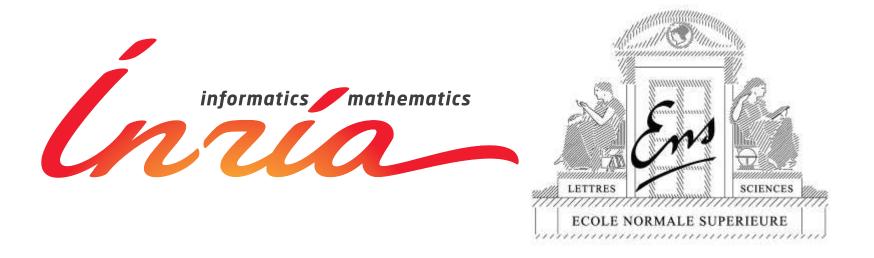
Stochastic gradient methods for machine learning

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

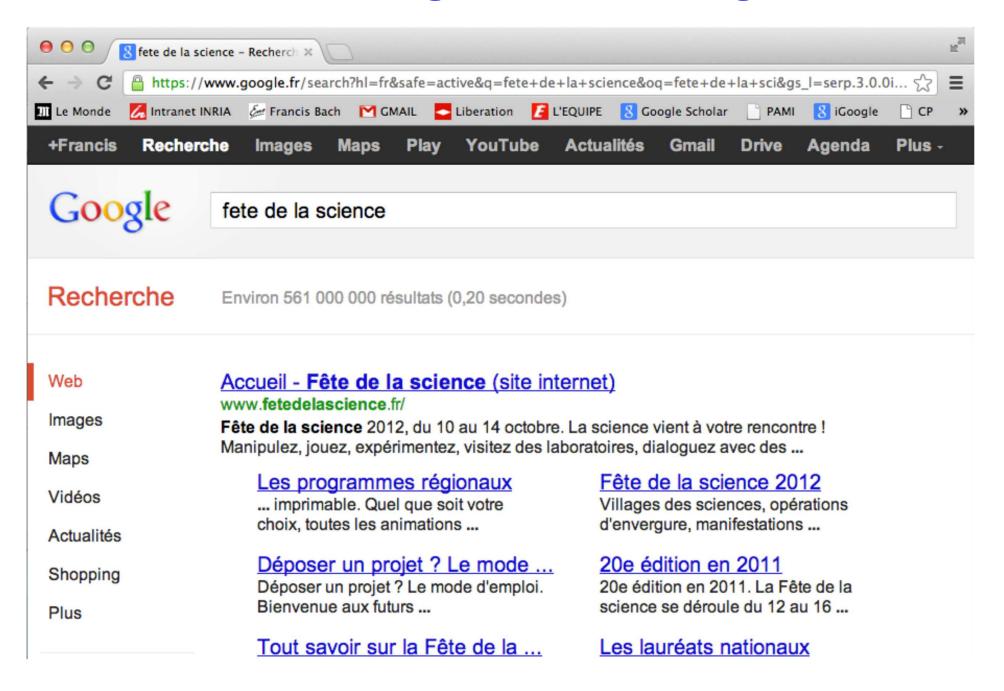


Joint work with Nicolas Le Roux, Mark Schmidt and Eric Moulines - November 2013

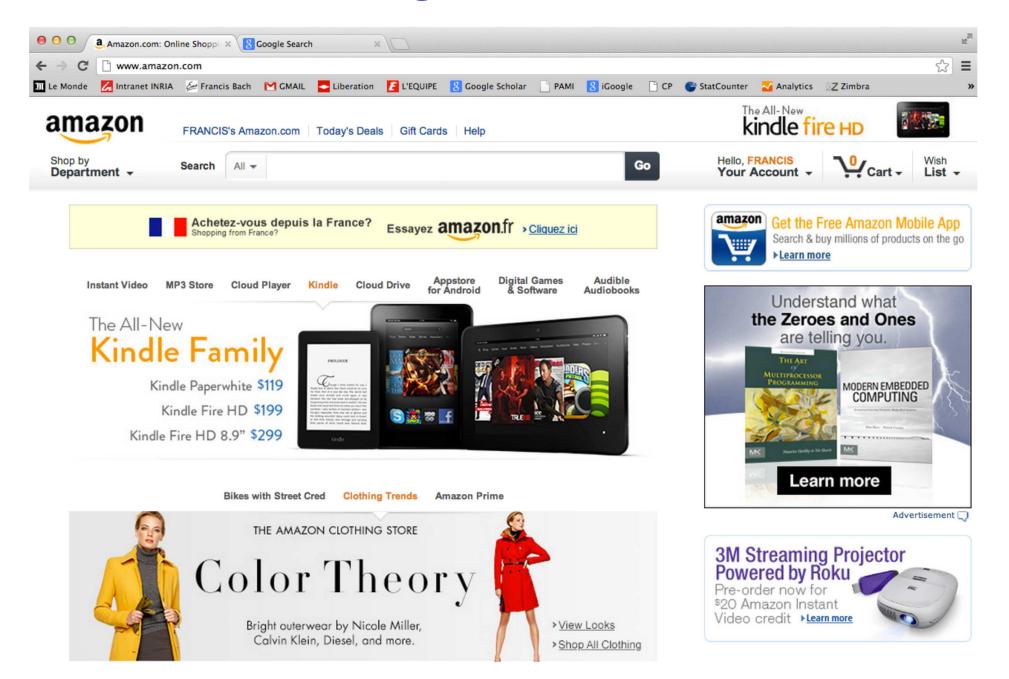
Context Machine learning for "big data"

