obtain the convergence results for the weak stepsize
schemes such as constant and non-summable ones.

For the adaptive (and line-search) stepsizes, the following observations will be useful. Notice that the
RHS of (50) can be written as 1

2at
2 − bt where

a = (Lf + σg) ‖px − x‖2 , b = S(x) +
σg

2
‖px − x‖2 .

Therefore:

• If Lf = σg = 0 then the RHS is just −tS(x).
• If Lf = 0 then the RHS is −tS(x)− σg

2 t(1− t) ‖px − x‖2 ≤ −tS(x).
• If Lf + σg > 0 then the minimum of the RHS is

− b2

2a
= − ‖px − x‖2

2(Lf + σg)

(

S(x)

‖px − x‖2
+

σg

2

)2

,

achieved at

t∗ =
b

a
=

1

Lf + σg

(

S(x)

‖px − x‖2
+

σg

2

)

.

The adaptive stepsize (14) are defined for the case Lf + σg > 0 is thus:

αk = min {1, α∗
k} , where α∗

k =
1

Lf + σg

(

Sk

rk
+

σg

2

)

. (56)
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Notice that the RHS of (53) is a quadratic function of αk with critical point α∗
k. If α∗

k ≤ 1, or

equivalently
σg

2 + Lf ≥ Sk

rk
, then αk = α∗

k and thus (53) becomes

Fk − Fk+1 ≥ α∗
kSk −K(α∗

k)rk =
rk

2(Lf + σg)

(

Sk

rk
+

σg

2

)2

. (57)

If α∗
k > 1, or equivalently

σg

2 + Lf < Sk

rk
, then αk = 1 and thus (53) becomes

Fk − Fk+1 ≥ Sk −K(1)rk = Sk −
Lf

2
rk. (58)

For simplicity and clarity, we will consider separately the two cases: g is strongly convex (σg > 0) or

simply convex (σg = 0). Recall that Ω is the (finite) diameter of dom g, and thus we have rk ≤ Ω2 ∀k,
a fact that we will be using repeatedly in the sequel. Let S = min0≤i≤k Si.

B.2.1 Convex g

In this section we consider the case where g is convex but not strongly convex, i.e., σg = 0. Inequal-
ity (55) becomes

S ≤ ∆0 +
Lf

2

∑k

i=0 riα
2
i

∑k

i=0 αi

. (59)

Constant stepsize Consider αk = α > 0 ∀k. From rk ≤ Ω2 and (59) we obtain

S ≤ ∆0

(k + 1)α
+

LfΩ
2α

2
. (60)

The right-hand side converges to 1
2LfΩ

2α as k → ∞, i.e., the lower-bound S on the conditional

gradient norm converges to within 1
2LfΩ

2α. It is easy to deduce from the last inequality that S ≤
LfΩ

2α within k ≤ 2∆0

LfΩ2α2 steps. We conclude that the algorithm converges to an approximate

stationary point for the constant stepsize.

Constant step length For a constant step length:
∥

∥xk+1 − xk
∥

∥ = α. Recall that xk+1 = xk +

αk(p
k − xk), the corresponding stepsize is thus αk = α

‖pk−xk‖ = α√
rk

. Inequality (59) becomes

S ≤ ∆0 +
Lf

2 (k + 1)α2

α
∑k

i=0
1√
rk

≤ ∆0 +
Lf

2 (k + 1)α2

αk+1
Ω

=
∆0Ω

(k + 1)α
+

LfΩα

2
. (61)

Therefore, S converges to within
LfΩα

2 , and S ≤ LfΩα within k ≤ 2∆0

Lfα2 steps. We conclude that the

algorithm converges to an approximate stationary point for the stepsizes with constant step length.

Non-summable but square-summable stepsizes Assume that the stepsizes αk satisfy
+∞
∑

k=0

αk =∞,

+∞
∑

k=0

α2
k <∞. (62)

A typical example is αk = α
k+β

, where α > 0 and β ≥ 0. This includes the common Frank-Wolfe

stepsize αk = 2
k+2 . From rk ≤ Ω2 and (59) we obtain

S ≤ ∆0 +
LfΩ

2

2

∑k

i=0 α
2
i

∑k

i=0 αi

, (63)

which clearly converges to 0 as k → ∞. Therefore, the algorithm is guaranteed to converge to a
stationary point in this case.

Diminishing (and non-summable) stepsizes Assume that the stepsizes αk satisfy
+∞
∑

k=0

αk =∞, lim
k→∞

αk = 0. (64)

A typical example is αk = α√
k

, where α > 0. Notice that for any ǫ > 0, we have α2
i < ǫαi with i

large enough, it is straightforward to show that
∑

k
i=0 α2

i∑
k
i=0 αi

→ 0 as k → ∞, and thus (63) implies that

S → 0 as well. We conclude that the algorithm is guaranteed to converge to a stationary point.
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Adaptive stepsizes This result was obtained previously by Beck [7]. These stepsizes are computed
according to (56), which can be simplified as the following for σg = 0:

αk = min {1, α∗
k} , where α∗

k =
Sk

Lfrk
. (65)

Then, if α∗
k ≤ 1, (57) yields

Fk − Fk+1 ≥
S2
k

2Lfrk
≥ S2

k

2LfΩ2
. (66)

If α∗
k > 1 then (58) and Lfrk < Sk yield

Fk − Fk+1 ≥ Sk −
Lf

2
rk ≥

Sk

2
. (67)

Combining the two cases, we obtain

Fk − Fk+1 ≥
Sk

2
min

{

1,
Sk

LfΩ2

}

≥ S

2
min

{

1,
S

LfΩ2

}

. (68)

Therefore,

∆0 = F0 − F ∗ ≥ F0 − Fk+1 =

k
∑

i=0

(Fi − Fi+1) ≥ (k + 1)
S

2
min

{

1,
S

LfΩ2

}

, (69)

which yields

S ≤ max

{

2∆0

k + 1
,

√

2LfΩ2∆0√
k + 1

}

. (70)

Therefore, the algorithm is guaranteed to converge to a stationary point, and the rate of convergence

convergence is at least O(1/
√
k).

