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On the Shift Invariance of Max Pooling
Feature Maps in Convolutional Neural Networks

Hubert Leterme, Kévin Polisano, Valérie Perrier, and Karteek Alahari

Abstract—In this paper, we aim to improve the mathematical
interpretability of convolutional neural networks for image classi-
fication. When trained on natural image datasets, such networks
tend to learn parameters in the first layer that closely resemble
oriented Gabor filters. By leveraging the properties of discrete
Gabor-like convolutions, we prove that, under specific conditions,
feature maps computed by the subsequent max pooling operator
tend to approximate the modulus of complex Gabor-like coeffi-
cients, and as such, are stable with respect to certain input shifts.
We then compute a probabilistic measure of shift invariance for
these layers. More precisely, we show that some filters, depending
on their frequency and orientation, are more likely than others to
produce stable image representations. We experimentally validate
our theory by considering a deterministic feature extractor
based on the dual-tree wavelet packet transform, a particular
case of discrete Gabor-like decomposition. We demonstrate a
strong correlation between shift invariance on the one hand and
similarity with complex modulus on the other hand.

Index Terms—Deep learning, image classification, dual-tree
wavelet packet transform, max pooling, shift invariance, feature
extractor, subsampling, aliasing.

I. INTRODUCTION

UNDERSTANDING the mathematical properties of deep
convolutional neural networks (CNNs) [1] remains a

challenging issue today. On the other hand, wavelet and
multi-resolution analysis are built upon a well-established
mathematical framework. They have proven to be efficient for
tasks such as signal compression and denoising [2], and have
been widely used as feature extractors for signal, image and
texture classification [3]–[6].

There is a broad literature revealing strong connections
between these two paradigms, as discussed in section I and
section II. Inspired by this line of research, our work extends
existing knowledge about CNN properties. In particular, we
study some behaviors arising from their discrete nature.

A. Motivation

In many computer vision applications, including classifica-
tion, input images are transformed through a non-linear oper-
ator, generally referred to as a feature extractor [7], [8]. The
output feature maps, which contain high-level information,
can in turn be fed into deeper feature extractors. Specifically,
CNNs contain a sequence of such operators with a large

H. Leterme and K. Alahari are with Univ. Grenoble Alpes, CNRS, Inria,
Grenoble INP, LJK, 38000 Grenoble, France (e-mail: hubert.leterme@univ-
grenoble-alpes.fr).

K. Polisano and V. Perrier are with Univ. Grenoble Alpes, CNRS, Grenoble
INP, LJK, 38000 Grenoble, France.

This work has been partially supported by the LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01) funded by the French program Investissement
d’avenir, as well as the ANR grant AVENUE (ANR-18-CE23-0011).

number of trainable parameters, whereas the final classifier
generally preforms multinomial logistic regression [9], [10].

It is widely assumed that a good feature extractor must
retain discriminant image components while decreasing intra-
class variability [7], [11]. In particular, information about fre-
quencies and orientations should be captured by the operator
[7], [11], [12]. On the other hand, extracted features should
be stable with respect to transformations such as small shifts,
rotations or deformations [8], [11]–[14].

It has been noted that many CNNs trained on natural image
datasets perform some kind of discrete real-valued Gabor
transform in their first layer [15], [16]. In other words, images
are decomposed through subsampled convolutions using filters
with well-defined frequency and orientation. This observation,
which is exploited in several papers [17]–[22], reveals the
discriminative nature of CNNs’ first layer. Whether such a
layer can extract stable features is partly addressed in [23],
[24]. These papers point out that convolution and pooling
layers may greatly diverge from shift invariance, due to
aliasing when subsampling. In response, recent work [24]–
[27] introduced antialiased convolution and pooling operators.
They managed to increase both stability and predictive power
of CNNs, despite the resulting loss of information.

In the current paper, we show that, in certain situations,
the first max pooling layer can actually reduce aliasing and
therefore recover stability. Inspired by Waldspurger’s work
[28, pp. 190–191], we unveil a connection between the output
of this pooling operator and the modulus of complex Gabor-
like coefficients, which is known to be nearly shift invariant.
As hinted in section VII, this can lead to an alternative solution
to improve stability which, unlike the above papers, does not
require losing information.

B. Proposed Approach

We first consider an operator computing the modulus
of discrete Gabor-like feature maps, defined as subsampled
convolutions with nearly analytic and well-oriented complex
filters. We show that the output of such a feature extractor,
referred to as complex-Gabor-modulus (CGMod), is stable
with respect to small input shifts.

Then, we consider an operator which only keeps the real
part of the above Gabor-like convolutions and computes their
maximum value over a sliding discrete grid. We refer to this as
a real-Gabor-max-pooling (RGPool) extractor. We then prove
that, under additional conditions on the filter’s frequency and
orientation, CGMod and RGPool produce comparable outputs.
We deduce a measure of shift invariance for RGPool operators,
which benefit from the stability of CGMod.
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Next, we show that, after training with ImageNet, the feature
extractor formed by early layers of popular CNN architectures
can approximately be reformulated as a stack of RGPool
operators. Our framework therefore provides a theoretical
grounding to study these networks.

We apply our theoretical results on the dual-tree complex
wavelet packet transform (DT-CWPT), a particular case of
discrete Gabor-like decomposition with perfect reconstruction
properties [29], [30], possessing characteristics comparable to
standard convolution layers. Finally, we verify our predictions
on a deterministic setting based on DT-CWPT. Given an
input image, we compute the mean discrepancy between the
outputs of CGMod and RGPool, for each wavelet packet
filter.1 We then observe that shift invariance, when measured
on RGPool feature maps, is nearly achieved if they remain
close to CGMod outputs. We therefore establish an invariance
validity domain for RGPool operators.

Prior to this work, we presented a preliminary study [31],
where we experimentally showed that an operator based on
DT-CWPT can mimic the behavior of the first convolution
layer with fewer parameters, while keeping the network’s
predictive power. Our model was solely based on real-valued
filters,2 which are known to be generally unstable [32]. Yet,
we observed a limited but genuine form of shift invariance,
compared to other models based on the standard, non-analytic
wavelet packet transform. At the same time, we became
aware of a preliminary work in Waldspurger’s PhD thesis [28,
pp. 190–191], suggesting a potential connection between the
combinations “real wavelet transform + max pooling” on the
one hand and “complex wavelet transform + modulus” on the
other hand. Following this idea, we decided to study whether
invariance properties of complex moduli could somehow be
captured by the max pooling operator. As shown in the
present paper, Waldspurger’s work does not fully extend to
discrete and subsampled convolutions. We address this issue
by adopting a probabilistic point of view.

II. RELATED WORK

A. Wavelet Scattering Networks

These models, introduced by Bruna and Mallat [11], com-
pute cascading wavelet convolutions followed by non-linear
operations. They produce translation-invariant image represen-
tations which are stable to deformation and preserve high-
frequency information. A variation has been proposed in [33]
to improve stability with respect to small rotations. Wavelet
scattering networks were later adapted to the discrete frame-
work using the dual-tree complex wavelet transform [34], as
well as functions defined on graphs [35].

Such networks, which are totally deterministic aside from
the output classifier, achieve results on small image datasets
but do not scale well to more complex ones. According to
Oyallon et al. [36], [37], this is partly due to non-geometric
sources of variability within classes. Instead, the authors
proposed to use scattering coefficients as inputs to a CNN,

1DT-CWPT paves the Fourier domain into square regions of identical size,
each of them associated to a specific filter.

2To do so, we split the real and imaginary parts of the original filters.

showing that the network complexity can be reduced while
keeping competitive performance. More recent work by Zarka
et al. [38] proposed to sparsify wavelet scattering coefficients
by learning a dictionary matrix, and managed to outperform
AlexNet [10]. This was extended by the same team in [39],
where the authors proposed to learn 1×1 convolutions between
feature maps of scattering coefficients and to apply soft-
thresholding to reduce within-class variability. This model
reached the classification accuracy of ResNet-18 on ImageNet.

Other work proposed architectures in which the scattering
transform is no longer deterministic. Cotter and Kingsbury
[40] built a learnable scattering network. In this model, fea-
ture maps of scattering coefficients are mixed together using
trainable weights, to account for cross-channel filtering as
implemented in CNNs. Their architecture outperformed VGG
networks on small image datasets. Recently, Gauthier et al.
[41] introduced parametric scattering networks, in which the
scale, orientation and aspect ratio of each wavelet filter are
adjusted during training. Their approach has proven successful
when trained on limited dataset.

All these papers are driven by the purpose of building ad-
hoc CNN-like feature extractors, implementing well defined
mathematical operators specifically designed to meet a certain
number of desired properties. By contrast, our work seeks
evidence that such properties, which have been established for
wavelet scattering networks, are—to some extent—embedded
in existing CNN architectures, with no need to alter their
behavior or introduce new features.

B. Invariance Studies in CNNs

Several papers analyze invariance properties in CNN-related
feature extractors, including—but not limited to—wavelet
scattering networks. Whereas extensive studies related to the
original architecture are proposed by Mallat in [42], [43], more
recent work tackle the question for various extensions of the
model. In [44], [45], scattering networks based on uniform
covering frames—i.e., frames splitting the frequency domain
into windows of roughly equal size, much like Gabor frames—
are studied. Besides, [8] considers a wide variety of feature
extractors involving convolutions, Lipschitz-continuous non-
linearities and pooling operators. The paper shows that outputs
become more translation invariant with increasing network
depth. Finally, [46] shows that certain classes of CNNs are
contained into the reproducing kernel Hilbert space (RKHS)
of a multilayer convolutional kernel representation. As such,
stability metrics are estimated, based on the RKHS norm
which is difficult to control in practice.

In these studies, invariance properties are obtained for
continuous signals. Whereas real-life CNNs can be math-
ematically described in the continuous framework, feature
maps computed at their hidden and output layers are actually
discrete sequences, which can be recovered by sampling the
continuous signals. At each convolution and pooling layers,
the sampling interval is increased (subsampling), resulting in
a loss of information. Unfortunately, this may greatly affect
shift invariance, as explained in section I. The current paper
specifically addresses this issue.
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III. SHIFT INVARIANCE OF OPERATORS

The goal of this section is to theoretically establish condi-
tions for near-shift invariance at the output of the first max
pooling layer. We start by proving shift invariance of CGMod
operators. Then, we establish conditions under which RGPool
and CGMod produce closely related outputs. Finally, we
derive a probabilistic measure of shift invariance for RGPool.

A. Notations

The complex conjugate of any number z ∈ C is denoted by
z∗. For any p ∈ R∗

+ ∪ {∞}, x ∈ R2 and r ∈ R+, we denote
by Bp(x, r) ⊂ R2 the closed lp-ball with center x and radius
r. When x = 0, we write Bp(r).

Continuous Framework: Given p > 0 and a measurable
subset of R or R2 denoted by E, we consider Lp(E) as the
space of measurable complex-valued functions f : E → C
such that ∥f∥Lp :=

∫
E
|f(x)|p dx < +∞. Whenever we

talk about equality in Lp(E) or inclusion in E, it shall
be understood as “almost everywhere with respect to the
Lebesgue measure”. Besides, we denote by L2

R(R2) ⊂ L2(R2)
the subset of real-valued functions. For any f ∈ L2(R2), f
denotes its flipped version: f(x) := f(−x).

The 2D Fourier transform of any f ∈ L2(R2) is denoted
by f̂ ∈ L2(R2), such that

∀ν ∈ R2, f̂(ν) :=

∫∫
R2

f(x)e−i⟨ν,x⟩ d2x. (1)

For any ε > 0 and ν ∈ R2, we denote by V
(
ν, ε

)
⊂ L2(R2)

the set of functions whose Fourier transform is supported in a
square region of size ε× ε centered in ν:

V
(
ν, ε

)
:=
{
ψ ∈ L2(R2)

∣∣∣ supp ψ̂ ⊂ B∞(ν, ε/2)
}
. (2)

For any h ∈ R2, we also consider the translation operator,
denoted by Th, defined by Thf : x 7→ f(x− h).

