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Abstract

A discriminant-based framework for automatic recogni-
tion of online handwriting data is presented in this paper.
We identify the substrokes that are more useful in discrimi-
nating between two online strokes. A similarity/dissimilarity
score is computed based on the discriminatory potential of
various parts of the stroke for the classification task. The
discriminatory potential is then converted to the relative im-
portance of the substroke. Experimental verification on on-
line data such as numerals, characters supports our claims.
We achieve an average reduction of

�����
in the classifica-

tion error rate on many test sets of similar character pairs.

1. Introduction

With the widespread use of computers, the need for
friendly man-machine interfaces is on the rise. Handwriting
recognition forms an important component in building such
interfaces [7]. In particular, online handwriting recogni-
tion approaches have received considerable research atten-
tion [4, 7, 9] recently. These approaches address the prob-
lem of interpreting the pen movement, which follows a se-
quential pattern over time. The success of online handwrit-
ing recognition schemes can be attributed to the availabil-
ity of additional information such as the order of strokes.

Online handwriting recognition systems can be broadly
divided into three categories: (1) Heuristic or Structure
based methods (eg. Fuzzy rule-based schemes), (2) Tem-
plate matching based methods (eg. DTW-based schemes),
and (3) Statistical methods (eg. HMM, TDNN, SVM) [7].
In addition to the � -dimensional point features available as
a function of time, online systems may also use features
such as velocity, pressure, etc., that are captured during
writing. The temporal relations in online data are typically
captured by mathematical models like HMMs, Linear Pre-
diction, etc. [7, 9, 11], at the stroke or the substroke level.
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Figure 1. A summary of the discriminant-
based classification framework. The sub-
strokes (parts of the sequence circled with
dotted lines) of the numerals are analyzed
to find their corresponding discriminatory
potential. These weights are combined with
substroke matching scores to find a global
decision criterion. For discriminating ‘2’ and
‘3’ the latter parts of the strokes are found to
be more useful.

Most of these schemes also provide a compact represen-
tation for the online data. A recent trend has been to com-
bine offline and online features for recognition, as they com-
plement each other [6, 10]. Offline features (from images)
mostly describe the spatial structure of the stroke, while on-
line features provide the temporal ordering.

Popular online handwriting recognition approaches give
equal importance to all parts of a stroke during matching,
which may not be the best for all cases (Refer Figure 1). We
need to detect the parts of a stroke (called substroke) that
are more useful for the classification task. Our objective is
to identify these substrokes and use this information for im-
proving the performance of recognition schemes. Consider
the problem of recognizing the numerals � and � (Figure 1).
The two numerals appear to possess similar curvature prop-
erties at the beginning of the sequences. As the complete
numbers begin to appear, their distinguishing characteristics
unfold over time. In other words, the tail portion of the num-



bers is more useful for distinguishing them. We describe an
approach to identify critical segments of the strokes. The in-
dividual parts are then weighed to obtain appropriate score
for the final recognition.

2. Preliminaries

Online handwriting data needs efficient modelling
schemes for building a compact representation by dis-
carding the acceptable statistical variability. Often this
is achieved by methods like Hidden Markov Models
(HMMs), Linear Prediction, etc. Such modelling schemes
exploit the inherent dynamism in online data. Of late, re-
searchers have found modelling the substrokes in online
data to be more useful for recognition [7, 9].

HMM is a doubly stochastic model characterized by the
conditional probabilities of transitions between a set of hid-
den states. Online handwriting recognition schemes typi-
cally use a left-to-right HMM for each character. Substroke-
based HMMs have also been proposed recently [9]. All
these techniques recognize a given sequence by maximiz-
ing the aposteriori probability of the sequence.

Linear Prediction is another scheme for modelling se-
quential data [11]. For a sequence of � data points�
	������������	���� � ��������� � , a � th order linear predic-
tor relates a sample

��
to its previous � samples as

����	 �"!#��%$�!'&(�*)���%$+),& ������&(��-.��%$�-"�
(1)

�/	10 � &2�43���0 � & � 3#��������� � , where
� �

denotes the pre-
diction of

 �
. The coefficient vector 5 	76 � ! �8� ) ���������8� -�9

is estimated by minimizing the sum of squared errors: �<;=; ���?>@�� ;=; ) . In the case of online handwriting data, the
vector 5 captures the temporal correlation among the sam-
ples of

�
, which is an ordered sequence of

0%A���B"3
pen

coordinates.
Principal Component Analysis (PCA) [3], a linear model

based on eigenvectors corresponding to the dominant eigen-
values, is widely used for obtaining a low-dimension mani-
fold of offline data [7]. In a mean squared error sense, PCA
is an optimal dimensionality reduction method. Recently,
it has been used for online handwriting data by extract-
ing a feature set based on offline patterns (normalized � -
dimensional coordinates) [2]. Furthermore, PCA is believed
to be suitable for representing the data, unlike discriminant
based approaches which are appropriate for classification
problem [1].