B.2.2 Strongly-convex g

In this section we consider the case where g is strongly convex with parameter σg > 0.

Recall from (53) and Lemma 3 that

Fk − Fk+1 ≥ αkSk −K(αk)rk ∀k ≥ 0, where K(α) =
1

2
α [(Lf + σg)α− σg ] . (71)

Thus if αk ≤ σg

Lf+σg
we have K(αk) ≤ 0 and (71) yields

Fk − Fk+1 ≥ αkSk. (72)

Consider now the case αk >
σg

Lf+σg
for which K(αk) > 0. From (43) we have rk ≤ 2Sk

σg
, and thus

(71) yields

Fk − Fk+1 ≥ αkSk −K(αk)
2Sk

σg

=

(

αk −
2K(αk)

σg

)

Sk = αk

(

2− Lf + σg

σg

αk

)

Sk. (73)

Combining the two cases, we obtain

Fk − Fk+1 ≥ αk min

(

1, 2− Lf + σg

σg

αk

)

Sk. (74)

If αk ≥ 2σg

Lf+σg
then the RHS of (74) is non-positive, thus this inequality is not helpful. In this case,

we can obtain another inequality from (71), noticing that rk ≤ Ω2 ∀k and K(αk) > 0:

Fk − Fk+1 ≥ αkSk −K(αk)Ω
2 (75)
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Constant stepsize Assume that αk = α ∀k ≥ 0. If 0 < α <
2σg

Lf+σg
then (74) yields

Fk − Fk+1 ≥ αmin

(

1, 2− Lf + σg

σg

α

)

S ∀k ≥ 0. (76)

Hence

∆0 ≥ F0 − Fk+1 =

k
∑

i=0

(Fi − Fi+1) ≥ (k + 1)αmin

(

1, 2− Lf + σg

σg

α

)

S. (77)

We obtain

S ≤ ∆0

αmin
(

1, 2− Lf+σg

σg
α
)

(k + 1)
∀α <

2σg

Lf + σg

. (78)

We conclude that the algorithm is guaranteed to converge to a stationary point with rate of convergence

of (at least) O(1/k) for any 0 < α <
2σg

Lf+σg
.

For the remaining case α ≥ 2σg

Lf+σg
, we will derive an upper bound for S. Applying (75) we obtain

∆0 ≥
k
∑

i=0

(Fi − Fi+1) ≥ α

k
∑

i=0

Si − (k + 1)K(α)Ω2 ≥ (k + 1)αS − (k + 1)K(α)Ω2, (79)

which yields

S ≤ ∆0

α(k + 1)
+

K(α)Ω2

α
=

∆0

α(k + 1)
+

1

2
[(Lf + σg)α− σg] Ω

2. (80)

Therefore, for α ≥ 2σg

Lf+σg
the algorithm converges to an approximate stationary point at which the

conditional gradient norm is bounded above by 1
2 [(Lf + σg)α− σg] Ω

2.

Constant step length Consider the stepsize αk = α
‖pk−xk‖ = α√

rk
for which

∥

∥xk+1 − xk
∥

∥ = α.

Inequality (71) becomes

Fk − Fk+1 ≥
α√
rk

Sk −K

(

α√
rk

)

rk (81)

=
α√
rk

Sk −
1

2

[

(Lf + σg)
α2

rk
− σg

α√
rk

]

rk (82)

=
α√
rk

Sk +
σgα
√
rk

2
− 1

2
(Lf + σg)α

2 (83)

≥ 2

√

α√
rk

Sk

σgα
√
rk

2
− 1

2
(Lf + σg)α

2 (84)

= α
√

2σgSk −
1

2
(Lf + σg)α

2. (85)

It follows that

∆0 ≥ (k + 1)α
√

2σgS −
k + 1

2
(Lf + σg)α

2 (86)

=⇒
√
S ≤ ∆0

α
√

2σg(k + 1)
+

(Lf + σg)α

2
√

2σg

. (87)

For this stepsize scheme, the algorithm converges to an approximate stationary point, within
(Lf+σg)

2α2

8σg
. One can observe that, even though the strong convexity of g still cannot guarantee con-

vergence to a stationary point, it helps improve the bound as well as the rate of convergence from (61).
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Diminishing (and non-summable) stepsizes Assume that the stepsizes αk satisfy

+∞
∑

k=0

αk =∞, lim
k→∞

αk = 0. (88)

This scheme also includes the non-summable but square-summable one. Since limk→∞ αk = 0, there
exists an integer k(ω) such that αk ≤ ω =

σg

Lf+σg
∀k ≥ k(ω). Now applying (72)

∆k(ω) ≥ Fk(ω) − Fk+1 =

k
∑

i=k(ω)

(Fi − Fi+1) ≥
k
∑

i=k(ω)

αiSi ≥





k
∑

i=k(ω)

αi



S, (89)

which yields

S ≤ ∆k(ω)
∑k

i=k(ω) αi

. (90)

Since (αk) is non-summable, the algorithm converges to a stationary point. Compared to the non-
strongly-convex case, we observe that the assumption that dom g is compact can be relaxed (its diam-
eter Ω is not used in the proof).