Discrete Framework: We consider l2(Zd) as the space
of d-dimensional sequences X ∈ CZd

such that ∥X∥22 :=∑
n∈Zd

∣∣X[n]∣∣2 < +∞. Indexing is made between square
brackets: ∀X ∈ l2(Zd), ∀n ∈ Zd, X[n] ∈ C, and we denote
by l2R(Zd) ⊂ l2(Zd) the subset of real-valued sequences. For
any X ∈ l2(Zd), X denotes its flipped version: X[n] :=
X[−n]. The subsampling operator is denoted by ↓: for any
X ∈ l2(Zd) and any m ∈ N∗, (X ↓ m)[n] := X[mn].

2D images, feature maps and convolution kernels are con-
sidered as elements of l2(Z2), and are denoted by straight
capital letters. Besides, arrays of 2D sequences are denoted by
bold straight capital letters, for instance: X = (Xk)k∈{0..K−1}.
Note that indexing starts at 0 to comply with practical imple-
mentations. We will also consider 1D sequences x ∈ l2(Z),
denoted by straight lower-case letters.

The 2D discrete-time Fourier transform of any X ∈ l2(Z2)
is denoted by X̂ ∈ L2([−π, π]2), such that

∀ξ ∈ [−π, π]2 , X̂(ξ) :=
∑
n∈Z2

X[n]e−i⟨ξ,n⟩. (3)

Fig. 1. Spatial (left) and Fourier (right) representations of convolution kernels
in the first layer of AlexNet, after training with ImageNet ILSVRC2012. Each
kernel connects the 3 RGB input channels to one of the 64 output channels.

For any κ ∈ ]0, 2π] and ξ ∈ B∞(π), we denote by G
(
ξ, κ

)
⊂

l2(Z2) the set of 2D sequences whose Fourier transform is
supported in a square region of size κ× κ centered in ξ:

G
(
ξ, κ

)
:=
{
W ∈ l2(Z2)

∣∣∣ supp Ŵ ⊂ B∞(ξ, κ/2)
}
. (4)

Remark 1: The support B∞(ξ, κ/2) actually lives in the
quotient space [−π, π]2 /(2πZ2). Consequently, when ξ is
close to an edge, a fraction of this region is located at the
far end of the frequency domain. From now on, the choice of
ξ and κ is implicitly assumed to avoid such a situation.

B. Intuition

In many CNNs for computer vision, input images are first
transformed through subsampled—or strided—convolutions.
For instance, in AlexNet, convolution kernels are of size
11×11 and the subsampling factor is equal to 4. Fig. 1 displays
the corresponding kernels after training with ImageNet. This
linear transform is generally followed by rectified linear unit
(ReLU) and max pooling.

We can observe that many kernels display oscillating pat-
terns with well-defined orientations. We denote by V ∈ l2R(Z2)
one of these “well-behaved” filters. Its Fourier spectrum
roughly consists in two bright spots which are symmetric with
respect to the origin.3 Now, we consider a complex-valued
companion W ∈ l2(Z2) such that, for any ξ = (ξ1, ξ2) ∈
[−π, π]2,

Ŵ(ξ) :=
(
1 + sgn ξ1

)
· V̂(ξ). (5)

We can show that V is the real part of W, and that
W = V + iH(V), where H denotes the two-dimensional
Hilbert transform as introduced in [47].4 As a consequence,
Ŵ is equal to 2V̂ on one half of the Fourier domain, and 0
on the other half. Therefore, only one bright spot remains in
the spectrum. It turns out that such complex filters with high
frequency resolution produce stable signal representations, as
we will see in section III-C. In the subsequent sections, we
then wonder whether this property is kept when considering
the max pooling of real-valued convolutions.

3Actually, the Fourier transform of any real-valued sequence is centrally
symmetric: V̂(−ξ) = V̂(ξ)

∗
. The specificity of well-oriented filters lies in

the concentration of their power spectrum around two precise locations.
4H(V) is defined such that Ĥ(V)(ξ) := −i sgn(ξ1)V̂(ξ).
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In what follows, W will be referred to as a discrete Gabor-
like filter, and the coefficients resulting from the convolution
with W will be referred to as discrete Gabor-like coefficients.

C. Shift Invariance of CGMod Outputs

The aim of this section is to show that the modulus of
discrete Gabor-like coefficients—i.e., the output of a CGMod
operator such as introduced in section I-B—is nearly shift-
invariant (the meaning of shift invariance will be clarified).
This result is hinted in [32] but not formally proven.

1) Continuous Framework: We introduce several results
regarding functions defined on the continuous space R2. Near-
shift invariance on discrete 2D sequences will then be derived
from these results by taking advantage of sampling theorems.
Lemma 1 below is adapted from [28, pp. 190–191].

Lemma 1: Given ε > 0 and ν ∈ R2, let ψ ∈ V
(
ν, ε

)
denote a complex-valued filter such as defined in (2). Now,
for any real-valued function f ∈ L2

R(R2), we consider the
complex-valued function f0 ∈ L2(R2) defined by

f0 : x 7→ (f ∗ ψ)(x) ei⟨ν,x⟩. (6)

Then f0 is low-frequency, with supp f̂0 ⊂ B∞(ε/2).
Proof: See Appendix A.

On the other hand, the following proposition provides a
shift invariance bound for low-frequency functions such as
introduced above.

Proposition 1: For any f0 ∈ L2
R(R2) such that supp f̂0 ⊂

B∞(ε/2), and any h ∈ R2 satisfying ∥h∥1 ≤ π/ε,

∥Thf0 − f0∥L2 ≤ α(εh) ∥f0∥L2 , (7)

where we have defined

α : τ 7→
∥τ∥1
2

. (8)

Proof: See Appendix B.
2) Adaptation to Discrete 2D Sequences: Given κ ∈ ]0, 2π]

and ξ ∈ B∞(π), let W ∈ G
(
ξ, κ

)
denote a discrete Gabor-like

filter such as defined in (4). For any image X ∈ l2R(Z2) with
finite support and any subsampling factor m ∈ N∗, we express
(X ∗ W) ↓ m using the continuous framework introduced
above, and derive an invariance formula.

For any sampling interval s ∈ R∗
+, let Us denote the space

of 2D functions g ∈ L2(R2) such that the support of ĝ is
included in B∞(π/s).5 We consider the following lemma.

Lemma 2: Let s > 0. For any g ∈ Us and any ω ∈
B∞(π/s), we have

ĝ(ω) = s Ŷ(sω), (9)

where Y ∈ l2(Z2) is defined such that Y[n] := s g(sn), for
any n ∈ Z2. Besides, we have the following norm equality:

∥g∥L2 = ∥Y∥2 . (10)

Proof: See Appendix C.

5Using the notation introduced in (2), we have Us = V(0, 2π/s).

We now consider ϕ(s) ∈ L2
R(R2) such that ϕ̂(s) :=

s1B∞(π/s).6 For any n ∈ Z2, we denote by ϕ
(s)
n := Tsnϕ(s)

a shifted version of ϕ(s). According to Theorem 3.5 in [48,
p. 68], {ϕ(s)n }n∈Z2 is an orthonormal basis of Us.7 We then
get the following proposition, which draws a bond between
the discrete and continuous frameworks.

Proposition 2: Let X ∈ l2R(Z2) denote an input image with
finite support, and W ∈ G

(
ξ, κ

)
. Considering a sampling

interval s ∈ R∗
+, we define fX ∈ L2

R(R2) and ψW ∈ L2(R2)
such that

fX :=
∑
n∈Z2

X[n]ϕ(s)n and ψW :=
∑
n∈Z2

W[n] ϕ(s)n . (11)

Then, ψW ∈ V
(
ξ/s, κ/s

)
. Moreover, for all n ∈ Z,

X[n] = s fX(sn); W[n] = sψW(sn), (12)

and, for a given subsampling factor m ∈ N∗,(
(X ∗W) ↓ m

)
[n] =

(
fX ∗ ψW

)
(msn) . (13)

Proof: See Appendix D.

Proposition 2 introduces a latent subspace of L2
R(R2) from

which input images are uniformly sampled. This allows us to
define, for any u ∈ R2, a translation operator Tu on discrete
sequences, even if u has non-integer values:

TuX[n] := s TsufX(sn), (14)

where fX is defined in (11). We can indeed show that this
definition is independent from the choice of sampling interval
s > 0. Besides, given X ∈ l2R(Z2), we have

∀k ∈ Z2, TkX[n] = X[n− k]; (15)

∀u, v ∈ R2, Tu(TvX) = Tu+vX, (16)

which shows that Tu corresponds to the intuitive idea of a shift
operator. Expressions (15) and (16) are direct consequence of
the following lemma, which bonds the shift operator in the
discrete and continuous frameworks.

Lemma 3: For any X ∈ l2R(Z2) and any u ∈ R2,

fTuX = TsufX. (17)

Proof: See Appendix E.

We now consider the following corollary to Proposition 2.

Corollary 1: For any shift vector u ∈ R2, we have(
(TuX ∗W) ↓ m

)
[n] = (TsufX ∗ ψW) (msn) . (18)

Proof: Apply (13) in Proposition 2 with X← TuX, and
use Lemma 3 to conclude.

6ϕ(s) is a tensor product of scaled and normalized sinc functions.
7We actually use the 2D formulation, mentioned in p. 82.
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3) Shift Invariance in the Discrete Framework: We consider
the following operator, for any W ∈ l2(Z2):

Cm[W] : X 7→ |(X ∗W) ↓ m|. (19)

When W ∈ G
(
ξ, κ

)
, we refer to this as a CGMod operator.

For the sake of concision, in what follows we will write Cm
instead of Cm[W], when no ambiguity is possible.

We are now ready to state the main result about shift
invariance of CGMod outputs.

Theorem 1: Let W ∈ G
(
ξ, κ

)
denote a discrete Gabor-like

filter and m ∈ N∗ denote a subsampling factor. If κ ≤ 2π/m,
then, for any input image X ∈ l2R(Z2) with finite support and
any translation vector u ∈ R2 satisfying ∥u∥1 ≤ π/κ,∥∥Cm(TuX)− CmX

∥∥
2
≤ α(κu) ∥CmX∥2 , (20)

where α has been defined in (8).

Proof: The proof of this theorem, which involves Lem-
mas 1-2, Propositions 1-2 and Corollary 1, is provided in
Appendix F.

Interestingly, the reference value used in Theorem 1, i.e.,
∥CmX∥2, is fully shift-invariant, as stated in the following
proposition.

Proposition 3: Let W ∈ G
(
ξ, κ

)
and m ∈ N∗. Assuming

κ ≤ 2π/m, we have, for any X ∈ l2R(Z2) and any u ∈ R2,

∥Cm(TuX)∥2 = ∥CmX∥2 . (21)

Proof: See Appendix G.

D. From CGMod to RGPool

Since CGMod operators are not found in classical CNN
architectures, the above result does not applies straightfor-
wardly. Instead, the first convolution layer contains real-valued
kernels, and is generally followed by ReLU and max pooling.
As shown in section IV, this process can be described as an
operator parameterized by W ∈ l2(Z2), defined by

Rm, q[W] : X 7→ MaxPoolq

((
X ∗ ReW

)
↓ m

)
, (22)

where MaxPoolq selects the maximum value over a sliding
grid of size (2q+1)× (2q+1), with a subsampling factor of
2. More formally, for any Y ∈ l2R(Z2) and any n ∈ Z2,

MaxPoolq(Y)[n] := max
∥k∥∞≤q

Y[2n+ k]. (23)

As hinted in section III-B, an important number of trained
convolution kernels exhibit oscillating patterns with various
scales and orientations. In such a case, W ∈ G

(
ξ, κ

)
for a

certain value of ξ ∈ [−π, π]2 and κ ∈ ]0, 2π], and we refer
to Rm, q[W] as an RGPool operator. For the sake of concision,
from now on we write Rm, q instead of Rm, q[W], when no
ambiguity is possible.

In what follows, we show that, under specific conditions
on Ŵ, RGPool and CGMod operators produce comparable
outputs. We then provide a shift invariance bound for RGPool.

1) Continuous Framework: This paragraph, directly
adapted from [28, pp. 190–191], provides an intuition about
resemblance between RGPool and CGMod in the continuous
framework. As will be highlighted later in this section III-D,
adaptation to discrete 2D sequences is not straightforward
and will require a probabilistic approach.