All these modelling schemes treat all parts of a sequence
uniformly. To distinguish between the different parts, we
need to weigh them appropriately. This is in the spirit of
Discriminant Analysis and Statistical Pattern Recognition
techniques.

3. A Weighted Measure for Online Strokes
Fisher Discriminant Analysis (FDA) is a commonly

used variant of Discriminant Analysis techniques for
� -class problems [3]. It identifies an optimal direc-
tion C along which the ratio of between class scatter and
within class scatter is maximized. When the data points �

are projected onto this direction as C+D  � , each ele-
ment of C acts as a weight for the corresponding dimen-
sion of

��
. In the lower dimension, the distance between

two patterns
E�

and
GF

is expressed as a weighted lin-
ear combination of distances along each dimension, i.e.,H 0 CGD ��8� CGD GF43I	 : J C J H 0%A

J� ��A JF 3 . To compute this vec-
tor C , the criterion function for FDA, K 0�� 3 , is defined
as

K 0 C 3L	 CGDNM?O<CC D M�PQC
�

(2)

where M�P and M O are the within class and between
class scatter matrices. It is shown that any vector C
which maximizes the Fisher criterion in Equation 2 sat-
isfies M O C 	SR M�PTC for some constant

R
[3]. This can be

solved as an eigenvalue problem. The discriminant vec-
tor, C is given by the eigenvector corresponding to the
largest eigenvalue of M P

$�!
M�O .

We present an approach, modelled on the similar lines of
Fisher Analysis, to identify the substrokes with greater dis-
criminatory potential. Given the strokes of two classes, our
aim is to learn the representation for these classes and use it
in a recognition framework as outlined below.

Training: Learn the substrokes with greater discrimination.

1. Align the online strokes and obtain equal number of
substrokes in all samples.

2. Model the local continuity of the data points in each
substroke to extract a set of features (say using HMM,
LPC, splines, etc.).

3. In this feature space, identify the discriminant vector C
which provides an optimal weight with which the dis-
tinguishing characteristics of the two strokes are max-
imized.

Testing: Recognize an unknown stroke.

1. Align the test stroke in similar fashion as the training
strokes and obtain the substrokes.

2. Model the substrokes according to the scheme used in
training.

3. Using C as a weight vector, which describes the dis-
criminatory potential of each substroke, compute the
dissimilarity score (or posterior probability, etc.) with
respect to the two classes and recognize the test stroke
as belonging to a class based on its score.



4. Discriminant Analysis of Online Data
Here we derive the technical details of the algorithm pre-

sented in the previous section. Consider two strokes U andV
of classes W and X . Let �ZY and �\[ be the number of

samples in these classes respectively. The training phase
consists of three major steps – alignment, modelling and
identification of relative weights of the substrokes.

4.1. Alignment of strokes
In most situations, identification of a simple model pa-

rameter is not valid for the entire stroke. Also, in recogni-
tion schemes (eg. HMM), where the model complexity is
directly dependent on the number of distinct characters in
the dataset, it is economical to define the model in terms of
the basic repetitive units – substrokes [9].

We employ a DTW-based alignment for segmenting both
the strokes to a fixed number of segments. DTW aligns
a sequence of feature vectors using dynamic program-
ming [5]. ] 0 � �8^.3 , the cost of aligning the sequences U andV

, is computed using the recursive cost function ] 0_�`�ba*3L	cZd=e � ] 0%�N> ���faZ> ��3#� ] 0g���faZ>h��3#� ] 0%�N> ���fa*3i�T& H 0%�i�fa*3��
where

H 0_�i�fa*3
is the local cost in aligning the

�
th ele-

ment of U and the
a

th element of
V

.
We compute the alignment score for all the strokes in

the dataset with respect to a single stroke (called the tem-
plate stroke). It is to be noted that alignment scheme and
further processing steps are independent of the choice of
the template stroke. To retrieve the alignment, we backtrack
along the minimum cost path obtained for ] 0 � �8^.3 . At the
end of the alignment scheme, we have a correspondence be-
tween the two strokes. We extract a fixed number of seg-
ments from the template stroke and pick the corresponding
(aligned) substrokes from the others.

4.2. Modelling the substrokes
Let the j th segments of the two strokes be denoted by

U
J

and
V J � j 	k��� � ���������`l , where

l
is the number of seg-

ments in U and
V

. Segmentation of aligned strokes pro-
vides a one-to-one correspondence between U

J
and
V J

,
so that the global (total) recognition can be achieved with
the help of individual ones across U

J
and
V J

and their se-
quencing information.