Adaptive stepsizes Recall that the stepsizes in this scheme are given by (56) as

αk = min {1, α∗
k} , where α∗

k =
1

Lf + σg

(

Sk

rk
+

σg

2

)

. (91)

If α∗
k ≤ 1, from (57) and the inequality (a+ b)2 ≥ 4ab, we obtain

Fk − Fk+1 ≥
rk

2(Lf + σg)
4
Sk

rk

σg

2
=

σgSk

Lf + σg

. (92)

If α∗
k > 1, which is rk < Sk

σg
2 +Lf

, then (58) yields

Fk − Fk+1 ≥ Sk −
Lf

2

Sk
σg

2 + Lf

=
σg + Lf

σg + 2Lf

Sk ≥
σg

σg + Lf

Sk. (93)

Therefore, we always have Fk − Fk+1 ≥ ωSk where ω =
σg

σg+Lf
. It then follows that

∆0 ≥
k
∑

i=0

(Fi − Fi+1) ≥
k
∑

i=0

ωSk ≥ (k + 1)ωS =⇒ S ≤ ∆0

ω(k + 1)
. (94)

Finally, the line search scheme is guaranteed to achieve the best decrease in the objective, thus the
inequality Fk − Fk+1 ≥ ωSk also holds and we obtain the same results for this scheme.

B.2.3 Concave f

The results for this case can be obtained in a straightforward manner by setting Lf = 0 in the “convex
g” case.

B.2.4 Summary of convergence results

We summarize the results in Table 5.

B.2.5 Convergence of S(xk)

To complete the proof of Theorem 1, we need to show that for the non-highlighted cases of its table
(page 6), we have limk→∞ S(xk) = 0 and any limit point of the sequence (xk)k≥0 is a stationary point
of (9). Indeed, for these cases, (Fk)k≥0 is a decreasing sequence because Fk−Fk+1 is bounded below
by a non-negative quantity δk (according to Table 5 presented in the previous section). Therefore, Fk

is convergent as it is bounded below by F ∗. Consequently Fk − Fk+1 → 0, which implies δk → 0
and thus Sk → 0 as well for the considered cases (see Table 5). The results follow in a straightforward
manner.
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stepsize decrease lower bound δk optimality upper bound Bk

(Fk − Fk+1 ≥ δk) (min0≤i≤k Si ≤ Bk)

convex g

αk = α > 0 αSk − LfΩ
2α2

2
∆0

(k+1)α +
LfΩ

2α

2

αk = α
‖pk−xk‖

α
ΩSk − Lfα

2

2
∆0Ω

(k+1)α +
LfΩα

2
∑+∞

k=0 αk =∞
limk→∞ αk = 0

αkSk − LfΩ
2α2

k

2
∆0∑
k
i=0 αi

+
LfΩ

2

2

∑k
i=0 α2

i∑
k
i=0 αi

adaptive or
line search (14)

1
2 min

(

Sk,
S2
k

LfΩ2

)

max

(

2∆0

k+1 ,

√
2LfΩ2∆0√

k+1

)

strongly-convex g

αk = α < 2ω αmin
(

1, 2− α
ω

)

Sk
∆0

αmin(1,2−α
ω )(k+1)

αk = α ≥ 2ω αSk −K(α)Ω2 ∆0

α(k+1) +
K(α)
α

Ω2

αk = α
‖pk−xk‖ α

√

2σgSk − 1
2 (Lf + σg)α

2
(

∆0

α
√

2σg(k+1)
+

(Lf+σg)α

2
√

2σg

)2

∑+∞
k=0 αk =∞

limk→∞ αk = 0
αk min

(

1, 2− αk

ω

)

Sk
∆k(ω)∑
k
i=k(ω) αi

adaptive or
line search (14)

ωSk
∆0

ω(k+1)

concave f

αk = α > 0 αSk
∆0

(k+1)α

αk = α
‖pk−xk‖

α
ΩSk

∆0Ω
(k+1)α

∑+∞
k=0 αk =∞ αkSk

∆0∑
k
i=0 αi

adaptive or
line search (14)

1
2Sk

2∆0

k+1

Table 5: Summary of convergence analysis of the generalized Frank-Wolfe algorithm. Recall that ω =
σg

Lf+σg
.

Whenever a result does not involve Ω, the assumption that dom g being compact can be relaxed.

C Proofs of other theoretical results

C.1 Vanilla Frank-Wolfe fails to learn: the zero-gradient issue

We claimed in §3.1 that vanilla Frank-Wolfe (7) is problematic for learning with SGD because its
iterates are piecewise-constant and thus their gradients are zero almost everywhere (more precisely the
gradient is undefined on the boundaries while being zero everywhere else). In this section, we present
a theoretical justification for this claim.

It suffices to show that p∗ = argminp∈X 〈c,p〉 is piecewise-constant with respect to c. Let ∆d

denote the simplex
{

z ∈ R
d | 1⊤z = 1, z ≥ 0

}

. Clearly, the set X (defined by (5)) can be written as
{

x ∈ R
nd | xi ∈ ∆d ∀i ∈ V

}

, and thus the above minimization problem can be reduced to solving the
following problem for each i ∈ V independently:

p∗
i ∈ argmin

pi∈∆d

〈ci,pi〉 . (95)

For notational convenience, consider the following problem with a constant vector b =
(b1, b2, . . . , bd) ∈ R

d:
z∗ ∈ argmin

z∈∆d

〈b, z〉 . (96)

Let s∗ be the index of the minimum element of b, i.e., s∗ = argmins bs. Let es ∈ {0, 1}d denote the
one-hot vector where the sth element is one. We have:

〈b, z〉 =
d
∑

s=1

bszs ≥
d
∑

s=1

bs∗zs = bs∗
d
∑

s=1

zs = bs∗ = 〈b, es∗〉 ∀z ∈ ∆d. (97)

Therefore, es∗ is an optimal solution to (96). It is straightforward that the index of the minimum
element of a vector is piecewise constant, thus es∗ is also piecewise constant (as a function of b).
Therefore, es∗ is not continuous (thus non-differentiable) on the boundaries, while in the constant
regions, its gradient is zero.