We consider an input function f ∈ L2
R(R2) and a band-pass

filter ψ ∈ V
(
ν, ε

)
. Let us also consider

g : (x, h) 7→ cos
(
⟨ν, h⟩ − η(x)

)
, (24)

where η denotes the phase of f ∗ ψ. Lemma 1 introduced
low-frequency functions f0, with slow variations. Roughly
speaking, since supp f0 ⊂ B∞(ε/2), we can define a “minimal
wavelength” λf0 := 2π/ε. Then,

∥h∥2 ≪
2π

ε
=⇒ f0(x+ h) ≈ f0(x), (25)

which leads to

(f ∗ Reψ)(x+ h) ≈
∣∣(f ∗ ψ)(x)∣∣ g(x, h). (26)

On the one hand, we consider a continuous equivalent of
the CGMod operator Cm[W] as introduced in (19). Such an
operator, denoted by C[ψ], is defined, for any f ∈ L2

R(R2), by

C[ψ](f) : x 7→
∣∣(f ∗ ψ)(x)∣∣ . (27)

On the other hand, we consider the continuous counterpart of
RGPool as introduced in (22). It is defined as the maximum
value of f ∗Reψ over a sliding spatial window of size r > 0.
This is possible because f and Reψ both belong to L2

R(R2),
and therefore f∗Reψ is continuous. Such an operator, denoted
by Rr[ψ], is defined, for any f ∈ L2

R(R2), by

Rr[ψ](f) : x 7→ max
∥h∥∞≤r

(f ∗ Reψ)(x+ h). (28)

For the sake of concision, the parameter between square
brackets is ignored from now on.

If r ≪ 2π/ε, then (26) is valid for any h ∈ B∞(r). Then,
using (27) and (28), we get

r ≪ 2π/ε =⇒ Rrf(x) ≈ Cf(x) max
∥h∥∞≤r

g(x, h). (29)

Using the periodicity of g, we can show that, if r ≥ π
∥ν∥2

, then
h 7→ g(x, h) reaches its maximum value (= 1) on B∞(r).
We therefore get

π

∥ν∥2
≤ r ≪ 2π

ε
=⇒ Rrf(x) ≈ Cf(x). (30)

An exact quantification of the above approximation remains
an open question. In the current paper, it will be provided as
a conjecture, for the discrete framework.

2) Adaptation to Discrete 2D Sequences: We consider an
input image X ∈ l2R(Z2), a subsampling factor m ∈ N∗ and a
grid half-size q ∈ N∗. We seek a relationship between

Ypool := Rm, qX and Ymod := C2mX, (31)

where C2m and Rm, q have been defined in (19) and (22),
respectively. Note that, since max pooling also performs
subsampling, both CGMod and RGPool operators, as defined
in (31), have a subsampling factor equal to 2m.
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We now use the sampling results obtained in section III-C.
Let fX and ψW ∈ Us denote the functions satisfying (11). On
the one hand, we apply (13) in Proposition 2 to Ymod. For
any n ∈ Z2,

C2mX[n] = CfX(xn), (32)

where xn := 2msn. On the other hand, we postulate that

Rm, qX[n] = RrfX(xn) (33)

for a certain value of r ∈ R∗
+. Then, (30) implies Ymod ≈

Ypool. However, as shown below, (33) is not satisfied. Ac-
cording to (22) and (23), we have

Rm, qX[n] = max
∥k∥∞≤q

Re
((

X ∗W
)
↓ m

)
[2n+ k]. (34)

Therefore, according to (13) in Proposition 2, we get

Rm, qX[n] = max
∥k∥∞≤q

(fX ∗ ReψW) (xn + hk) , (35)

with
xn := 2msn and hk := msk. (36)

By considering rq := ms
(
q + 1

2

)
, we get a variant of (33) in

which the maximum is evaluated on a discrete grid of (2q +
1)2 elements, instead of the continuous region B∞(rq). As a
consequence, (29) is replaced in the discrete framework by

q ≪ 2π/(mκ) =⇒
Rm, qX[n] ≈ C2mX[n] max

∥k∥∞≤q
gX
(
xn, hk

)
, (37)

with
gX : (x, h) 7→ cos

(
⟨ν, h⟩ − ηX(x)

)
, (38)

with ν := ξ/s, and where ηX denotes the phase of fX ∗
ψW. Unlike the continuous case, even if the window size rq
is large enough, the existence of k ∈ {−q . . q}2 such that
gX
(
xn, hk

)
= 1 is not guaranteed, as illustrated in Fig. 2 with

q = 1. Instead, we can only seek a probabilistic estimation of
the relative quadratic error between Ypool and Ymod.

Approximation (37) implies

q ≪ 2π/(mκ) =⇒ ∥C2mX−Rm, qX∥2 ≈ ∥δm, qX∥2 , (39)

where δm, qX ∈ l2R(Z2) is defined such that, for any n ∈ Z2,

δm, qX[n] := C2mX[n]

(
1− max

∥k∥∞≤q
gX
(
xn, hk

))
. (40)

Expression (39) suggests that the ratio between the left and
right terms can be bounded by a quantity which only depends
on the product mκ (subsampling factor × frequency localiza-
tion) and the grid half-size q:∥∥C2mX−Rm, qX

∥∥
2
≤ (1 + βq(mκ))

∥∥δm, qX
∥∥
2
, (41)

for some function βq : R+ → R+ to be characterized. This is
the goal of the following conjecture.

Conjecture 1: There exists

βq : R+ → R+ satisfying βq(t) = O(t), (42)

independent from the characteristic frequency ξ ∈ [−π, π]2,
such that, for any X ∈ l2R(Z2), (41) is satisfied.

We now seek a probabilistic bound for
∥∥δm, qX

∥∥
2
.

Fig. 2. Search for the maximum value of h 7→ gX(x, h) over a discrete
grid of size 3× 3, i.e., q = 1. This figure displays 3 examples with different
frequencies ν := ξ/s and phases ηX(x). Hopefully the result will be close
to the true maximum (left), but there are some pathological cases in which
all points in the grid fall into pits (middle and right).

E. Probabilistic Framework

1) Notations: In what follows, for any z ∈ C∗, we denote
by ∠z ∈ [0, 2π[ the argument of z. We now consider the unit
circle S1 ⊂ C. For any z, z′ ∈ S1, the angle between z and
z′ is given by ∠(z∗z′). We then denote by [z, z′]S1 ⊂ S1 the
arc going from z to z′ counterclockwise:

[z, z′]S1 :=
{
z′′ ∈ S1

∣∣ ∠(z∗z′′) ≤ ∠(z∗z′)
}
. (43)

By using the relation cosα = Re(eiα), (36) and (38) yield,
for any n ∈ Z2 and any k ∈ {−q . . q}2,

gX
(
xn, hk

)
= Re

(
zX(xn)

∗ zk
)
, (44)

where we have defined

zX(x) := ei ηX(x) and zk := ei⟨ν,hk⟩ = eim⟨ξ,k⟩. (45)

Let us denote Nq := (2q + 1)2. We consider a se-
quence, denoted by

(
z
(q)
i

)
i∈{0..N0−1}, obtained by ordering

{zk}k∈{−q..q}2 in ascending order of their arguments:

0 = θ
(q)
0 ≤ · · · ≤ θ(q)Nq−1 < 2π, (46)

where we have denoted θ
(q)
i := ∠

(
z
(q)
i

)
. Besides, we extend

the notations with θ(q)Nq
:= 2π and z(q)Nq

:= z
(q)
0 . Then, we split

S1 into Nq arcs delimited by
(
z
(q)
i

)
i∈{0..N0−1}:

A
(q)
i :=

{[
z
(q)
i , z

(q)
i+1

]
S1 if θ(q)i+1 − θ

(q)
i < 2π;

S1 otherwise.
(47)

Finally, for any i ∈ {0 . . Nq − 1}, we denote by ω
(q)
i :=

θ
(q)
i+1 − θ

(q)
i the angular measure of arc A

(q)
i .

Remark 2: According to (45), the above quantities depend
on the product m × ξ ∈ R2. Therefore, we will sometimes
write ω(q)

i (mξ), where ω(q)
i is defined as a function of R2:

ω
(q)
i : R2 → [0, 2π] . (48)
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2) Random Variables: From now on, input X is considered
as discrete 2D stochastic processes. In order to “randomize”
fX introduced in (11), we define a continuous stochastic
process from X, denoted by FX, such that

∀x ∈ R2, FX(x) :=
∑
n∈Z2

X[n]ϕ(s)n (x). (49)

Now, we consider the following stochastic processes, which
are parameterized by X:

MX := |FX ∗ ψ|; HX := ∠(FX ∗ ψ); ZX := eiHX , (50)

and, for any k ∈ {−q . . q}2,

GX,k := Re(Z∗
Xzk); GmaxX := max

∥k∥∞≤q
GX,k. (51)

For any x ∈ R2, fX(x) and ηX(x), such as introduced
in (11) and (38), are respectively drawn from FX(x) and
HX(x). Then, zX(x) such as introduced in (45) is a realization
of ZX(x). Consequently, according to (44), gX

(
x, hk

)
is a

realization of GX,k(x). Besides, according to the definition
of CGMod in (19) and xn in (36), Proposition 2 implies that

MX(xn) = C2mX[n]. (52)

We remind that ξ ∈ [−π, π]2 and κ ∈ ]0, 2π] respectively
denote the center and size of the Fourier support of W,
as introduced in section III-C. To compute the expected
discrepancy between Ypool and Ymod, we assume that

∥ξ∥2 ≫ 2π/M ; (53)
∥ξ∥2 ≫ κ, (54)

where M ∈ N∗ denotes the support size of input images. These
assumptions exclude low-frequency filters from the scope of
our study. We then state the following hypotheses, for which
a justification is provided in Appendix H.

Hypothesis 1: For any x ∈ R2, ZX(x) is uniformly
distributed on S1.

Hypothesis 2: For any n ∈ N∗ and x, y1, . . . , yn ∈ R2,
the random variables MX(yi) for i ∈ {1 . . n} are jointly
independent of ZX(x).

F. Expected Quadratic Error between RGPool and CGMod

In this section, we propose to estimate the expected value
of the stochastic quadratic error P̃

2

X, defined such that

P̃X := ∥C2mX−Rm, qX∥2 / ∥C2mX∥2 . (55)

According to (31), this is an estimation of the relative error
between Ymod and Ypool.

First, let us reformulate δm, qX, introduced in (40), using
the probabilistic framework. According to (44) and (51), we
have, for any n ∈ Z2,

δm, qX[n] := C2mX[n] (1−GmaxX(xn)). (56)

We now consider the stochastic process QX := 1 − GmaxX,
and the random variable

Q̃X := ∥δm, qX∥2 / ∥C2mX∥2 . (57)

The next steps are as follows: 1) at the pixel level, show that
E[QX(x)

2] depends on the filter frequency ξ, and remains
close to zero with some exceptions; 2) at the image level, show
that the expected value of Q̃

2

X is equal to the latter quantity;
3) use Conjecture 1, which states that P̃X ≈ Q̃X, to deduce
an upper bound on the expected value of P̃

2

X.
The first point is established in Proposition 4 below, and the

two remaining ones are the purpose of Theorem 2.
Proposition 4: Assuming Hypothesis 1, the expected value

of QX(x)
2 is independent from the choice of x ∈ R2, and

E
[
QX(x)

2
]
= γq(mξ)2, (58)

where we have defined

γq :ζ 7→

√√√√3

2
+

1

4π

Nq−1∑
i=0

(
sinω

(q)
i (ζ)−8 sin ω

(q)
i (ζ)

2

)
, (59)

with ω(q)
i : R2 7→ [0, 2π] being introduced in (48).

Proof: See Appendix J.
We consider an ideal scenario where the zk are evenly

spaced on S1. Then, an order 2 Taylor expansion yields
γq(ζ) = o(1/q2), meaning that Q̃X quickly vanishes when
the grid half-size q increases. Fig. 4 displays ξ 7→ γq(mξ)2

for ξ ∈ [−π, π]2, with m = 4 and q = 1 as in AlexNet.
We notice that, for the major part of the Fourier domain, γq
remains close to 0. However, we observe a regular pattern
of dark regions, which correspond to pathological frequencies
where the repartition of zk is unbalanced.

