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Context
Machine learning for “big data”

e Large-scale machine learning: large p, large n, large k

— p : dimension of each observation (input)
— n : number of observations
— k : number of tasks (dimension of outputs)

e Examples: computer vision, bioinformatics, text processing
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Learning for bioinformatics - Proteins

e Crucial components of cell life

e Predicting multiple functions and
Interactions

e Massive data: up to 1 millions for
humans!

e Complex data

— Amino-acid sequence
— Link with DNA
— Tri-dimensional molecule




Context
Machine learning for “big data”

e Large-scale machine learning: large p, large n, large k

— p : dimension of each observation (input)
— n : number of observations
— k : number of tasks (dimension of outputs)

e Examples: computer vision, bioinformatics, text processing

e Ideal running-time complexity: O(pn + kn)



Context
Machine learning for “big data”

e Large-scale machine learning: large p, large n, large k

— p : dimension of each observation (input)
— n : number of observations
— k : number of tasks (dimension of outputs)

e Examples: computer vision, bioinformatics, text processing
e Ideal running-time complexity: O(pn + kn)

e Going back to simple methods

— Stochastic gradient methods (Robbins and Monro, 1951)
— Mixing statistics and optimization



Outline

e Introduction: stochastic approximation algorithms

— Supervised machine learning and convex optimization
— Stochastic gradient and averaging
— Strongly convex vs. non-strongly convex

e Fast convergence through smoothness and constant step-sizes
— Online Newton steps (Bach and Moulines, 2013)
— O(1/n) convergence rate for all convex functions

e More than a single pass through the data

— Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)
— Linear (exponential) convergence rate for strongly convex functions



Supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function (6, ®(x)) of features ¢(x) € RP

e (regularized) empirical risk minimization: find f solution of

nin %Zf(yi,@,@(wm) +  pfA(0)

convex data fitting term + regularizer



Supervised machine learning

e Data: n observations (z;,y;) € X x YV, i=1,...,n, i.i.d.
e Prediction as a linear function (6, ®(z)) of features ¢(x) € RP

e (regularized) empirical risk minimization: find f solution of

min = 3" (i, (0,0(0)) + 190

0 cRP

convex data fitting term + regularizer
e Empirical risk: f(6) = I3y, (0, ®(x;)))  training cost
o Expected risk: f(0) = E(, ,)¢(y, (0, ®(x))) testing cost

e Two fundamental questions: (1) computing 6 and (2) analyzing 6



Supervised machine learning

e Data: n observations (z;,y;) € X x YV, i=1,...,n, i.i.d.
e Prediction as a linear function (6, ®(z)) of features ¢(x) € RP

e (regularized) empirical risk minimization: find f solution of

min = 3" (i, (0,0(0)) + 190

0 cRP

convex data fitting term + regularizer
e Empirical risk: f(6) = I3y, (0, ®(x;)))  training cost
o Expected risk: f(0) = E(, ,)¢(y, (0, ®(x))) testing cost

e Two fundamental questions: (1) computing 6 and (2) analyzing 6

— May be tackled simultaneously



Smoothness and strong convexity

e A function g : R? — R is L-smooth if and only if it is twice
differentiable and
VO e RP, ¢"(0) < L-1d
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Smoothness and strong convexity

e A function g : R? — R is L-smooth if and only if it is twice
differentiable and
VO e RP, ¢"(0) < L-1d

e Machine learning

— with g(0) = 27 ((y;. (0, 9(:)))
— Hessian ~ covariance matrix %Z?:l P(z;) @ P(x5)
— Bounded data



Smoothness and strong convexity

e A function g : RP — R is pu-strongly convex if and only if

V01,05 € RP, g(61) = g(0a) + (g (62), 01 — 62) + £]|61 — 622

e If g is twice differentiable: V0 € RP, ¢"(0) = p - 1d
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Smoothness and strong convexity

e A function g : RP — R is pu-strongly convex if and only if

V61,02 € RP, g(01) = g(62) + (g’ (62), 61 — O2) + 561 — 627
e If g is twice differentiable: V0 € RP, ¢"(0) = p - 1d

e Machine learning

~ with g(6) = 1" £y, (6, @ (x:)))
— Hessian &~ covariance matrix %Z?:l d(x;) Q D(x;)
— Data with invertible covariance matrix (low correlation/dimension)