Remark. We can deduce that the iteration complexity of vanilla Frank-Wolfe is O(nd).
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C.2 Proof of the relaxation tightness (Theorem 2)

We give a proof of Theorem 2 in §4.2. Recall that we have to prove E∗ ≤ E(x̄∗
r) ≤ E∗+M −m+C,

where

C =

{√

n
(

1− 1
d

)

(‖u‖2 +
√
n ‖P‖2) for nearest rounding

0 for BCD rounding.
(98)

Let x∗ be such that E(x∗) = E∗ and consider first the BCD rounding scheme. As this scheme is
guaranteed to not increase the energy, we have

E(x̄∗
r) ≤ E(x∗

r) = Er(x
∗
r)− r(x∗

r) ≤ Er(x
∗)− r(x∗

r) = E(x∗) + r(x∗)− r(x∗
r) ≤ E∗ +M −m.

It remains to prove the result for the nearest rounding scheme. In this scheme, the discrete energy
may increase (or decrease), but it can be shown that the variation is bounded by the given constant:
|E(x̄∗

r)− E(x∗
r)| ≤ C. Then, the rest of the proof is similar to the BCD case. This bounding inequality

is proved as follows.

Suppose that we obtain a discrete solution y ∈ X ∩{0, 1}nd from some x ∈ X using nearest rounding.
We will prove that

|E(x) − E(y)| ≤ C, (99)

where

C =

√

n

(

1− 1

d

)

(

‖u‖2 +
√
n ‖P‖2

)

. (100)

Lemma 4. For any z ∈ ∆d (see §C.1 for notation) and its rounded vector v ∈ ∆d ∩ {0, 1}d, i.e.,
vi = 1 if i = argmax1≤j≤d vj and vj = 0 ∀j 6= i, we have

‖z− v‖22 ≤ 1− 1

d
. (101)

Proof. Without loss of generality, assume that z1 is the maximum element of z. Then, we have v1 = 1
and vj = 0 ∀j > 1.

‖z− v‖22 =
d
∑

i=1

(zi − vi)
2 = (z1 − 1)2 +

d
∑

i=1

z2i = S2 + z22 + · · ·+ z2d, (102)

where S = z2 + · · ·+ zd. We will make use of the following trivial inequality:

zi + S ≤ 1 ∀i ≥ 2. (103)

On one hand, summing the d− 1 inequalities (103) (for i = 2, . . . , d) we obtain

S + (d− 1)S ≤ d− 1 =⇒ S ≤ 1− 1

d
. (104)

On the other hand, multiplying (103) with zi and summing up the obtained d− 1 inequalities we get

d
∑

i=2

z2i + S2 ≤ S (105)

Finally, from (102), (104), and (105) we get (101).

Back to (99). Applying (101) we have

‖x− y‖22 =
n
∑

i=1

‖xi − yi‖22 ≤ n

(

1− 1

d

)

. (106)

On the other hand

‖x+ y‖22 =

n
∑

i=1

‖xi + yi‖22 ≤
n
∑

i=1

[

1⊤(xi + yi)
]2

= 4n. (107)
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Applying the two above inequalities, together with the triangle and Cauchy-Schwarz inequalities we
have:

|E(x) − E(y)| =
∣

∣

∣

∣

u⊤(x− y) +
1

2
x⊤Px− 1

2
y⊤Py

∣

∣

∣

∣

≤
∣

∣u⊤(x− y)
∣

∣+
1

2

∣

∣x⊤Px− y⊤Py
∣

∣

=
∣

∣u⊤(x− y)
∣

∣+
1

2

∣

∣(x− y)⊤P(x+ y)
∣

∣

≤ ‖u‖2 ‖x− y‖2 +
1

2
‖x− y‖2 ‖P‖2 ‖x+ y‖2

≤ ‖u‖2

√

n

(

1− 1

d

)

+
1

2

√

n

(

1− 1

d

)

‖P‖2 2
√
n

= C.

This completes the proof.

D Implementation details of all methods

We present the implementation details for all the methods presented in the experiments (§5). Recall
that our problem of interest is

min
x∈X

E(x) ,
1

2
x⊤Px+ u⊤x,

and that the same initialization x0 = softmax(−u) is used for all methods.

High-dimensional filtering for gradient computation For all methods, we need to compute the
energy gradient∇E(x) = Px+ u at each iteration, where the evaluation of Px is an expensive oper-
ation because the graph is fully-connected (i.e., P is dense). Fortunately, since the pairwise potentials
are Gaussian, this multiplication can be performed efficiently (and approximately) in O(nd) time us-
ing high-dimensional filtering, which is the key idea behind the original dense CRFs paper [34]. We
refer to this reference for more details. Our code is based on the efficient GPU implementation of
Monteiro et al. [54].10

D.1 Euclidean Frank-Wolfe (ℓ2FW)

We give the details for the main update (11) of Euclidean Frank-Wolfe as presented in §3.3. This step
follows from

∀k ≥ 0 : pk = argmin
p∈X

{

〈

Pxk + u,p
〉

+
λ

2
‖p‖22

}

(108)

= argmin
p∈X

{

λ

2

∥

∥

∥

∥

p+
1

λ
(Pxk + u)

∥

∥

∥

∥

2
}

(109)

= ΠX

(

− 1

λ
(Pxk + u)

)

. (110)

Recall that ΠX (v) denotes the projection of a vector v onto the set X . Recall also from (5) that X =
{

x ∈ R
nd : x ≥ 0,1⊤xi = 1 ∀i ∈ V

}

, thus the projection on X clearly reduces to n independent

projections onto the probability simplex ∆d =
{

z ∈ R
d : 1⊤z = 1, z ≥ 0

}

for each i ∈ V . Projection
onto the simplex is a rather well studied problem in the literature [18], and we present below the
solution (that also shows how we implemented this operation).