The substrokes are modelled appropriately to cap-
ture their temporal properties. This is done by map-
ping the substroke features into a new domain. We de-
note the model parameters of the j th substrokes asm JY F and

m J[ F for the
a

th sample. Thus the new fea-
ture set is given by n

J
Y 	o� m

J
Y F �4p�qF8r�! and n

J
[ 	o� m

J
[ F �4ptsF8rt! .

We describe the three modelling schemes used in our anal-
ysis as follows.
u One method of modelling sequences is by using Lin-

ear Prediction. For a linear predictor of � th order,
m JY F

given by
m JY F 	 5

J 	v6 � J! �`� J) ���������`� J- 9 D (from Equa-
tion 1).
u In DTW-based schemes, we do not consider any ex-

plicit modelling scheme, and use the features (in this
case, a sequence of � -dimensional points) directly for
identifying substroke weights.
u In HMMs, we train the model using a chain-code rep-

resentation of the online substrokes. After training,
we get the model parameters

�4wx�`yz�8{|��}��
, where

y
denotes the transition probabilities among the hidden
states

w
(chosen to be ~ in this case),

{
denotes the

observation symbol probability for each state (with
the observation symbols being the chain-code values��>��

), and
}

is the state distribution. Thus, the tran-
sition matrix

y
models the temporal nature of the sub-

strokes.

4.3. Discriminating potential for Substrokes
We identify weights C J � j 	���� � �������#�il , for each sub-

stroke such that they have optimal distinguishing character-
istics along the direction of the vector C . We obtain this vec-
tor using a Fisher-like analysis, i.e., we minimize the within
class scatter and maximize the between class scatter for the
online strokes. The scatter matrices are given by

M P 	 ��%��� Y�� [��
p���F8r�! 0 m ��FT>��m ��3�0 m ��FT>o�m ��3 D

M O 	 0 �m Y > �m [ 3�0 �m Y > �m [ 3 D �
where the symbols without the superscript j denote
the stroke features with substrokes stacked as rows
and the mean over the samples of a class

�
is given by�m �E	 !pt� :�p �F8r�! m ��F . Also,

0 m ��F|>��m �f3
is the distance mea-

sure defined in the representation space. Here, the
l���l

matrices M P and M?O capture the within class and be-
tween class scatters at the substroke level. Each entry
of M O 	 ��� ��F �

represents the variance between sub-
strokes U

�
and
V F

over all samples. Maximizing the ob-
jective function in Equation 2 results in classes with large
discriminating characteristics.

4.4. Recognition
Let � be the stroke we are interested in recognizing. It is

labelled as class
�8�

according to
� � 	 ���8� cId=e�%��� Y�� [�� ]

0 � ���g3�� (3)

where ] defines the cost of recognizing the stroke �
as the stroke

�
. The matching cost ] 0 � � W 3 is given by

] 0 � � W 3�	���0 C !���������� C+� � m
!� ��������� m �� � m !Y ��������� m �Y 3 . The

function
��0�� 3

models the distance as a combination of the



Figure 2. A few samples of similar numeral/character pairs used for experiments.

substroke-level matching costs and the weights C J discrim-
inate between the substrokes. Naturally,

��0�� 3
depends on

the modelling scheme used for the substrokes. For the three
modelling schemes described above, the corresponding sub-
stroke matching score is defined as follows.

u When the substrokes are represented by
linear prediction coefficients, we define��0g��3'	 : �J r�! C J H 0 m

J
� � m
J
Y 3 , where

H 0g��3
is the Eu-

clidean distance between the two coefficient vectors.
This scheme does not model the sequencing infor-
mation of substrokes explicitly, unlike the other two
methods.
u In the case of DTW, we have the alignment cost for the

substrokes as a matching criterion.
u Using HMMs for modelling the individual substrokes

provides a probabilistic matching score – the posteri-
ori probability of a substroke belonging to a particular
class – which is to maximized. Thus, the cost measure
is defined as ] 0 � � W 3�	�> : �J r�! C J � 0 m

J
� ; W 3 , where

� 0 m
J
� ; W 3 denotes the probability of the substroke

m J�
belonging to class W , and is computed from the train-
ing parameters

��wx�8yz�`{ �8}��
. Such modelling accounts

for noise as well as variability in the class samples.

We illustrate the superiority of our approach, using the
three modelling schemes discussed, in the next section.

5. Results and Discussion

The dataset consists of more than
� �.¡�¡ online numeral

and character strokes collected from different people using
an IBM CrossPad. A few samples of this data are shown in
Figure 2. To demonstrate the applicability of our approach
for discriminating two classes, we chose similar charac-
ter/numeral pairs (eg.,

0 � � � 3#��0 H �`¢�3 , etc.). The database is
divided into training set (to estimate the substrokes and
their corresponding weights) and testing set (to evaluate the
recognition performance). To account for the variability in
the data due to translation, we normalize the features using
a bounding box for the stroke and rescaling it to the ¡ > �
range.