Smoothness and strong convexity

e A function g : RP — R is pu-strongly convex if and only if

V61,02 € RP, g(01) = g(62) + (g’ (62), 61 — O2) + 561 — 627
e If g is twice differentiable: V0 € RP, ¢"(0) = p - 1d

e Machine learning

~ with g(6) = 1" £y, (6, @ (x:)))
— Hessian &~ covariance matrix %Zyzl d(x;) Q D(x;)
— Data with invertible covariance matrix (low correlation/dimension)

e Adding regularization by £||6|°

— creates additional bias unless 1 is small



Iterative methods for minimizing smooth functions

e Assumption: g convex and smooth on R?

e Gradient descent: 0, = 60; 1 — v ¢ (6:_1)

— O(1/t) convergence rate for convex functions
— O(e™ ") convergence rate for strongly convex functions

e Newton method: Ht — 975_1 — g//(gt—l)_lg/(gt—l)

t
— O(e™ %) convergence rate



Iterative methods for minimizing smooth functions

e Assumption: g convex and smooth on R?

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions

— O(e™ ") convergence rate for strongly convex functions
e Newton method: Ht — 975_1 — g//(et—l)_lg/(gt—l)

t
— O(e™ %) convergence rate

e Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error
2. In machine learning, cost functions are averages

= Stochastic approximation



Stochastic approximation

e Goal: Minimizing a function f defined on R?
— given only unbiased estimates f)(6,) of its gradients f'(6,) at
certain points 6,, € R?
e Stochastic approximation

— Observation of f/(6,) = f'(0,) + €n, with g, = i.i.d. noise
— Non-convex problems



Stochastic approximation

e Goal: Minimizing a function f defined on R?
— given only unbiased estimates f)(6,) of its gradients f'(6,) at
certain points 6,, € R?
e Stochastic approximation
— Observation of f/(6,) = f'(6,) + €n, with £, = i.i.d. noise

— Non-convex problems

e Machine learning - statistics

— loss for a single pair of observations: | f,,(0) = £(yn, (0, ®(x,,)))

— f(0) =Ef.(0) =ELl(y,, (0, P(x,))) = generalization error
— Expected gradient: f/(0) =Ef/(0) =E {6’(yn, (0, D(x,))) (I)(xn)}



Convex stochastic approximation

e Key assumption: smoothness and/or strongly convexity



Convex stochastic approximation

e Key assumption: smoothness and/or strongly convexity

e Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

Hn — Hn—l — Tn ffr/z(en—l)

— Polyak-Ruppert averaging: n+1 > kot

— Which learning rate sequence %? Classical setting: | v, = Cn~“




Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with ,, oc (un)™*
— Non-strongly convex: O(n~1/?)

Attained by averaged stochastic gradient descent with 7, oc n=%/?



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with ,, o (un)~
— Non-strongly convex: O(n~1/2)
Attained by averaged stochastic gradient descent with ~v,, < n™

1
1/2

e Many contributions in optimization and online learning: Bottou
and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al.
(2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al.
(2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov and
Vial (2008); Nemirovski et al. (2009)



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((M”)_l)
Attained by averaged stochastic gradient descent with ,, oc (un) ™+
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, n~1/2

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes v, = Cn~% with a € (1/2,1) lead to O(n™1) for
smooth strongly convex problems



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with ,, oc (un)™*
— Non-strongly convex: O(n~1/?)

Attained by averaged stochastic gradient descent with 7, oc n=%/?

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)
— All step sizes v, = Cn~% with a € (1/2,1) lead to O(n™1) for

smooth strongly convex problems

e A single algorithm for smooth problems with convergence rate
O(1/n) in all situations?



Outline

e Introduction: stochastic approximation algorithms

— Supervised machine learning and convex optimization
— Stochastic gradient and averaging
— Strongly convex vs. non-strongly convex

e Fast convergence through smoothness and constant step-sizes
— Online Newton steps (Bach and Moulines, 2013)
— O(1/n) convergence rate for all convex functions

e More than a single pass through the data

— Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)
— Linear (exponential) convergence rate for strongly convex functions



Least-mean-square algorithm

o Least-squares: f(0) = sE|(y, — (®(zy,),0))?] with § € R?

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(x,)| = H = p-1d



Least-mean-square algorithm

o Least-squares: f(0) = sE|(y, — (®(zy,),0))?] with § € R?

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(x,)| = H = p-1d

e New analysis for averaging and constant step-size v = 1/(4R?)