Lemma 5. For a given vector c ∈ R
d, the optimal solution z∗ to

min
1⊤z=1,z≥0

‖z− c‖2 (111)

10https://github.com/MiguelMonteiro/permutohedral_lattice
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is given as follows. Sort c in decreasing order to obtain a vector a = (a1, a2, . . . , ad) (i.e., a1 ≥ a2 ≥
· · · ≥ ad) and let

γk =
1

k
(a1 + a2 + · · ·+ ak − 1), k = 1, 2, . . . , d. (112)

Let k∗ be the largest k such that ak > γk, then the optimal solution is given by

z∗ = max(c− γk∗ , 0). (113)

In the above, the “max” and “−” operations are understood to be element-wise.

Remark. If we use an O(d log d) sorting algorithm, then we see that the per-iteration complexity
of Euclidean Frank-Wolfe is O(nd log d). It should be noted, however, that highly-efficient simplex-
projection algorithms exist and have O(d) complexity in practice [18, Table 1], yielding O(nd) com-
plexity, which is the same as in vanilla Frank-Wolfe (see §C.1).

D.2 Entropic Frank-Wolfe (eFW)

We give the details for the main update (12) of Entropic Frank-Wolfe as presented in §3.3. We need to
show that

pk = argmin
p∈X

{〈

Pxk + u,p
〉

− λH(p)
}

= softmax

(

− 1

λ
(Pxk + u)

)

∀k ≥ 0, (114)

where H(x) = −∑i∈V
∑

s∈S xis log xis. Again, the above reduces to n independent subproblems
over each i ∈ V to which the solutions are given by the following lemma.

Lemma 6. For a given vector c ∈ R
d, the optimal solution z∗ to

min
1⊤z=1,z≥0

{

〈c, z〉 +
d
∑

s=1

zs log zs

}

(115)

is z∗ = softmax(−c).

Proof. The Lagrangian of the above problem is given by

L(z,µµµ, ν) = 〈c, z〉+
d
∑

s=1

zs log zs +µµµ⊤(−z) + ν(1⊤z− 1) (116)

= −ν +

d
∑

s=1

(cszs + zs log zs − µszs + νzs) , (117)

where µµµ = (µ1, µ2, . . . , µd) ≥ 0 and ν ∈ R are the Lagrange multipliers.

Observe that the given problem is convex and the corresponding Slater’s constraint qualification
holds (i.e., there exists z ∈ R

d such that 1⊤z = 1 and z > 0), it suffices to solve the following
Karush–Kuhn–Tucker (KKT) system to obtain the optimal solution:

∂L(z,µµµ, ν)

∂zs
= cs + log zs + 1− µs + ν = 0 ∀1 ≤ s ≤ d, (118)

1⊤z = 1, (119)

z ≥ 0, (120)

µµµ ≥ 0, (121)

µszs = 0 ∀1 ≤ s ≤ d. (122)

The first equation implies zs > 0 ∀s, and thus in combination with the last, we obtain µs = 0 ∀s.
Therefore, the first equation becomes

zs = exp(−1− ν) exp(−cs) ∀s. (123)

Summing up this result for all s, and taking into account the second equation, we obtain

exp(−1− ν) =
1

∑d

s=1 exp(−cs)
. (124)
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Combining (123) and (124) we obtain

zs =
exp(−cs)

∑d

t=1 exp(−ct)
∀1 ≤ s ≤ d. (125)

In other words, z = softmax(−c).
Remark. It is clear that the per-iteration complexity of Entropic Frank-Wolfe is O(nd), which is the
same as in vanilla Frank-Wolfe.

D.3 Projected gradient descent (PGD)

This algorithm consists in the following updates:

pk = ΠX (xk −∇E(x)), xk+1 = xk + αk(p
k − xk), (126)

where the stepsize αk follows one of the schemes presented in §4.1. It is worth noting that this variant
of PGD is eligible to exact line search (14). We observe in our experiments that using the line search
scheme produces the same results as setting αk = 1. Thus we used this constant scheme for both
training and prediction. The same applies to the Frank-Wolfe variants.

D.4 Fast proximal gradient method (PGM)

The original PGM [48] consists in updating

xk+1 = argmin
x∈X

{

〈

∇E(xk),x
〉

+
1

2αk

∥

∥x− xk
∥

∥

2

2

}

, (127)

which can be re-written as
xk+1 = ΠX (xk − αk∇E(xk)). (128)

The above is precisely another variant of PGD (which is not eligible to exact line search (14)). While
this algorithm is also supported by our implementation, the results presented in §5 are obtained using
another variant called the fast PGM, also known as FISTA [9]. This algorithm consists in the following
updates, where y0 = x0 = softmax(−u) and t0 = 1:

xk+1 = ΠX (yk − αk∇E(yk)), (129)

tk+1 =
1 +

√

1 + 4t2k
2

, (130)

yk+1 = xk+1 +
tk − 1

tk+1
(xk+1 − xk). (131)

While the optimal value of αk can be determined using backtracking [7], this process is very expensive
as it requires evaluating the energy many times. Therefore, in practice, we use the constant scheme
αk = α ∈ [0, 1]. Doing a grid search on a random subset of 10 validation images, we found (again)
that αk = 1 is the best, and thus it is used for all the experiments.