So far, we established a result at the pixel level. Before
stating Theorem 2, we need the following intermediate result.

Proposition 5: We consider the random variable

S̃X := ∥C2mX∥2 . (60)

Under Hypothesis 2, for any x ∈ R2,
• ZX(x) is independent of S̃X;
• ZX(x), MX(x) are conditionally independent given S̃X.

Proof: See Appendix K.
Finally, Propositions 4 and 5 yield the following theorem. It

provides an upper bound on the expected value of the relative
quadratic error P̃

2

X, such as defined in (55).
Theorem 2: We assume that Conjecture 1 is true. Then,

under Hypotheses 1 and 2, we have

E
[
P̃

2

X

]
≤ (1 + βq(mκ))

2 γq(mξ)2, (61)

with βq and γq being introduced in (42) and (59), respectively.
Proof: See Appendix L.

G. Shift Invariance of RGPool Outputs

In this section, we present the main theoretical claim of this
paper. Based on the previous results, we provide a probabilistic
measure of shift invariance for RGPool operators.

Theorem 3: Let W ∈ G
(
ξ, κ

)
denote a discrete Gabor-like

filter, m ∈ N∗ a subsampling factor and q ∈ N∗ a grid half-
size. We consider a stochastic process X whose realizations
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are elements of l2R(Z2). We assume that Hypotheses 1 & 2 are
satisfied.8 Besides, we assume Conjecture 1.

Given a translation vector u ∈ R2, we consider the
following random variable:

R̃X,u :=
∥∥Rm, q(TuX)−Rm, qX

∥∥
2
/ ∥C2mX∥2 . (62)

Then, under the following conditions:

κ ≤ π/m and ∥u∥1 ≤ π/κ, (63)

we have

E
[
R̃X,u

]
≤ 2 (1 + βq(mκ)) γq(mξ) + α(κu), (64)

where α, βq and γq are defined in (8), (42) and (59).
Proof: See Appendix M.

If κ is sufficiently small, then α(κu) and βq(mκ) become
negligible with respect to γq(mξ), and the bound given in (64)
is roughly equal to 2 γq(mξ). Theorem 3 therefore provides a
validity domain for shift invariance of RGPool operators, as
illustrated in Fig. 4 with q = 1.

Remark 3: The stochastic discrepancy introduced in (62)
is estimated relatively to the CGMod output. This choice is
motivated by the perfect shift invariance of its norm, as shown
in Proposition 3.

Remark 4: In practice, most of the time max pooling is
performed on a grid of size 3 × 3; therefore q = 1. For the
sake of concision, in the remaining of this paper, we will drop
q in the notations, which implicitly means q = 1.

IV. STANDARD CNNS IN OUR FRAMEWORK

In this section, we show how the theoretical results es-
tablished above on single-channel inputs can be applied to
standard CNNs such as AlexNet or ResNet, which are usually
designed for multichannel inputs—e.g., RGB images.

A. Background

We focus on the first layers of a classical CNN architecture,
in which input images are propagated through a convolution
layer followed by rectified linear unit and max pooling oper-
ators, as described below.

We denote by K and L ∈ N∗ the number of input and output
channels, respectively. The convolution layer is characterized
by a trainable weight tensor V ∈

(
l2R(Z2)

)L×K
with a finite

support, a bias vector b ∈ RL and a subsampling factor m ∈
N∗. Considering an input image X ∈

(
l2R(Z2)

)K
with finite

support, we denote by A ∈
(
l2R(Z2)

)L
the output of the max

pooling layer. Then we have, for any l ∈ {0 . . L− 1},

Al := (MaxPool ◦ReLU)

(
bl+

K−1∑
k=0

(
Xk ∗Vlk

)
↓m

)
, (65)

where MaxPool has been introduced in (23) with q = 1 (see
Remark 4), and ReLU is defined such that, for any X′ ∈
l2R(Z2) and any n ∈ Z2, ReLU(X′)[n] := max

(
0,X′[n]

)
.

8We can easily prove that these properties are independent from the choice
of sampling interval s > 0.

Expression (65) also introduces a bias notation, defined such
that (b+X′)[n] = b+X′[n] for any n ∈ Z2.

In many cases, input images are composed of three RGB
channels; therefore K = 3. The other parameters depend on
the chosen CNN architecture. For example, in AlexNet, the
weight tensor V is supported in a region of size 11× 11 and
the subsampling factor m is equal to 4. ResNet models use
kernels of size 7× 7 with m = 2.

B. Making CNNs Compatible with our Theoretical Results

The bias and ReLU are outside the scope of our study.
However, we can show that Al = ReLU(bl + Ypooll), where
we have defined Ypooll := R

(l)
m X, with

R(l)
m : X 7→ MaxPool

(
K−1∑
k=0

(
Xk ∗Vlk

)
↓ m

)
. (66)

For the sake of our study, we therefore consider a strictly
equivalent CNN architecture where the bias and ReLU are
computed after the max pooling layer. We then focus on the
intermediate output Ypool ∈

(
l2R(Z2)

)L
.

Remark 5: In many architectures including ResNet, bias
b is replaced by a batch normalization layer with affine
transformation [49]. Swapping such a layer with max pool-
ing isn’t straightforward, but can nevertheless be done with
caution. Therefore, we can once again focus on Ypool such as
introduced in (66).

In what follows, we assume that the network has been
trained on a natural image dataset such as ImageNet. Let L
denote the subset of output channels l ∈ {0 . . L− 1} such that,
for any k ∈ {0 . .K − 1}, Vlk behaves like a band-pass filter
(see Fig. 1). They are referred to as Gabor channels. We would
like to apply the theoretical results obtained in section III on
Ypooll, for any l ∈ L.

To do so, we need to show that Ypooll is the output of a
RGPool operator such as introduced in (22), for some weight
and input to be defined. This is in general not possible though,
because the sum operator in (66) cannot be interchanged with
max pooling. To solve this problem, we state the following
hypothesis, applied on any Gabor channel l ∈ L. It states that
the trained kernels Vlk for k ∈ {0 . .K − 1} are identical, up
to a multiplicative constant.

Hypothesis 3: Let Ṽl := 1
K

∑K−1
k=0 Vlk denote the mean

kernel of the l-th output channel. Then, for any l ∈ L, there
exists µl ∈ RK such that

∀k ∈ {0 . .K − 1} , Vlk = µlkṼl. (67)

Intuitively, when looking at Gabor-like kernels in Fig. 1,
they roughly appear grayscale. This observation supports Hy-
pothesis 3 with µlk ≈ 1. A more accurate justification for this
hypothesis is provided in Appendix I.

Then, considering the linear combination X̃l := µ⊤
l X, we

apply Hypothesis 3 to (66):

∀l ∈ L, Ypooll = R
(l)
m X = Rm

[
W̃l

]
(X̃l), (68)
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TABLE I
PERCENTAGE OF ENERGY WITHIN A FOURIER WINDOW OF SIZE κ× κ,

FOR GABOR-LIKE FILTERS {W̃l}l∈L

MODEL NB CHANNELS SIZE OF L κ MEAN RATIO

ALEXNET 64 26 π/4 67%

RESNET-34 64 22 π/2 76%

where W̃l ∈ l2(Z2) denotes the complex-valued companion
of Ṽl satisfying (5). We also define C(l)2m and its associated
output feature map Ymodl, such that

∀l ∈ L, Ymodl := C
(l)
2mX = C2m

[
W̃l

]
(X̃l). (69)

Besides, the following hypothesis states that, for any l ∈ L,
W̃l is a discrete Gabor-like filter for which the Fourier support
size is shared among the Gabor channels.

Hypothesis 4: There exists κ ≤ π/m such that, for any
Gabor channel l ∈ L,

∃ξl ∈ [−π, π]2 : W̃l ∈ G
(
ξl, κ

)
. (70)

Let l ∈ L. According to Hypotheses 3–4, R(l)
m and C(l)2m

such as defined in (68) and (69) can be respectively qualified
as RGPool and CGMod operators. We now consider

P̃
(l)

X :=
∥∥C(l)2mX−R(l)

m X
∥∥
2
/
∥∥C(l)2mX

∥∥
2
; (71)

R̃
(l)

X,u :=
∥∥R(l)

m (TuX)−R(l)
m X

∥∥
2
/
∥∥C(l)2mX

∥∥
2
. (72)

Then, under Hypotheses 1–4, we can apply Theorems 2 and 3
to the above random variables, thus providing a shift invariance
measure for a subset of outputs in CNNs:

E
[
P̃

(l)

X

2]
≤ (1 + β(mκ))2 γ(mξl)

2; (73)

E
[
R̃

(l)

X,u

]
≤ 2 (1 + β(mκ)) γ(mξl) + α(κu), (74)

where ξl has been introduced in (70).
In practice, Hypothesis 4 cannot be exactly satisfied. This is

because Ṽl is finitely supported, and thus its power spectrum
cannot be exactly zero on a region with non-zero measure. To
evaluate how close we are to this ideal situation, we measured
the maximum percentage of energy within a window of size
κ × κ in the Fourier domain, with respect to the whole filter
Wl. We then computed the mean percentage over all the Gabor
channels l ∈ L. The results are shown in Table I, for AlexNet
and ResNet after training with ImageNet. The window size κ
has been set to its highest admissible value, i.e., π/m.

We notice that residual energy outside the window of
interest is quite high, especially for AlexNet. Therefore, Wl

deviates from a “perfect” Gabor-like filter, which may lead to
higher instabilities.

V. OPERATORS BASED ON THE DUAL-TREE WAVELET
PACKET TRANSFORM

In order to validate the results established in section III, we
consider the dual-tree wavelet packet transform (DT-CWPT),
a fast algorithm which achieves subsampled convolutions with
discrete Gabor-like filters. As explained below, DT-CWPT

spawns a set of filters which tiles the whole frequency domain
in a regular fashion. Furthermore, increasing the subsampling
factor m results in a decreased Fourier support size κ = π/m,
therefore matching the condition stated in (63). This is also
consistent with what is observed in CNNs such as AlexNet
or ResNet. DT-CWPT thus provides a convenient framework
to emulate the behavior of an actual CNN while testing
Theorems 1–3 in a controlled environment.

A. Discrete Wavelet Packet Transform

This is a brief overview on the classical, real-valued 2D
wavelet packet transform (WPT) algorithm [48, p. 377], which
is the starting point for building the redundant, complex-valued
DT-CWPT.

Given a pair of low- and high-pass 1D orthogonal filters
h, g ∈ l2R(Z) satisfying a quadrature mirror filter (QMF)
relationship, we consider a separable 2D filter bank (FB),
denoted by G := (Gl)l∈{0..3}, defined by

G0 = h⊗ h; G1 = h⊗ g; G2 = g ⊗ h; G3 = g ⊗ g. (75)

Let X ∈ l2R(Z2). The decomposition starts with X
(0)
0 = X.

Given j ∈ N, suppose that we have computed 4j sequences
of wavelet packet coefficients at stage j, denoted by X

(j)
l ∈

l2R(Z2) for each l ∈
{
0 . . 4j − 1

}
. They are referred to as

feature maps.
At stage j + 1, we compute a new representation of X

with increased frequency resolution—and decreased spatial
resolution. It is obtained by further decomposing each feature
map X

(j)
l into four sub-sequences, using subsampled (or

strided) convolutions with kernels Gk, for each k ∈ {0 . . 3}:

∀k ∈ {0 . . 3} , X(j+1)
4l+k =

(
X

(j)
l ∗Gk

)
↓ 2. (76)

The algorithm stops after reaching the desired number of
stages J > 0—referred to as decomposition depth. Then,

X(J) :=
(
X

(J)
l

)
l∈{0..4J−1} (77)

constitutes a multichannel representation of X in an orthonor-
mal basis, from which the original image can be perfectly
reconstructed.

The following proposition introduces an array of resulting
kernels V(J) which is illustrated in Fig. 3 with J = 2.

Proposition 6: For any l ∈
{
0 . . 4J − 1

}
, there exists

V
(J)
l ∈ l2R(Z2) such that

X
(J)
l =

(
X ∗V(J)

l

)
↓ 2J . (78)

Proof: See Appendix N.