— Assume ||®(x,)|| < R and |y, — (®(x,),0:)| < o almost surely
— No assumption regarding lowest eigenvalues of H

_ 9 2
— Main result: | Ef(0,,—1) — f(0:) < —|o/p+ Rl — 9*”}
n

e Matches statistical lower bound (Tsybakov, 2003)



Markov chain interpretation of constant step sizes
e LMS recursion for f,(0) = 3 (yn — <<I>(a:n),9>)2

Hn — ‘9n—1 — /7(<(I)(33n)7 9n—1> — yn)q)(xn)

e The sequence (6,,), is a homogeneous Markov chain

— convergence to a stationary distribution
. .= def
— with expectation 0, = [ 7. (d0)



Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <<I)(33n)79>)2

Op =0n_1— ’Y(<(I)(xn)v Opn—1) — yn)q)(ajn)

e The sequence (6,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 7 (d0)

e For least-squares, 0., = 0,
— 6,, does not converge to 60, but oscillates around it
— oscillations of order /v

e Ergodic theorem:

— Averaged iterates converge to 0., = 0, at rate O(1/n)



Simulations - synthetic examples

e Gaussian distributions - p = 20

synthetic square
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Simulations - benchmarks
e alpha (p = 500, n = 500 OOO), news (p = 1 300 000, n = 20 OOO)

alpha square C=1 test alpha square C=opt test
1 1 i
_ 05¢ ' 0.5f
e o 0
|
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Beyond least-squares - Markov chain interpretation

e Recursion 6, =60,,_1 —~vf (0,_1) also defines a Markov chain

— Stationary distribution 7., such that | f/(6 wv(dﬁ) =0
— When f’ is not linear, f'( [ 0m,(df)) # [ f'(0)m(d0) =0



Beyond least-squares - Markov chain interpretation

e Recursion 6, =60,,_1 —~vf (0,_1) also defines a Markov chain
— Stationary distribution 7., such that | f/(6 wy(dﬁ) =0
— When f’ is not linear, f'( [ 0m,(df)) # [ f'(0)m(d0) =0

e 0, oscillates around the wrong value 0., # 0,

— moreover, ||0, —0,| = Oy(\/7)

e Ergodic theorem

— averaged iterates converge to 0. # 0, at rate O(1/n)
— moreover, ||6, — 0, = O(y) (Bach, 2013)



Simulations - synthetic examples

e Gaussian distributions - p = 20

synthetic logistic — 1

log, [f(6)-f(6,)]

4
log, ,(n)



Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, ®(z,)))] at 0 is

equivalent to minimizing the quadratic approximation

9(0) = f(0) + (f'(0),0 — ) +5(0 — 0, f"(0)(6 — 0))

= f(0) + (EfL(0),0 — ) + 10 — 0,Ef/(0)(6 - 0))
= E|f(8) + (£,(0),0 — 8) + 5(0 — 0, £/(0)(60 — ))



Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, ®(z,)))] at 0 is

equivalent to minimizing the quadratic approximation

™)

),0 —0) +5(0 -0, f(0)(0 - 0))

g(0) = F(0) +(f'(0).
f1(0),0 — 0) + 5(0 — 0,Ef//(0)(0 — 0))

= f(0) + (E
= E[£(6) + (£1.(0).0 — 6) + {6 — 0, /1(6)(6 — )
e Complexity of least-mean-square recursion for g is O(p)

On, = 01 — Y[ F2(0) + F1(0)(Br—1 — 0)]

- fﬁ’(é) = 0" (yn, <§, b (x,)))P(x,) ® P(x,) has rank one
— New online Newton step without computing/inverting Hessians



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(p/n) for logistic regression
— Additional assumptions but no strong convexity



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(p/n) for logistic regression
— Additional assumptions but no strong convexity

e Update at each iteration using the current averaged iterate

— Recursion: Hn — Hn—l — v[f,,’%(ﬁ_n_l) -+ fg(én_l)(en_l — H_n—l)}
— No provable convergence rate but best practical behavior




e Gaussian distributions - p = 20

log, ,[f(8)-1(8,)]

Simulations - synthetic examples
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Simulations - benchmarks
e alpha (p = 500, n = 500 OOO), news (p = 1 300 000, n = 20 OOO)

alpha logistic C=1 test
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Outline

e Introduction: stochastic approximation algorithms

— Supervised machine learning and convex optimization
— Stochastic gradient and averaging
— Strongly convex vs. non-strongly convex

e Fast convergence through smoothness and constant step-sizes
— Online Newton steps (Bach and Moulines, 2013)
— O(1/n) convergence rate for all convex functions

e More than a single pass through the data

— Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)
— Linear (exponential) convergence rate for strongly convex functions



Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E, ) £(y, (6, ®(x)))



Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E(, .y £(y, (0, ®(x)))

e Machine learning practice

— Finite data set (z1,y1,...,ZTn, Yn)

— Multiple passes

— Minimizes training cost = > {(y;, (0, ®(x;)))

— Need to regularize (e.g., by the £5-norm) to avoid overfitting

e Goal: minimize g(0) = %Zfz(ﬁ)
i=1



Stochastic vs. deterministic methods
e Minimizing g(6 Zf’ ) with f;(0) = €(y;, 0" ®(z;)) + pQ(6)

e Batch gradient descent: 6; = 0;_1—~:9'(0:—1) = 0;_ 1——Zf =y

— Linear (e.g., exponential) convergence rate in O(e™ )
— Iteration complexity is linear in n (with line search)
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Stochastic vs. deterministic methods
e Minimizing g(6 Zf’ ) with f;(0) = €(y;, 0" ®(z;)) + pQ(6)

e Batch gradient descent: 6; = 0;_1—~:9'(0:—1) = 0;_ 1——Zf =y

— Linear (e.g., exponential) convergence rate in O(e™ )
— Iteration complexity is linear in n (with line search)

e Stochastic gradient descent: 6; = 0;_1 — %fi’(t)(ﬁt_l)

— Sampling with replacement: i(¢) random element of {1,...,n}
— Convergence rate in O(1/t)
— lIteration complexity is independent of n (step size selection?)



Stochastic vs. deterministic methods
e Minimizing g(6 Zfz ) with fi(0) = €(y;, 0" ®(z;)) + pQ(6)

e Batch gradlent descent: 975 = Ht 1—Yt9 (975 1 — 975 1——Zf Ht 1

e Stochastic gradient descent: 6; = 0;_1 — %fi’(t)(ﬁt_l)

&




Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(1) iteration cost
Robustness to step size

K stochastic

deterministic

—

log(excess cost

time



Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(1) iteration cost

log(excess cost

hybri

Robustness to step size

stochastic

deterministic

time



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 2 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

(60— if ¢ =(2
— lteration: 0y = 0,1 — ot E i with gyt = fi( 1t 2 ( |
n < Y, otherwise



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 1 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

i (0 if 2 = 4(t
— lteration: 0, = 0;_1 — i E yf with y,f = ft( 1t 2 ( )
n <= Y, otherwise

e Stochastic version of incremental average gradient (Blatt et al., 2008)

e Extra memory requirement

— Supervised machine learning

= If fi(0) = i(ys, ®(z) ' 0), then fi(0) = €i(yi, (z:) " 0) ()
— Only need to store n real numbers



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, 1 =1,...,n

— g:% > i, fi is p-strongly convex (with potentially p = 0)
— constant step size v = 1/(16L)

— initialization with one pass of averaged SGD



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, 1 =1,...,n

— g:% > i, fi is p-strongly convex (with potentially p = 0)
— constant step size v = 1/(16L)

— initialization with one pass of averaged SGD

e Strongly convex case (Le Roux et al., 2012, 2013)

E|g(6:) — g(6.)] < (822 * 4LH90n_H*H2) AP (_ tmm{gln’ 1gL})

— Linear (exponential) convergence rate with O(1) iteration cost

. 1 nuy
— Aft , reduct f cost b (— ' {—,—})
er one pass, reduction of cost by exp min 3 T6L



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, 1 =1,...,n

— g:% > i, fi is p-strongly convex (with potentially p = 0)
— constant step size v = 1/(16L)

— initialization with one pass of averaged SGD

e Non-strongly convex case (Le Roux et al., 2013)

O'2 + LHHO_H*H2 E
NG [

— Improvement over regular batch and stochastic gradient

Elg(0:) — g(0.)] < 48

— Adaptivity to potentially hidden strong convexity



Stochastic average gradient
Simulation experiments

e protein dataset (n = 145751, p = 74)

e Dataset split in two (training/testing)
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Stochastic average gradient
Simulation experiments

e covertype dataset (n = 581012, p = 54)

e Dataset split in two (training/testing)
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Conclusions

e Constant-step-size averaged stochastic gradient descent

— Reaches convergence rate O(1/n) in all regimes
— Improves on the O(1/4/n) lower-bound of non-smooth problems
— Efficient online Newton step for non-quadratic problems

e Going beyond a single pass through the data

— Keep memory of all gradients for finite training sets

— Randomization leads to easier analysis and faster rates
— Relationship with Shalev-Shwartz and Zhang (2012); Mairal (2013)

e Extensions

— Non-differentiable terms, kernels, line-search, parallelization, etc.
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