D.5 Entropic mirror descent (EMD)

Mirror descent (MD) [8, 55] is a generalization of PGM to a more general distance function. Each
iteration of MD takes the following form:

xk+1 = argmin
x∈X

{

〈

∇E(xk),x
〉

+
1

αk

Bφ(x,x
k)

}

, (132)

where φ : X → R is a convex and continuously differentiable function on the interior of X , and
Bφ : X × X → R is its associated Bregman divergence, defined by

Bφ(x,y) = φ(x) − φ(y) − 〈∇φ(y),x − y〉 . (133)

Clearly, for φ(x) = 1
2 ‖x‖

2
2 we recover the PGM update (127). We provide an implementation for

the so-called entropic variant of mirror descent [8], corresponding to choosing φ to be the negative
entropy:

φ(x) =

n
∑

i=1

d
∑

s=1

xis log xis. (134)
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With this choice of φ, it is easy to check that the Bregman divergence (133) becomes the following
so-called Kullback-Leibler divergence:

BKL(x,y) =

n
∑

i=1

d
∑

s=1

xis log
xis

yis
. (135)

The MD update (132) thus becomes

xk+1 = argmin
x∈X

{

〈

αk∇E(xk)− log xk,x
〉

+

n
∑

i=1

d
∑

s=1

xis log xis

}

, (136)

where the log operation is taken element-wise. According to Lemma 6 (§D.2),we obtain

xk+1 = softmax
(

logxk − αk∇E(xk)
)

. (137)

Let gk denote the gradient∇E(xk), the above reads

xk+1
is =

xk
is exp(−αkg

k
is)

∑d
t=1 x

k
it exp(−αkgkit)

∀i ∈ V , ∀s ∈ S. (138)

Numerically stable EMD In practice, the above expression of xk+1 may lead to numerical under-
flow or overflow. We overcome this by using the following modified iterate:

xk+1
is =

(xk
is + ǫ) exp(−αkg

k
is +mk

i )
∑d

t=1(x
k
it + ǫ) exp(−αkgkit +mk

i )
∀i ∈ V , ∀s ∈ S, (139)

where ǫ = 10−10 and mk
i = αk min1≤s≤d g

k
is ∀i ∈ V .

D.6 Alternating direction method of multipliers (ADMM)

The nonconvex ADMM for MAP inference [41] consists in the following updates, where z0 =
softmax(−u) and y0 = 0:

xk+1 = ΠX

(

zk − 1

ρ
(yk +

1

2
Pzk + u)

)

, (140)

zk+1 = ΠX

(

xk+1 − 1

ρ
(−yk +

1

2
Pxk+1)

)

, (141)

yk+1 = yk + ρ(xk+1 − zk+1). (142)

We refer to the original paper [41] for more details. In our experiments, we set ρ = 1 for simplicity.
Since the expensive computation Px are done two times in each ADMM iteration (one in (140), an-
other in (141)), this algorithm is roughly two times slower than the others. For a fair comparison, in
our implementation we view (140) and (141) as two separate iterations (note that both xk+1 and zk+1

are feasible points).

Finally, we should note that the adaptive scheme for the penalty parameter ρ proposed by
Lê-Huu and Paragios [41] is not applicable to our case, as we use only 5 iterations in our experiments
(which is equivalent to only 2.5 regular iterations due to our above iteration separation).

E Detailed experimental setup and environment

E.1 CNN-CRF architectures

CNN-CRF Our segmentation model is a standard combination of a CNN and a CRF [76]. Given an
input image Z ∈ R

H×W×3, the CNN produces an output Y ∈ R
H×W×K (where K is the number

of object classes) called the logits, which is then fed into the CRF to produce a final output X ∈
R

H×W×K :
Y = CNN(Z;θθθu), X = CRF(Y;θθθp), (143)

where θθθu and θθθp are (typically trainable) parameters. The prediction is then obtained by taking the
argmax along the last dimension of X. For the CNN part, we consider two strong architectures:
DeepLabv3 with ResNet101 backbone [16], and DeepLabv3+ with Xception65 backbone [17]. The
reader is referred to the corresponding references for further details.
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Dense CRF The CRF is defined over the input image such that each pixel is a node, and its
labels are the object classes. Thus, using the notation defined in §2.1, we have n = HW ,
d = K , and S = {1, 2, . . . , K}. The CRF produces X in (143) by minimizing the energy (6)
with appropriately constructed potentials, and then simply reshaping the solution x ∈ R

HWK into
H × W × K . During training we skip the rounding step in CRF inference, so that the returned
x is real-valued, which is more suitable for learning with the standard cross-entropy loss function.
The unary potentials u is defined by to be the additive inverse of the logits Y, reshaped correctly:
u = − vec(Y), where vec denotes the flattening operator. We use the fully-connected model intro-
duced by Krähenbühl and Koltun [34] in which any pair of pixels (i, j) is an edge with a pairwise
potential of the form θij(s, t) = µ(s, t)k(fi, fj) ∀s, t ∈ S, where µ : S × S → R is the so-called label
compatibility function, and k is a Gaussian kernel over some image features (fi, fj). For a pixel i, we

use its position pi ∈ N
2 and its color ci ∈ [0, 255]3 as features, and define the kernel as

k(fi, fj) = w1 exp

(

−‖pi − pj‖22
2α2

− ‖ci − cj‖22
2β2

)

+w2 exp

(

−‖pi − pj‖22
2γ2

)

∀i, j ∈ V , (144)

where w1, w2 are learnable kernel weights, and α, β, γ are hyperparameters. Following
Zheng et al. [76], we use class-dependent kernel weights to increase the number of trainable param-
eters. Unlike Zheng et al. [76], for simplicity we use the default values α = 80, β = 13, γ = 3
set by Krähenbühl and Koltun [34] in all experiments, instead of doing a cross validation to find the
best values. Finally, we use the Potts compatibility function: µ(s, t) = w1[s6=t] with w = 1 for the
inference experiments in §5.2, and also for CRF initialization in the learning experiments in §5.3.