B. Dual-Tree Complex Wavelet Packet Transform

Despite having interesting properties such as sparse signal
representation, WPT is unstable with respect to small shifts
and suffers from a poor directional selectivity. To overcome
this, N. Kingsbury designed a new type of discrete wavelet
transform [29], where images are decomposed in a redundant
frame of nearly-analytic, complex-valued waveforms. It was
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Fig. 3. Resulting kernels V(2) for WPT (left) and W(2) for DT-CWPT
(right), computed with Q-shift orthogonal QMFs of length 10 [50]. They
have been cropped to size 11× 11 for the sake of visibility. The right part of
the figure displays 32 complex filters, alternatively represented by their real
and imaginary parts. The feature maps related to 1⃝ and 2⃝ are obtained with
two distinct formulas, which are summarized in (82). Illustration from [31].

later extended to the wavelet packet framework [30]. The latter
operation, referred to as dual-tree complex wavelet packet
transform (DT-CWPT), is performed as follows.

Let (h0, g0) and (h1, g1) denote two pairs of QMFs as
defined in section V-A, satisfying the half-sample delay con-
dition:

∀ω ∈ [−π, π] , ĥ1(ω) = e−iω/2 ĥ0(ω). (79)

Then, for any k ∈ {0 . . 3}, we build a two-dimensional FB
Gk := (Gk, l)l∈{0..3} similarly to (75):

Gk, 0 = hi ⊗ hj ; Gk, 1 = hi ⊗ gj ; (80)
Gk, 2 = gi ⊗ hj ; Gk, 3 = gi ⊗ gj , (81)

where i, j ∈ {0, 1} are defined such that k = 2× i+ j.9

Let J > 0 denote a decomposition depth. Using each of
the four FBs G0−3 as defined above, we assume that we have
decomposed an input image X into four multichannel WPT
representations X

(J)
0−3, each of which satisfies (76) and (77).

Then, for any l ∈
{
0 . . 4J − 1

}
, the following complex feature

maps are computed: Z
(J)
l

Z
(J)

4J+l

 =

1 −1

1 1

X
(J)
0, l

X
(J)
3, l

+ i

1 1

1 −1

X
(J)
2, l

X
(J)
1, l

 .

(82)
We denote by LJ := 2 · 4J the number of output feature

maps. Then,

Z(J) :=
(
Z
(J)
l

)
l∈{0..LJ−1} (83)

constitutes a complex-valued, four-time redundant multichan-
nel representation of X from which the original image can be
reconstructed.

As for standard WPT, the following proposition introduces
an array of resulting (complex-valued) kernels W(J) for which
a graphical representation is provided in Fig. 3 with J = 2.

9Actually, the FB design requires some technicalities which are not de-
scribed here.

Proposition 7: For any l ∈ {0 . . LJ − 1}, there exists
W

(J)
l ∈ l2(Z2) such that

Z
(J)
l =

(
X ∗W(J)

l

)
↓ 2J . (84)

Proof: See Appendix O.

C. Invariance Results Applied to the Dual-Tree Framework

We assume that h0 is a Shannon filter, such that ĥ0(ω) :=√
2 if ω ∈

[
−π

2 ,
π
2

]
and 0 otherwise. Let J ∈ N∗ denote the

number of decomposition stages. We consider the resulting
kernels W

(J)
l satisfying (84). The following hypothesis states

that DT-CWPT tiles the frequency plane with a square grid.

Hypothesis 5: For any l ∈ {0 . . LJ − 1}, there exists σ(J)
l ∈{

−2J . . 2J − 1
}2

such that

W
(J)
l ∈ G

(
ξ
(J)
l , κJ

)
, (85)

where we have defined

ξ
(J)
l :=

(
σ

(J)
l +

1

2

)
π

2J
and κJ :=

π

2J
. (86)

It can be shown that Hypothesis 5 is an asymptotic result,
when J goes to ∞. In reality, the Fourier support of W(J)

l is
contained in four symmetric square regions of size κJ . If the
dual filter h1 satisfies the half-sample delay condition (79),
then the energy of W

(J)
l goes to 0 in all but one of the four

regions (relatively to the filter’s total energy). We nevertheless
consider Hypothesis 5 as reasonable when J ≥ 2.10

Then, according to (84) and (85), we can apply Theorems 1–
3 to the dual-tree framework. More precisely, for any output
channel l ∈ {0 . . LJ − 1}, we consider

Y
(J)
pooll

:= R(J)
l X and Y

(J)
modl

:= C(J)l X, (87)

where we have denoted, for the sake of readability,

R(J)
l := RmJ

[
W

(J)
l

]
and C(J)l := C2mJ

[
W

(J)
l

]
, (88)

with mJ := 2J−1. We recall that Rm and C2m have been
introduced in (31) with q ← 1, for any m ∈ N∗.

Both R(J)
l and C(J)l perform DT-CWPT with J decompo-

sition stages. However, the max pooling operator requires an
extra level of subsampling. To counterbalance this, when com-
puting Y

(J)
pool, the last stage of DT-CWPT decomposition must

be performed without subsampling, at the cost of increased
redundancy.11 This is why mJ := 2J−1 instead of 2J .

In order Theorems 1 and 3 to be applicable, we need to
check that conditions stated in (63) are satisfied. Using the
DT-CWPT framework, they become

κJ ≤
π

2J−1
and ∥u∥1 ≤

π

κJ
= 2J . (89)

The first condition is always met, according to (86). As for
the second one, it establishes a limit on ∥u∥1 above which

10This asymptotic result is not true for “edge filters”, i.e., when∥∥ξ(J)
l

∥∥
∞ =

(
1 − 2−(J+1)

)
π. In this case, a small fraction of the filter’s

energy remains located at the far end of the Fourier domain [30]. However,
this edge effect is ignored and we still consider Hypothesis 5 as reasonable.

11This is similar to the concept of stationary wavelet transform [51].
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shift invariance can no longer be estimated. Note however
that shifting the input by 2J pixels results in a 1-pixel output
shift. Therefore, R(J)

l (TuX) can always be compared with a
shifted version of R(J)

l X. We then get a partial measure of
shift equivariance.

In the Shannon setting, h0[n], g0[n], h1[n] and g1[n] decay
in O(1/n), which makes them difficult to approximate in
practice. It requires very large vectors to avoid numerical
instabilities. Practical implementations use fast-decaying filters
such as Meyer QMFs [52], or finite-length filters which
approximate the half-sample delay condition [53]. Therefore,
residual energy can be observed outside the Fourier win-
dows introduced in Hypothesis 5. To counterbalance this, we
relax this hypothesis by increasing the window size up to
κJ := π/2J−1, which is closer to what is observed in standard
convolutions layers (see Table I).

VI. EXPERIMENTS AND RESULTS

In this section, we experimentally validate our theoretical
results. To do so, we built operators based on DT-CWPT, as
explained in section V. Using a dataset of natural images, we
measured the mean discrepancy between RGPool and CGMod
outputs, and evaluated the shift invariance of both models.

Dual-tree decompositions have been performed with Q-
shift orthogonal filters of length 10 [50], which approximately
meets the half-sample delay condition (79).

Our implementation is based on PyTorch. The models were
evaluated on the validation set of ImageNet ILSVRC2012 [54],
which contains Ndata := 50 000 images.

A. Discrepancies between RGPool and CGMod
Each image n ∈ {0 . . Ndata − 1} in the dataset was con-

verted to grayscale, from which a center crop of size 224×224
was extracted. We denote by Xn ∈ l2R(Z2) the resulting input
feature map. For any l ∈ {0 . . LJ − 1}, we denote by Y

(J)
poolnl

and Y
(J)
modnl

the outputs satisfying (87) with X← Xn.
Then, the relative quadratic error between Y

(J)
modnl

and
Y

(J)
poolnl

was computed. It is defined by the square of

ρ
(J)
nl :=

∥∥Y(J)
modnl

−Y
(J)
poolnl

∥∥
2
/
∥∥Y(J)

modnl

∥∥
2
. (90)

Finally, the for each output channel l, an empirical estimate for
E
[
P̃

2

X

]
such as introduced in (55) was obtained by averaging(

ρ
(J)
nl

)2
over the whole dataset. We denote by

(
ρ̃
(J)
l

)2
the

corresponding quantity.
Since R(J)

l and C(J)l are parameterized by W
(J)
l , the value

of
(
ρ̃
(J)
l

)2
depends on the filter’s characteristic frequency

ξ
(J)
l . According to Hypothesis 5, these frequencies form a

regular grid in the Fourier domain. This provides a visual
representation of

(
ρ̃
(J)
l

)2
, as shown in Fig. 5. We can observe

a regular pattern of dark spots. More precisely, high discrepan-
cies between max pooling and modulus seem to occur when

the support of Ŵ
(J)
l is located in a dark region of Fig. 4.

This result corroborates the theoretical study, which states
that high discrepancies are expected for certain pathological
frequencies, due to the search for a maximum value over a
discrete grid—see Fig. 2.

Fig. 4. γ(mξ)2 as a function of the kernel characteristic frequency ξ ∈
[−π, π]2. According to Theorem 2, this quantity provides an approximate
bound for the expected quadratic error between RGPool and CGMod outputs.
The subsampling factor m has been set to 2 as in ResNet (left), and 4 as
in AlexNet (right). The bright regions correspond to frequencies for which
the two outputs are expected to be similar. However, in the dark regions,
pathological cases such as illustrated in Fig. 2 are more likely to occur.

Fig. 5. Relative quadratic error between the outputs of RGPool and CGMod.
For each wavelet packet channel l ∈ {0 . . LJ − 1},

(
ρ̃
(J)
l

)2 is represented
as a grayscale pixel centered in ξ

(J)
l , such as introduced in (86). Since the

subsampling factor mJ is equal to 2J−1, these empirical estimates can be
compared with the left and right parts of Fig. 4. The plots are symmetrized
to account for the complex conjugate feature maps.

Fig. 6. Empirical measure of horizontal shift invariance of RGPool and
CGMod outputs. For each l ∈ {0 . . LJ − 1}, ρ̃

(J)
pooll

(top) and ρ̃
(J)
modl

(bottom) are represented as a grayscale pixel centered in ξ
(J)
l , such as

introduced in (86).
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B. Shift invariance

For each input image Xn previously converted to grayscale,
two crops of size 224 × 224 were extracted, such that the
corresponding sequences Xn and X′

n are shifted by one pixel
along the x-axis.

From these inputs, the following quantity was then com-
puted:

ρ
(J)
poolnl

:=
∥∥Y′(J)

poolnl
−Y

(J)
poolnl

∥∥
2
/
∥∥Y(J)

modnl

∥∥
2
, (91)

where Y
(J)
pool, Y

′(J)
pool and Y

(J)
mod satisfy (87) with X ← Xn or

X′
n. Finally, for each output channel l ∈ {0 . . LJ − 1}, an

empirical estimate for E
[
R̃X,u

]
such as introduced in (62),

with u := (1, 0), was obtained by averaging ρ(J)poolnl
over the

whole dataset. We denote by ρ̃(J)pooll
the corresponding quantity.

We point out that shift invariance is measured relatively to the
norm of the CGMod output, as explained in Remark 3.

On the other hand, the same procedure was applied on the
CGMod operators:

ρ
(J)
modnl

:=
∥∥Y′(J)

modnl
−Y

(J)
modnl

∥∥
2
/
∥∥Y(J)

modnl

∥∥
2
, (92)

and ρ̃
(J)
modl

was obtained as before by averaging ρ
(J)
modnl

over
the whole dataset.

A visual representation of ρ̃(J)pooll
and ρ̃(J)modl

are provided in
Fig. 6. Two observations can be drawn here.

When the filter is horizontally oriented, the corresponding
output is highly stable with respect to horizontal shifts. This
can be explained by noticing that such kernels perform low-
pass filtering along the x axis. The exact transposed phe-
nomenon occurs for vertical shifts (not shown in this paper).

Elsewhere, we observe that high discrepancies between
RGPool and CGMod outputs (Fig. 5) are correlated with shift
instability of RGPool (Fig. 6, top). This is in line with (61)
and (64) in Theorems 2–3. Note that CGMod outputs are
nearly shift invariant regardless the characteristic frequency
ξ
(J)
l (Fig. 6, bottom), as predicted by Theorem 1 (20).