After preprocessing the data, we identify the substrokes
using a DTW alignment scheme. Then, we model the indi-
vidual substrokes. Experiments are performed using three
modelling schemes – DTW, HMM, LPC. The contribution
of each substroke in the decision process is enhanced with
a corresponding discriminatory weight to compute the fi-
nal stroke-level matching score. We compare our results
for each modelling scheme by assigning weights in two
ways: (1) Equal weights for all the substrokes, (2) Weights
computed using our approach. Equal weight assignment is
equivalent to the existing recognition schemes. It is ob-
served that our approach outperforms the equal weighing
scheme. These results are summarized in Table 1.

Numerals: Results are shown on three pair-wise combina-
tions of numerals –

0 � � � 3#�40g���#£.3���0g���8¤�3 . In general, HMM
combined with our approach for weight assignment resulted
in the best performance for all the pairs.

Characters: We present results on recognizing combina-
tions of characters

0_¥��8¦§3#�40 H �8¢�3
and
0_¨.�8©�3

. On average,
the
�

accuracy improved by � � � using our weight assign-
ment approach. Just as in the recognition of numerals, us-
ing HMM for modelling the substrokes and distinguishing
them with discriminant weights gives the best average ac-
curacy of nearly

¤�ª*�
.

On an average, we achieve a
�<���

reduction in classifi-
cation error rate. We have observed that for a wide variety
of parameters (like the states in HMM, order of the predic-
tion for LPC, etc.), the percentage improvement is signifi-
cant and consistent.

5.1. Discussion
In general, the accuracy of the classifiers reported here

are much lower than the commercial or most of the reported
recognition algorithms. This is due to the fact that (a) our
datasets were not tuned to achieve higher recognition or pre-
processed to suit a specific recognition scheme, and (b) our
implementation of HMMs, DTW, etc. is not tuned for the
online data case.

From the results in Table 1 it is evident that HMM is the
best modelling scheme among the ones considered for on-
line handwriting data. The underlying probabilistic frame-
work in HMMs accounts for the noise and variations in



LPC DTW HMM
Equal Our Approach % Red. Equal Our Approach % Red. Equal Our Approach % Red.

� , � 89.0 92.0 27.3 90.0 96.0 60.0 94.4 98.0 64.3�
,
£

90.0 94.0 40.0 93.0 96.0 42.8 92.0 98.0 75.0£
,
¤

89.0 93.0 36.4 96.0 98.0 50.0 100.0 100.0 0.0¥
,
¦

88.0 93.4 45.0 93.4 94.0 9.1 90.0 96.0 60.0H
,
¢

91.0 93.0 22.2 92.6 98.0 73.0 94.0 96.0 33.3¨
,
©

93.8 95.0 19.4 94.0 96.0 33.3 92.0 96.0 50.0

Table 1. Results on the classification of 6 pair-wise combinations of numerals and characters. In each
of the three modelling schemes (LPC, DTW, HMM), the average percentage accuracies achieved by
using two different weighing schemes (equal weights, weights obtained by our approach) and the
percentage of error reduction (% Red.) are shown. In almost all cases our weighing approach out-
performs equal weight scheme.

the data, unlike DTW, which is a template matching tech-
nique. Linear Prediction Coefficients (LPC) are highly data-
specific and are possibly unsuitable for modelling complex
non-linear substrokes accurately. In such cases, it may be
relevant to have higher order predictions (such as quadratic,
cubic, etc.).

Although we presented the results using � -dimensional
points as the patterns obtained over time, other features
available for online data such as pressure, velocity, etc. can
be readily used in the framework by changing n

J
appropri-

ately.
A direct extension to the multiclass scenario can be

achieved using Directed Acylic Graphs (DAGs) [8]. A DAG
comprises of many pairwise classifiers, which are con-
nected to build a multiclass classifier. The test sample,
which is presented at the root node, propagates through the
graph until it reaches a leaf node (where it is labelled).
To build a multiclass classifier for � classes, we need
� 0 � >|�43`« � pairwise classifiers. In the case of online hand-
written numeral recognition,

� ~ pairwise classifiers (eg.0 ¡ ���43���0g��� � 3#��0 � � � 3#� etc.) built according to the scheme de-
scribed in this paper are required. Other multiclass exten-
sions on the lines of Multiple Discriminant Analysis may
also be used [3].

6. Conclusion
The contribution of this paper is in presenting an ap-

proach to identify substrokes of online handwriting data
which are more useful in the classification task. The use-
fulness of discriminating features is evident from the recog-
nition accuracy achieved. Furthermore, the generic frame-
work described in this paper allows replacement of individ-
ual components – substroke identification, substroke mod-
elling, recognition criterion – in a data-specific way. We
are currently working on building a multiclass recognition
scheme for various characters.
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