E.2 Datasets

We provide further details on the datasets. PASCAL VOC [22] contains 4369 images of 21 classes,
split into 1464 (train), 1449 (val), and 1456 (test) image subsets. As a standard practice, we aug-
ment the dataset with images from Hariharan et al. [27], resulting in 10 582 training images (trainaug).
Cityscapes [19] contains 5000 images of 19 classes, split into 2975 (train), 500 (val), and 1525 (test)
image subsets. In addition, it also provides 19 998 coarsely annotated images (train_extra). We re-
port the performance in terms of mIoU across the semantic classes (21 for PASCAL VOC and 19 for
Cityscapes).

E.3 CNN training recipes

To fully train DeepLabv3 and DeepLabv3+, we follow closely the published recipes [16, 17] for this
task. Below we present the most important information, and refer to the references for further details.

We first pretrain DeepLabv3 and DeepLabv3+ on the COCO [46] dataset (by selecting only the images
that contain the classes defined in PASCAL VOC), and then finetune them on PASCAL VOC (trainaug)
and Cityscapes (train). During training, we apply data augmentation by (randomly) left-right flipping,
scaling the input images (from 0.5 to 2.0), and cropping (with crop size of 513 × 513 for PASCAL

VOC and 769 × 769 for Cityscapes). We employ a poly learning rate schedule: ηm = η0
(

1− m
M

)p
,

where η0 is the initial learning rate, m is the step counter, and M is the total number of training steps.
For all trainings, we set p = 0.9 and η0 = 0.001 (except η0 = 0.01 for pretraining on COCO), and
a batch size of 16 images. The value of M is calculated from the number of training epochs, which
we set to be 50 for COCO pretraining, 50 for finetuning on PASCAL VOC, and 500 for finetuning on
Cityscapes. We should note some differences compared to the original papers [16, 17]. In particular,
they did not specify the learning rate and number of steps for COCO pretraining. Furthermore, they
used η0 = 0.0001, which did not yield better results than η0 = 0.001 in our implementation. Finally,
in terms of the number of epochs, we used similar values to theirs. Indeed, they set 30 000 and 90 000
training steps for the 10 582 and 2975 training images of PASCAL VOC and Cityscapes, respectively.
With a batch size of 16, these are equivalent to 45 and 484 epochs. Table 6 shows that our obtained
results are similar to previous work [16, 17].

E.4 Training time and memory footprint

Our experiments are performed on a Linux server of 4 Nvidia V100 GPUs, using PyTorch 1.7. With
a batch size of 16 on 4 GPUs (i.e., 4 images per GPU), both DeepLabv3 and DeepLabv3+ take
∼7min/epoch on PASCAL VOC (with 513 × 513 crops). Thanks to our efficient GPU implemen-
tation (which will be made publicly available), plugging in the (5-step) CRF only increases that to ∼9
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Dataset Model Published [16, 17] Reproduced

VOC
DeepLabv3 78.51 81.83
DeepLabv3+ 82.45 82.89

Cityscapes
DeepLabv3 77.82 76.73
DeepLabv3+ 79.14 79.55

Table 6: Performance of our reproduced DeepLab models compared to the original papers [16, 17]. The mIoU
scores are obtained on the val sets, without test time augmentation.

minutes (1.2–1.3× slower) for all inference methods (here we should note that CRF’s running time is
dominated by computing Px at each step, which is why the running is similar across the methods). In
terms of memory usage, DeepLabv3+ takes∼27.7GB (per GPU for 4 images) while DeepLabv3 takes
∼15.6GB. We found that the additional memory usage of the CRF (which has only 1323 trainable
parameters) are negligible for the Frank-Wolfe variants as well as for PGD, while PGM and ADMM
require an extra amount of ∼300MB (probably due to the additional storage of the variable y at each
iteration, see §D).

F Additional results

F.1 Detailed results on the test sets

The detailed results on the test sets can be found on the corresponding submission websites whose
URLs are given in Table 7.

Model PASCAL VOC Cityscapes

DeepLabv3+ [17] 87.8 82.1
DeepLabv3+ (this work) 87.61 83.53

DeepLabv3+ with ℓ2FW CRF 88.02 83.64

1
http://host.robots.ox.ac.uk:8080/anonymous/BUXULK.html

2
http://host.robots.ox.ac.uk:8080/anonymous/YFJJLW.html

3
https://www.cityscapes-dataset.com/anonymous-results/?id=845bd062fddae249ec0f4987d30f2f9be6e6716654513e7e6733d3f56e976532

4
https://www.cityscapes-dataset.com/anonymous-results/?id=84e788da7c55eeeb4840b70407ed665006494c99e5d34e0bd8704d66d9c8b864

Table 7: Performance on the test sets.

F.2 Results for trainable αk and λ

We carried out an experiment with ℓ2FW and eFW (λ = 0.7) in which we allow the stepsize αk at each
CRF iteration to be learnable (initialized at 0.5). We observe the stepsizes at all the steps behave very
similarly (i.e., increasing or decreasing together). In addition, for eFW they tend to increase during
training, while for ℓ2FW they tend to decrease. In addition, we also tried setting the regularization
weight λ to trainable. We initialized it at 1.0 for ℓ2FW and at 0.7 for eFW. For both solvers, we
found that λ increased during training. Regarding accuracy, we did not observe significant differences
compared to fixed αk and fixed λ, although tuning the learning rates specifically for these variables
could potentially lead to improved performance. See Table 8 for the details.