VII. CONCLUSION

In this paper, we studied shift invariance properties captured
by the max pooling operator, when applied on top of a
convolution layer with Gabor-like kernels. More precisely, we
established a validity domain for near-shift invariance, and
confirmed our predictions with an experimental setting based
on the dual-tree complex wavelet packet transform.

As shown in this paper, the CGMod operator acts like a
proxy for RGPool, extracting comparable features with higher
stability. This result suggests a way to build an architecture
sharing the structure and behavior of a standard network,
except that shift invariance would be improved. This could be
done by considering a DT-CWPT-based twin model such as
introduced in our workshop paper [31], and replacing RGPool
by CGMod operators as done above in a deterministic context.

Since CNNs generally implement successive blocks of con-
volution and pooling layers, another line of research would be
to extend our results to a cascade of RGPool operators. Our
work is thus an important step towards deeper understanding
of popular networks, based on the wavelet theory.

APPENDIX A
PROOF OF LEMMA 1

Proof: We can show that, for any ω ∈ R2,

f̂0(ω) = ̂(f ∗ ψ)(ω − ν) = Tν(f̂ ψ̂)(ω).

By hypothesis on ψ, we have supp ψ̂ ⊂ B∞(−ν, ε/2), which
yields the result.

APPENDIX B
PROOF OF PROPOSITION 1

Proof: Using the 2D Plancherel formula, we compute

∥Thf0 − f0∥2L2

=
1

4π2

∥∥∥T̂hf0 − f̂0∥∥∥2
L2

=
1

4π2

∫∫
B∞(ε/2)

∣∣∣f̂0(ω)
∣∣∣2 ∣∣∣e−i⟨h,ω⟩ − 1

∣∣∣2 d2ω

=
1

4π2

∫∫
B∞(ε/2)

∣∣∣f̂0(ω)
∣∣∣2 (2− 2 cos ⟨h, ω⟩

)
d2ω.

The integral is computed on a compact domain because,
according to Lemma 1, supp f̂0 ⊂ B∞(ε/2). Now, we use
the Cauchy-Schwarz inequality to compute:

∀ω ∈ B∞(ε/2), |⟨h, ω⟩| ≤ ∥h∥1 · ∥ω∥∞
≤ ε

2
∥h∥1 .

By hypothesis on h, ε
2 ∥h∥1 ≤

π
2 , and thus

∥Thf0 − f0∥2L2 ≤
(
2− 2 cos

ε ∥h∥1
2

)
∥f0∥2L2 .

Finally, since cos t ≥ 1− t2

2 , we get (7).

APPENDIX C
PROOF OF LEMMA 2

Proof: Expression (9) is obtained by adapting (3.2) and
(3.3) in [48] to the 2D case. Then, by combining (9) with the
Plancherel formula, we get

∥g∥2L2 =
1

4π2
∥ĝ∥2L2

=
1

4π2

∫∫
B∞(π/s)

|ĝ(ω)|2 d2ω

=
1

4π2

∫∫
B∞(π/s)

∣∣s Ŷ(sω)
∣∣2 d2ω.

The integral is performed on B∞(π/s) because g ∈ Us. Then,
by applying the change of variable ω′ ← sω, we get

∥g∥2L2 =
1

4π2

∫∫
B∞(π)

∣∣Ŷ(ω′)
∣∣2 d2ω′

=
1

4π2

∥∥Ŷ∥∥2
L2 = ∥Y∥22 ,

hence (10), which concludes the proof.
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APPENDIX D
PROOF OF PROPOSITION 2

Proof: First, fX and ψW are well defined because
X ∈ l2R(Z2) and W ∈ l2(Z2). By construction, ψW ∈ Us.
Thus, (12) is a direct consequence of the Shannon-Whittaker
sampling theorem [48, p. 61], coupled with the orthonormality
of {ϕ(s)n }n∈Z2 . Therefore, using (9) in Lemma 2, we get, for
any ω ∈ B∞(π/s), ψ̂W(ω) = sŴ(sω). Since ψ̂W(ω) = 0
outside B∞(π/s), we deduce that ψW ∈ V

(
ξ/s, κ/s

)
.

We now prove (13). For n ∈ Z2, we compute:

(fX ∗ ψW)(msn)=

∫∫
R2

fX(msn−x)ψ(x) d2x

=

∫∫
R2

∑
k∈Z2

X[k]ϕ
(s)
k (msn−x)ψ(x) d2x

=
∑
k∈Z2

X[k]

∫∫
R2

ϕ
(s)
k (msn−x)ψ(x) d2x.

The sum-integral interchange is possible because X has a finite
support. Then:

(fX ∗ ψW) (msn)

=
∑
k∈Z2

X[k]

∫∫
R2

ψ(x)ϕ(s)
(
s(mn−k)−x

)
d2x

=
∑
k∈Z2

X[k]
(
ψ ∗ ϕ(s)

)(
s(mn− k)

)
.

Since {ϕ(s)n }n∈Z2 is an orthonormal basis of Us, we can
easily show that, for any k′ ∈ Z2, W[k′] =

〈
ψ, ϕ

(s)
k′

〉
=(

ψ ∗ ϕ(s)
)
(sk′). Therefore we get

(fX ∗ ψW) (msn) =
∑
k∈Z2

X[k]W[mn− k]

=
(
X ∗W

)
[mn],

hence the result.

APPENDIX E
PROOF OF LEMMA 3

Proof: Let u ∈ R2. By definition of fX, fTuX and TuX,

fTuX =
∑
n∈Z2

s TsufX(sn)ϕ(s)n . (93)

By construction, fX ∈ Us. Therefore, TsufX ∈ Us. Then,
the Shannon-Whittaker theorem [48, p. 61], coupled with the
orthonormality of {ϕ(s)n }n∈Z2 , implies

s TsufX(sn) =
〈
TsufX, ϕ(s)n

〉
. (94)

Finally, plugging (94) into (93) concludes the proof.

APPENDIX F
PROOF OF THEOREM 1

Proof: We consider

f0 : x 7→ (fX ∗ ψW)(x) ei⟨ξ/s,x⟩, (95)

with fX and ψW satisfying (11). Then,

|fX ∗ ψW| = |f0| and |TsufX ∗ ψW| = |Tsuf0|. (96)

According to Proposition 2, ψW ∈ V
(
ξ/s, κ/s

)
. Therefore,

according to Lemma 1, supp f̂0 ⊂ B∞
(

κ
2s

)
. Moreover, by

hypothesis, κ ≤ 2π/m; thus, B∞
(

κ
2s

)
⊂ B∞

(
π
ms

)
. Therefore,

f0 ∈ Us′ , where we have denoted s′ := ms.
According to (13) (Proposition 2), (18) (Corollary 1) and

(96), we get

CmX[n] = |f0(s′n)| ; (97)
Cm(TuX)[n] = |(Tsuf0)(s′n)| . (98)

Then, using the reverse triangular inequality on (97) and (98),∥∥Cm(TuX)− CmX
∥∥2
2
≤
∑
n∈Z2

∣∣Tsuf0(s′n)− f0(s′n)∣∣2
=
∑
n∈Z2

|g(s′n)|2 =
1

s′2
∥Y∥22 ,

where we have denoted, for any n ∈ Z2, g := Tsuf0−f0 and
Y[n] := s′g(s′n). We have g ∈ Us′ since f0 ∈ Us′ . Then,
according to (10) in Lemma 2, ∥Y∥2 = ∥g∥L2 . Therefore,∥∥Cm(TuX)− CmX

∥∥2
2
≤ 1

s′2
∥g∥2L2 =

1

s′2
∥Tsuf0 − f0∥2L2 .

According to Proposition 1 with ε ← κ/s and h ← su, we
then get the following bound:∥∥Cm(TuX)− CmX

∥∥2
2
≤ α(κu)2

s′2
∥f0∥2L2 . (99)

Besides, according again to Lemma 2, ∥f0∥2L2 = ∥X0∥22,
where X0[n] := s′f0(s

′n) for any n ∈ Z2. Therefore,
according to (97),

∥CmX∥2 =
1

s′
∥X0∥2 =

1

s′
∥f0∥L2 . (100)

Finally, plugging (100) into (99) completes the proof.

APPENDIX G
PROOF OF PROPOSITION 3

Proof: Let X ∈ l2R(Z2) and s > 0. We consider
f0 ∈ L2(R2) as the “low-frequency” function satisfying (95).
Again, we introduce s′ := ms and X0 ∈ l2(Z2) such that
X0[n] := s′f0(s

′n). Moreover, for any Y ∈ l2R(Z2), we
denote:

f
(s′)
Y :=

∑
n∈Z2

Y[n]ϕ(s
′)

n . (101)

On the one hand, in the proof of Theorem 1, we already
got (100). On the other hand, (98) can be rewritten

Cm(TuX)[n] =
∣∣Ts′u′f0(s

′n)
∣∣, (102)

with u′ := u/m. Besides, according to the proof of Theo-
rem 1, f0 ∈ Us′ . Thus, by definition of X0, the Shannon-
Whittaker theorem [48, p. 61] implies that f0 = f

(s′)
X0

such as
defined in (101). Then, using Lemma 3 with X← X0, u← u′

and s← s′, we get

f
(s′)
Tu′X0

= Ts′u′f
(s′)
X0

= Ts′u′f0. (103)

Then, using (12) in Proposition 2 with X← Tu′X0 and s←
s′, and inserting (103) into the result yields

Tu′X0[n] = s′ f
(s′)
Tu′X0

(s′n) = s′ Ts′u′f0(s
′n). (104)
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Therefore, (102) and (104) imply

∥Cm(TuX)∥2 =
1

s′
∥Tu′X0∥2 . (105)

Moreover, since f0 ∈ Us′ , and according to (104), we can use
Lemma 2 with s← s′, g ← Ts′u′f0 and Y ← Tu′X0. We get

∥Tu′X0∥2 = ∥Ts′u′f0∥L2 = ∥f0∥L2 . (106)

Finally, (100), (105) and (106) imply ∥Cm(TuX)∥2 =
∥CmX∥2, which concludes the proof.

APPENDIX H
JUSTIFICATION FOR HYPOTHESES 1 AND 2

Given n ∈ N∗, we define n-th order stationarity of
a given stochastic process F as in [55, p. 152]: for any
n′ ∈ {1 . . n}, (x1, . . . , xn′) ∈ (R2)n

′
and h ∈ R2,

the joint distribution of
(
F (x1), . . . , F (xn′)

)
is identical to

the one of
(
F (x1 + h), . . . , F (xn′ + h)

)
. Besides, strict-

sense stationarity is defined as n-th order stationarity for any
n ∈ N∗.

We recall that ν := ξ/s. We then state the following results.
Proposition 8: We assume that FX is first-order stationary.

If, for any x ∈ R2 and any h ∈ B2(2π/ ∥ν∥2),

(ThFX ∗ ψ)(x) = ei⟨ν,h⟩(FX ∗ ψ)(x), (107)

then Hypothesis 1 is satisfied.
Proof: We show that the probability measure of ZX(x) is

invariant with respect to phase shift. In other words, we show
that, for any measurable set A ⊂ S1,

∀ω ∈ [0, 2π] , µ(A) = µ(eiωA), (108)

where we have denoted

µ : A 7→ P {ZX(x) ∈ A} .

Let h ∈ B2(2π/ ∥ν∥2). According to (107),

ZX(x) ∈ A ⇐⇒ ThZX(x) ∈ ei⟨ν,h⟩A.

Therefore,

P {ZX(x) ∈ A} = P
{
ThZX(x) ∈ ei⟨ν,h⟩A

}
.

Since FX is first-order stationary, ZX(x) and ThZX(x) have
the same probability distribution. Thus we get

P {ZX(x) ∈ A} = P
{
ZX(x) ∈ ei⟨ν,h⟩A

}
.

Let ω ∈ [0, 2π]. Considering h := ω ν/ ∥ν∥22, we have
h ∈ B2(2π/ ∥ν∥2) and ⟨ν, h⟩ = ω. Therefore,

∀ω ∈ [0, 2π] ,P {ZX(x) ∈ A} = P
{
ZX(x) ∈ eiωA

}
,

which yields (108).
Any probability measure defined on S1 is a Radon measure.