F.3 Results for fined-grained analysis

We randomly picked a trained checkpoint among the different runs for DeepLabv3+ with ℓ2FW (λ =
1.0) and DeepLabv3+ with eFW (λ = 0.7), and evaluated them using 5, 10, and 25 CRF iterations on
the PASCAL VOC validation set. The results are shown in Table 9.
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Regularizer λ Stepsize mIoU

ℓ2

1.0 fixed 1.0 fixed 0.8490489721
1.0 fixed 0.5 fixed 0.849458456
1.0 fixed 0.5 learnable 0.849185586
1.0 learnable 0.5 learnable 0.8492224813

Entropy

0.7 fixed 1.0 fixed 0.8495011926
0.7 fixed 0.5 fixed 0.8493972421
0.7 fixed 0.5 learnable 0.849845171
0.7 learnable 0.5 learnable 0.8491678238

Table 8: Comparison between trainable and fixed λ and αk

Method Steps mIoU background aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor

CNN 82.89 95.79 91.80 44.89 89.92 71.49 83.54 94.68 91.54 95.42 52.36 95.51 70.25 93.63 93.08 88.27 90.20 68.03 92.62 66.95 92.33 78.45

ℓ2FW
5 85.51 96.66 93.56 60.56 90.47 80.23 83.51 96.94 91.68 95.38 54.92 95.87 76.11 94.01 93.43 89.45 91.46 69.95 93.59 71.16 95.69 81.00
10 85.52 96.67 93.56 60.49 90.47 80.23 83.53 96.92 91.68 95.38 55.11 95.87 76.16 94.00 93.41 89.43 91.45 69.98 93.57 71.39 95.67 80.95
25 85.56 96.67 93.57 60.37 90.47 80.88 83.50 96.90 91.66 95.38 55.32 95.86 76.25 93.98 93.38 89.41 91.44 69.99 93.53 71.55 95.66 80.92

eFW
5 84.55 96.33 94.88 55.66 90.74 75.54 83.63 95.58 89.60 94.71 54.33 95.93 75.78 93.84 93.14 91.21 91.02 69.56 92.96 69.87 90.60 80.65
10 84.60 96.34 94.88 55.66 90.73 76.53 83.63 95.58 89.58 94.70 54.33 95.97 75.81 93.84 93.14 91.22 91.02 69.54 93.02 69.89 90.60 80.66
25 84.55 96.33 94.88 55.66 90.73 75.47 83.63 95.58 89.60 94.70 54.33 95.97 75.81 93.84 93.14 91.22 91.02 69.54 93.02 69.89 90.60 80.66

Table 9: Fined-grained results on PASCAL VOC validation set.

F.4 Additional inference results

F.4.1 Results for longer inference regime

We show in Figure 2 a comparison of the discrete energy across the methods on a subset of 10 val
images of PASCAL VOC for 100 inference iterations, using DeepLabv3+ and Potts dense CRF.
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Figure 2: CRF energy averaged over a subset of 10 val images of PASCAL VOC using DeepLabv3+ and Potts
dense CRF.

From these results, we observe that:

1. Vanilla FW and ℓ2FW already converge after around 20 iterations. ℓ2FW does better than
vanilla FW only in the early iterations.

2. PGM surpasses ℓ2FW at after 70 iterations, and surpasses vanilla FW after 100 iterations.

3. PGD and ADMM are likely to surpass ℓ2FW and vanilla, too, if given sufficient number of
iterations, as these do not show any sign of convergence yet.

The main observation here is that, the relative performance of the methods are different between the
early (typically first 10 iterations) and the later stage. In §6 we gave some hypotheses on why the
proposed regularized Frank-Wolfe may work better than the others. Our main argument is that vanilla
Frank-Wolfe is already much better than the other methods (in the first few iterations), and what we
do is to equip it with the ability of effectively learning with SGD (potential improvements in terms of
energy are rather a byproduct and not the main objective, as the improvements are sometimes small).
Let us summarize this situation as follows:
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1. Vanilla Frank-Wolfe outperforms other first-order methods such as PGD, PGM, and ADMM
during the first few iterations (and may be surpassed at a later stage, as already shown).

2. For SGD learning, in which only a small number of iterations (due to the vanishing/exploding
gradient problems, as already observed in previous work [76]), this behavior (reaching quickly
a very low energy) of vanilla Frank-Wolfe is highly desirable.

3. Unfortunately, vanilla Frank-Wolfe iterates are piecewise constant and thus the resulting gra-
dients are zero almost everywhere, which makes learning through backpropagation impossi-
ble.

4. Our regularized Frank-Wolfe is designed to precisely solve this zero-gradient issue.

F.4.2 Additional inference results

Figures 3 and 4 show more results for the inference experiments.

5 10 15 20

−2.1

−2

−1.9

−1.8

×103
eFWλ=.25 (αk↓) PGD

ℓ2FWλ=1 (αk↓) PGM

eFWλ=.25 ADMM

ℓ2FWλ=1 MF

FW

(a) Energy per CRF iteration.

5 10 15 20

−2.1

−2

−1.9

−1.8

×103
green eFW λ = 0.2

red ℓ2FW λ = 0.4
λ = 0.6

λ = 0.8
λ = 1.0

eFWλ=1 = Mean Field

(b) Energy per CRF iteration.

0 0.5 1 1.5 2 2.5

−2.1

−2

−1.9

−1.8

×103

(c) Per λ, at the 5th CRF iteration.

Figure 3: CRF energy averaged over 1449 val images of PASCAL VOC using DeepLabv3+ and Potts dense
CRF. (a) Comparison between regularized Frank-Wolfe and the other methods for some selected values of the
regularization weight λ. (b) Results of regularized Frank-Wolfe for different values of λ. (c) Energy per λ after 5
iterations. Best viewed in color.
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Figure 4: CRF energy averaged over 500 val images of Cityscapes using DeepLabv3+ and Potts dense CRF. (a)
Comparison between regularized Frank-Wolfe and the other methods for some selected values of the regularization
weight λ. (b) Results of regularized Frank-Wolfe for different values of λ. (c) Energy per λ after 5 iterations. Best
viewed in color.
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