Therefore, according to Haar’s theorem [56], there exists a
unique probability measure on S1 satisfying (108). Since the
uniform probability measure is also invariant to phase shift,
we deduce that ZX(x) is uniformly distributed on S1.

Proposition 9: We assume the conditions of Proposition 8
are met. If, moreover, FX is strict-sense stationary, then
Hypothesis 2 is satisfied.

Proof: Let n ∈ N∗ and x, y1, . . . , yn ∈ R2. To
alleviate notations, we consider the random vector M =
(MX(yi))i∈{1..n} with outcomes in Rn

+.
The proof is organized as follows. Using a similar reasoning

as Proposition 8, we show that ZX follows a uniform con-
ditional probability distribution given M . Since we already
know that ZX follows a uniform (unconditional) distribution,
we deduce that ZX and M are independent.

Let A ⊂ S1 and S := (Si)i∈{1..n} ⊂ Rn
+ denote

measurable sets. Let h ∈ B2(2π/ ∥ν∥2). According to (107),

ZX(x) ∈ A ⇐⇒ ThZX(x) ∈ ei⟨ν,h⟩A;

MX(yi) ∈ Si ⇐⇒ ThMX(yi) ∈ Si ∀i ∈ {1 . . n} .

Therefore,

P
{
(ZX(x) ∈ A) & (M ∈S)

}
=

P
{(
ThZX(x) ∈ ei⟨ν,h⟩A

)
& (ThM ∈S)

}
.

Since FX is strict-sense stationary, the joint probability density
of ThZX(x), ThMX(y1), . . . , ThMX(yn) is identical to the
one of ZX(x), MX(y1), . . . , MX(yn). Therefore we get

P
{
(ZX(x) ∈ A) & (M ∈S)

}
=

P
{(
ZX(x) ∈ ei⟨ν,h⟩A

)
& (M ∈S)

}
.

We assume that P(M ∈ S) > 0. According to the above
expression, and similarly to the proof of Proposition 8, we get,

∀ω ∈ [0, 2π] ,P {ZX(x) ∈ A |M ∈S} =
P
{
ZX(x) ∈ eiωA

∣∣M ∈S
}
.

Then, the above conditional probability measure satisfies phase
shift invariance (108). Therefore, as in the proof of Proposi-
tion 8, Haar’s theorem implies that ZX(x) follows a uniform
conditional distribution given M ∈S.

Moreover, strict-sense implies first-order stationarity, and
thus, according to Proposition 8, ZX(x) follows a uniform
(unconditional) distribution. Therefore we get, for any mea-
surable sets A ⊂ S1 and S ⊂ Rn

+ such that P(M ∈S) > 0,

P {ZX ∈ A |M ∈S} = P(ZX ∈ A),

which proves independence between ZX(x) and M .

Strict-sense stationarity suggests that any translated version
of a given image is equally likely. In reality, this statement
is too strong, for several reasons. First, by construction, X
has all its realizations in L2

R(R2). In that context, a stationary
process yields outcomes which are zero almost everywhere.
Besides, depending on which category the image belongs to,
the pixel distribution is likely to vary across various regions.
For instance, we can expect the main subject to be located at
the center of the image. More details on statistical properties
of natural images can be found in [57]. Nevertheless, this
hypothesis will be considered as a reasonable approximation
if the shift is much smaller than the image “characteristic”
size in the continuous domain; i.e., if ∥h∥2 ≪ sM , where, as
a reminder, M denotes the support size of input images.12

12We refer readers to [58] for a related notion of local stationarity.
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As it turns out, the proofs of Propositions 8 and 9 only
requires shifts with ∥h∥2 ≤ 2π/ ∥ν∥2. Then, according to
(53), ∥h∥2 ≪ sM , and the stationarity hypothesis holds.

Finally, to justify (107), we consider φW : x 7→
ψW(x)e−i⟨ν,x⟩. Similarly to Lemma 1, we can show that φW

is a low-pass filter, with supp φ̂W ⊂ B∞(ε/2). For all h ∈ R2

such that ∥h∥2 ≤ 2π/ ∥ν∥2, we have

(ThFX ∗ ψ)(x)

=

∫∫
R2

ThFX(x− y)φ(y) e−i⟨ν,y⟩ d2y

= ei⟨ν,h⟩
∫∫

R2

FX(x− y′)φ(y′ − h) e−i⟨ν,y′⟩ d2y′.

Since supp φ̂W ⊂ B∞
(

κ
2s

)
, we can define a “minimal wave-

length” λφW := 2πs/κ. Then, if ∥h∥2 ≪ λφW , we can
approximate φ(y′ − h) ≈ φ(y′). This sufficient condition is
actually met, because ∥h∥2 ≤ 2π/ ∥ν∥2 and, according to
(54), ∥ν∥2 ≫ κ/s. Therefore,

(ThFX ∗ ψ)(x) ≈ ei⟨ν,h⟩(FX ∗ ψ)(x). (109)

As a result, the conditions for Propositions 8 and 9 are ap-
proximately satisfied. We will therefore consider Hypotheses 1
and 2 as reasonable.

APPENDIX I
JUSTIFICATION FOR HYPOTHESIS 3

We consider, for any l ∈ L and any k ∈ {0 . .K − 1}, the
value of µ ∈ R minimizing

∥∥µṼl−Vlk

∥∥2
2
, denoted by µlk. We

then denote by δlk :=
∥∥µlkṼl − Vlk

∥∥2
2
/ ∥Vlk∥22 the relative

quadratic error between Vlk and its projection on RṼl. We
get

δlk = 1− ⟨Ṽl, Vlk⟩2∥∥Ṽl

∥∥2
2
· ∥Vlk∥22

. (110)

Expression (67) holds if and only if δlk = 0 for any k ∈
{0 . .K − 1}. In the case of AlexNet, when l ∈ L, δlk do not
exceed 10−1, and its mean value is around 10−2. Therefore
δlk ≪ 1, and Hypothesis 3 can be considered as a reasonable
assumption for any Gabor channel l ∈ L. Similar observations
can be drawn for ResNet.

APPENDIX J
PROOF OF PROPOSITION 4

Proof: We consider the Borel σ-algebra on S1 generated
by
{
[z, z′]S1

∣∣ z, z′ ∈ S1
}
∪ {S1}, on which we have defined

the angular measure ϑ such that ϑ(S1) := 2π, and

∀z, z′ ∈ S1, ϑ([z, z′]S1) := ∠(z∗z′).

For any p ∈ N∗, we compute the p-th moment of GmaxX(x)
defined in (51). By considering

hmax : S1 → [−1, 1]
z 7→ max

∥k∥∞≤q
Re(z∗zk),

we get GmaxX(x) = hmax(ZX(x)). According to Hypothe-
sis 1, ZX(x) follows a uniform distribution on S1. Therefore,

E [GmaxX(x)
p] =

1

2π

∫
S1
hmax(z)

p dϑ(z),

which proves that E [GmaxX(x)
p] does not depend on x. Let

us split the unit circle S1 into the arcs A
(q)
0 , . . . , A

(q)
Nq−1 such

as defined in (47):

E [GmaxX(x)
p] =

1

2π

Nq−1∑
i=0

∫
A

(q)
i

hmax(z)
p dϑ(z). (111)

Let i ∈ {0 . . Nq − 1}. We can show that

∀z ∈ A
(q)
i , hmax(z) = max

(
Re
(
z∗z

(q)
i

)
, Re

(
z∗z

(q)
i+1

))
.

Therefore, hmax is symmetric with respect to the center value
of A

(q)
i , denoted by z

(q)
i , where hmax reaches its minimum.

We denote by A
(q)

i :=
[
z
(q)
i , z

(q)
i

]
S1 the first half of arc A

(q)
i .

Then,
∀z ∈ A

(q)

i , hmax(z) = Re(z∗z
(q)
i ).

As a consequence, using symmetry, we get∫
A

(q)
i

hmax(z)
p dϑ(z) = 2

∫
A

(q)
i

hmax(z)
p dϑ(z)

= 2

∫
A

(q)
i

Re
(
z∗z

(q)
i

)p
dϑ(z).

By using the change of variable formula [59, p. 81] with z ←
eiθ, we get∫

A
(q)
i

hmax(z)
p dϑ(z) = 2

∫ θ
(q)
i

θ
(q)
i

cosp
(
θ − θ(q)i

)
dθ,

where θ
(q)

i :=
(
θ
(q)
i + θ

(q)
i+1

)
/2 denotes the argument of z(q)i .

Then, the change of variable ω ← θ − θ(q)i yields∫
A

(q)
i

hmax(z)
p dϑ(z) = 2

∫ ω
(q)
i /2

0

cosp ω dω. (112)

Now, we insert (112) into (111), and compute
E [GmaxX(x)

p] for p = 1 and p = 2. We get

E [GmaxX(x)] =
1

π

Nq−1∑
i=0

sin
ω
(q)
i

2
;

E
[
GmaxX(x)

2
]
=

1

2
+

1

4π

Nq−1∑
i=0

sinω
(q)
i .

We recall that QX := 1−GmaxX. By linearity of E, we get

E
[
QX(x)

2
]
:=

3

2
+

1

4π

Nq−1∑
i=0

(
sinω

(q)
i − 8 sin

ω
(q)
i

2

)
.

Using the notation introduced in (48) concludes the proof.

APPENDIX K
PROOF OF PROPOSITION 5

Proof: We suppose that Hypothesis 2 is satisfied and we
consider x ∈ R2. For a given n ∈ N∗, we introduce the
random variable

S̃
(n)

X :=

√ ∑
∥k∥∞≤n

MX(xk)2.
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According to Hypothesis 2, ZX(x) is jointly independent of
MX(xk) for k ∈ {−n . . n}2. Therefore, by composition,
ZX(x) is also independent of S̃

(n)

X . Moreover, according to
(52) and (60), S̃

(n)

X converges almost surely towards S̃X, which
proves independence between ZX(x) and S̃X.

Now, we prove conditional independence between ZX(x)
and MX(x) given S̃X. According to Hypothesis 2,(

MX(x), S̃
(n)

X

)
⊥⊥ ZX(x),

where ⊥⊥ stands for independence. This is because S̃
(n)

X only
depends on a finite number of MX(xk). Therefore,

ZX(x) ⊥⊥MX(x)
∣∣ S̃(n)

X .

Finally, since S̃
(n)

X converges almost surely towards S̃X, it
comes that ZX(x) and MX(x) are conditionally independent
given S̃X.

APPENDIX L
PROOF OF THEOREM 2

Proof: We consider n ∈ Z2. By construction, QX(xn) :=
1−GmaxX(xn) only depends on ZX(xn). Therefore, accord-
ing to Proposition 5, we have

QX(xn) ⊥⊥MX(xn) | S̃
2

X and QX(xn) ⊥⊥ S̃
2

X. (113)

Besides, we introduce ∆̃X := ∥δm, qX∥2, where δm, qX is
defined in (56). Then, using the linearity of E, and according
to (52), we get, for any σ > 0,

E
[
∆̃

2

X

∣∣∣ S̃2

X = σ
]
=
∑
n∈Z2

E
[
MX(xn)

2QX(xn)
2
∣∣∣ S̃2

X = σ
]
.

According to (113), we get

E
[
∆̃

2

X

∣∣∣ S̃2

X = σ
]
=
∑
n∈Z2

E
[
MX(xn)

2
∣∣∣ S̃2

X = σ
]
E
[
QX(xn)

2
]
.

Under Hypothesis 1, we use (58) in Proposition 4, which yields
E
[
QX(xn)

2
]
= γq(mξ)2. Therefore, using again the linearity

of E, and according to (52) and (60),

E
[
∆̃

2

X

∣∣∣ S̃2

X = σ
]
= E

[
S̃
2

X

∣∣∣ S̃2

X = σ
]
· γq(mξ)2

= σ · γq(mξ)2.

Besides, we can reformulate Q̃X such as defined in (57):
Q̃X = ∆̃X/S̃X. Therefore we get

E
[
Q̃

2

X

∣∣∣ S̃2

X = σ
]
=

1

σ
E
[
∆̃

2

X

∣∣∣ S̃2

X = σ
]
= γq(mξ)2.

Then, law of total expectation states that

E
[
Q̃

2

X

]
= E

[
E
[
Q̃

2

X

∣∣ S̃2

X

]]
= γq(mξ)2.

Finally, according to Conjecture 1, we have:

P̃X ≤ (1 + βq(mκ)) Q̃X,

which yields (61).

APPENDIX M
PROOF OF THEOREM 3

Proof: Using the triangular inequality, we compute∥∥Rm, q(TuX)−Rm, qX
∥∥
2

≤ ∥C2m(TuX)∥2 P̃ TuX + ∥C2mX∥2 P̃X

+ ∥C2m(TuX)− C2mX∥2 ,

where P̃X and P̃ TuX are defined in (55). Since, by hypothesis,
κ ≤ π/m, expression (21) in Proposition 3 states that

∥C2m(TuX)∥2 = ∥C2mX∥2 .

Moreover, according to (63), we can apply (20) in Theorem 1
on the third term of the above expression. We get∥∥Rm, q(TuX)−Rm, qX

∥∥
2

≤
[
P̃ TuX + P̃X + α(κu)

]
∥C2mX∥2 .

Then, by linearity of E, we get

E
[
R̃X,u

]
≤ E

[
P̃ TuX

]
+ E

[
P̃X

]
+ α(κu). (114)

For any stochastic process X′ satisfying Hypotheses 1 and
2, expression (61) in Theorem 2 and Jensen’s inequality yield:

E
[
P̃X′

]
≤ (1 + βq(mκ)) γq(mξ). (115)

Since Hypotheses 1 & 2 are satisfied for ZX and MX,
Lemma 3 implies that they are also true for ZTuX and MTuX.
Therefore, (115) is valid for X′ ← X and X′ ← TuX, and
plugging this expression into (114) concludes the proof.

APPENDIX N
PROOF OF PROPOSITION 6

Proof: This proposition is a simple reformulation of
the well-known result that two successive convolutions can
be written as another convolution with a wider kernel. We
introduce the upsampling operator: (X ↑ m)[n] := X[n/m] if
n/m ∈ Z2, and 0 otherwise. We also consider the “identity”
filter I ∈ l2(Z2) such that I[0] = 1 and I[n] = 0 otherwise.

First, for any U, V ∈ l2(Z2) and any s, t ∈ N∗, we have
((U ↓ s) ∗ V) ↓ t = (U ∗ (V ↑ s)) ↓ (st). Then, a simple
reasoning by induction yields the result, with

V
(0)
0 := I; V

(j+1)
4l+k := V

(j)
l ∗

(
Gk ↑ 2j

)
for any l ∈ {0 . . j − 1} and any k ∈ {0 . . 3}.

APPENDIX O
PROOF OF PROPOSITION 7

Proof: For any k ∈ {0 . . 3}, Proposition 6 guarantees the
existence of V(J)

k, l ∈ l2R(Z2) such that

X
(J)
k, l =

(
X ∗V(J)

k, l

)
↓ 2J . (116)

Then, the result is obtained by plugging (116) into (82) for
k ∈ {0 . . 3}, and by denotingW

(J)
l

W
(J)

4J+l

 :=

1 −1

1 1

V
(J)
0, l

V
(J)
3, l

+ i

1 1

1 −1

V
(J)
2, l

V
(J)
1, l

 .



LETERME et al., ON THE SHIFT INVARIANCE OF MAX POOLING FEATURE MAPS 17

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] M. Vetterli, “Wavelets, approximation, and compression,” IEEE Signal
Processing Magazine, vol. 18, no. 5, pp. 59–73, Sep. 2001.

[3] A. Laine and J. Fan, “Texture classification by wavelet packet signa-
tures,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15,
no. 11, pp. 1186–1191, Nov. 1993.

[4] S. Pittner and S. V. Kamarthi, “Feature extraction from wavelet coeffi-
cients for pattern recognition tasks,” IEEE Trans. Pattern analysis and
machine intelligence, vol. 21, no. 1, pp. 83–88, Jan. 1999.

[5] G. G. Yen, “Wavelet packet feature extraction for vibration monitoring,”
IEEE Trans. Industrial Electronics, vol. 47, no. 3, pp. 650–667, Jun.
2000.

[6] K. Huang and S. Aviyente, “Wavelet feature selection for image classi-
fication,” IEEE Trans. Image Processing, vol. 17, no. 9, pp. 1709–1720,
Aug. 2008.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2323, Nov. 1998.

[8] T. Wiatowski and H. Bölcskei, “A mathematical theory of deep convolu-
tional neural networks for feature extraction,” IEEE Trans. Information
Theory, vol. 64, no. 3, pp. 1845–1866, Mar. 2018.

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, May 2017.

[11] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1872–1886, May 2013.

[12] B. Liao and F. Peng, “Rotation-invariant texture features extraction
using dual-tree complex wavelet transform,” in Intl. Conf. Information,
Networking and Automation (ICINA), 2010.

[13] L. Sifre and S. Mallat, “Rotation, scaling and deformation invariant
scattering for texture discrimination,” in CVPR, 2013.

[14] A. Bietti and J. Mairal, “Invariance and stability of deep convolutional
representations,” in NeurIPS, 2017.

[15] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in NeurIPS, 2014.

[16] M. Rai and P. Rivas, “A review of convolutional neural networks and
Gabor filters in object recognition,” in Intl. Conf. Computational Science
and Computational Intelligence (CSCI), 2020.

[17] S.-Y. Chang and N. Morgan, “Robust CNN-based speech recognition
with Gabor filter kernels,” in INTERSPEECH, 2014.

[18] S. Fujieda, K. Takayama, and T. Hachisuka, “Wavelet convolutional
neural networks for texture classification,” arXiv:1707.07394, Jul. 2017.

[19] S. S. Sarwar, P. Panda, and K. Roy, “Gabor filter assisted energy efficient
fast learning convolutional neural networks,” in IEEE/ACM International
Symposium on Low Power Electronics and Design, 2017.

[20] S. Luan, C. Chen, B. Zhang, J. Han, and J. Liu, “Gabor convolutional
networks,” IEEE Trans. Image Processing, vol. 27, no. 9, pp. 4357–4366,
May 2018.

[21] P. Liu, H. Zhang, W. Lian, and W. Zuo, “Multi-level wavelet convolu-
tional neural networks,” IEEE Access, vol. 7, pp. 74 973–74 985, Jun.
2019.

[22] M. Ulicny, V. A. Krylov, and R. Dahyot, “Harmonic networks for image
classification,” in BMVC, 2019.

[23] A. Azulay and Y. Weiss, “Why do deep convolutional networks gen-
eralize so poorly to small image transformations?” JMLR, vol. 20, no.
184, pp. 1–25, 2019.

[24] R. Zhang, “Making convolutional networks shift-invariant again,” in
ICML, 2019.

[25] C. Vasconcelos, H. Larochelle, V. Dumoulin, N. L. Roux, and
R. Goroshin, “An effective anti-aliasing approach for residual networks,”
arXiv:2011.10675, Nov. 2020.

[26] X. Zou, F. Xiao, Z. Yu, and Y. J. Lee, “Delving Deeper into Anti-aliasing
in ConvNets,” in BMVC, 2020.

[27] A. Chaman and I. Dokmanic, “Truly shift-invariant convolutional neural
networks,” in CVPR, 2021.

[28] I. Waldspurger, “Wavelet transform modulus : Phase retrieval and
scattering,” Doctoral Thesis, Ecole normale supérieure, Paris, 2015.

[29] N. Kingsbury, “Complex wavelets for shift invariant analysis and filter-
ing of signals,” Applied and computational harmonic analysis, vol. 10,
no. 3, pp. 234–253, May 2001.

[30] I. Bayram and I. W. Selesnick, “On the dual-tree complex wavelet packet
and M-band transforms,” IEEE Trans. Signal Processing, vol. 56, no. 6,
pp. 2298–2310, Jun. 2008.

[31] H. Leterme, K. Polisano, V. Perrier, and K. Alahari, “Modélisation
parcimonieuse de CNNs avec des paquets d’ondelettes dual-tree,” in
ORASIS, 2021.

[32] N. Kingsbury and J. Magarey, “Wavelet transforms in image processing,”
in Signal Analysis and Prediction. Birkhäuser, 1998, pp. 27–46.

[33] E. Oyallon and S. Mallat, “Deep roto-translation scattering for object
classification,” in CVPR, 2015.

[34] A. Singh and N. Kingsbury, “Dual-Tree wavelet scattering network
with parametric log transformation for object classification,” in ICASSP,
2017.

[35] D. Zou and G. Lerman, “Graph convolutional neural networks via
scattering,” Applied and Computational Harmonic Analysis, vol. 49,
no. 3, pp. 1046–1074, Nov. 2020.

[36] E. Oyallon, E. Belilovsky, and S. Zagoruyko, “Scaling the scattering
transform: Deep hybrid networks,” in ICCV, 2017.

[37] E. Oyallon, E. Belilovsky, S. Zagoruyko, and M. Valko, “Compressing
the input for CNNs with the first-order scattering transform,” in ECCV,
2018.

[38] J. Zarka, L. Thiry, T. Angles, and S. Mallat, “Deep network classification
by scattering and homotopy dictionary learning,” in ICLR, 2020.

[39] J. Zarka, F. Guth, and S. Mallat, “Separation and concentration in deep
networks,” in ICLR, 2021.

[40] F. Cotter and N. Kingsbury, “A learnable scatternet: Locally invariant
convolutional layers,” in ICIP, 2019.

[41] S. Gauthier, B. Thérien, L. Alsène-Racicot, M. Chaudhary, I. Rish,
E. Belilovsky, M. Eickenberg, and G. Wolf, “Parametric scattering
networks,” in CVPR, 2022.

[42] S. Mallat, “Group invariant scattering,” Communications on Pure and
Applied Mathematics, vol. 65, no. 10, pp. 1331–1398, Jul. 2012.

[43] ——, “Understanding deep convolutional networks,” Philosophical
Trans. of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 374, no. 2065, Apr. 2016.

[44] W. Czaja and W. Li, “Analysis of time-frequency scattering transforms,”
Applied and Computational Harmonic Analysis, vol. 47, no. 1, pp. 149–
171, Jul. 2019.

[45] ——, “Rotationally invariant time–frequency scattering transforms,” J.
Fourier Analysis and Applications, vol. 26, no. 1, p. 4, Jan. 2020.

[46] A. Bietti and J. Mairal, “Group invariance, stability to deformations,
and complexity of deep convolutional representations,” JMLR, vol. 20,
no. 1, pp. 876–924, 2019.

[47] J. Havlicek, J. Havlicek, and A. Bovik, “The analytic image,” in ICIP,
1997.

[48] S. Mallat, A Wavelet Tour of Signal Processing : The Sparse Way.
Academic Press, 2009.

[49] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML, 2015.

[50] N. Kingsbury, “Design of Q-shift complex wavelets for image processing
using frequency domain energy minimization,” in ICIP, 2003.

[51] G. P. Nason and B. W. Silverman, “The stationary wavelet transform
and some statistical applications,” in Wavelets and Statistics, ser. Lecture
Notes in Statistics. Springer, 1995, pp. 281–299.

[52] Y. Meyer, “Principe d’incertitude, bases hilbertiennes et algèbres
d’opérateurs,” in Séminaire Bourbaki, vol. 662, 1985.

[53] I. W. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex
wavelet transform,” IEEE Signal Processing Magazine, vol. 22, no. 6,
pp. 123–151, Nov. 2005.

[54] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” IJCV, vol. 115,
no. 3, pp. 211–252, Apr. 2015.

[55] K. I. Park and M. Park, Fundamentals of Probability and Stochastic
Processes with Applications to Communications. Springer, 2018.

[56] P. R. Halmos, Measure Theory. Springer, 2013.
[57] A. Torralba and A. Oliva, “Statistics of natural image categories,”

Network, vol. 14, no. 3, pp. 391–412, Jan. 2003.
[58] M. Tygert, J. Bruna, S. Chintala, Y. LeCun, S. Piantino, and A. Szlam, “A

mathematical motivation for complex-valued convolutional networks,”
Neural Computation, vol. 28, no. 5, pp. 815–825, May 2016.

[59] K. B. Athreya and S. N. Lahiri, Measure Theory and Probability Theory.
Springer, 2006, vol. 19.