- Large-scale machine learning: large p, large n, large k
 - -p: dimension of each observation (input)
 - -n: number of observations
 - -k: number of tasks (dimension of outputs)
- Examples: computer vision, bioinformatics, text processing

Search engines - advertising

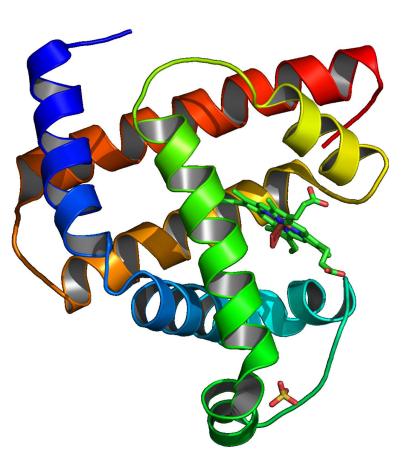


Advertising - recommendation



Object recognition

Learning for bioinformatics - Proteins



- Predicting multiple functions and interactions
- Massive data: up to 1 millions for humans!
- Complex data
 - Amino-acid sequence
 - Link with DNA
 - Tri-dimensional molecule

Context Machine learning for "big data"

- Large-scale machine learning: large p, large n, large k
 - -p: dimension of each observation (input)
 - -n: number of observations
 - -k: number of tasks (dimension of outputs)
- Examples: computer vision, bioinformatics, text processing
- Ideal running-time complexity: O(pn + kn)

Context Machine learning for "big data"

- Large-scale machine learning: large p, large n, large k
 - -p: dimension of each observation (input)
 - -n: number of observations
 - -k: number of tasks (dimension of outputs)
- Examples: computer vision, bioinformatics, text processing
- Ideal running-time complexity: O(pn + kn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins and Monro, 1951)
 - Mixing statistics and optimization

Outline

- Introduction: stochastic approximation algorithms
 - Supervised machine learning and convex optimization
 - Stochastic gradient and averaging
 - Strongly convex vs. non-strongly convex
- Fast convergence through smoothness and constant step-sizes
 - Online Newton steps (Bach and Moulines, 2013)
 - O(1/n) convergence rate for all convex functions
- More than a single pass through the data
 - Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)
 - Linear (exponential) convergence rate for strongly convex functions

Supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \theta, \Phi(x_i) \rangle) \quad + \quad \mu\Omega(\theta)$$

convex data fitting term + regularizer

Supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \theta, \Phi(x_i) \rangle) \quad + \quad \mu\Omega(\theta)$$

convex data fitting term + regularizer

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \langle \theta, \Phi(x) \rangle)$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$

Supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

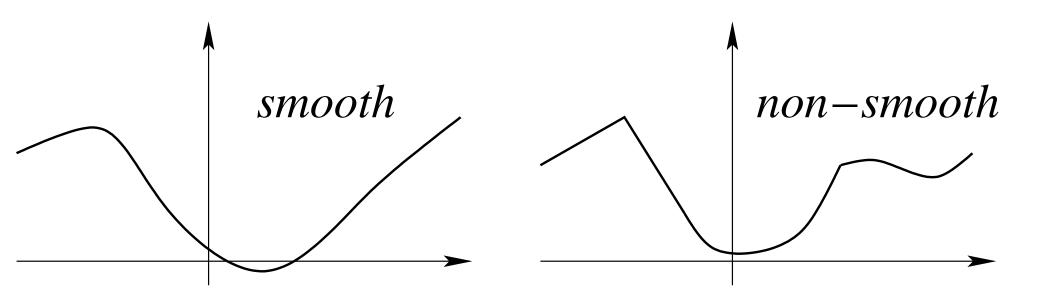
$$\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \theta, \Phi(x_i) \rangle) \quad + \quad \mu\Omega(\theta)$$

convex data fitting term + regularizer

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \langle \theta, \Phi(x) \rangle)$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
 - May be tackled simultaneously

ullet A function $g:\mathbb{R}^p o \mathbb{R}$ is $L ext{-smooth}$ if and only if it is twice differentiable and

$$\forall \theta \in \mathbb{R}^p, \ g''(\theta) \leq L \cdot \mathrm{Id}$$



ullet A function $g:\mathbb{R}^p o \mathbb{R}$ is $L ext{-smooth}$ if and only if it is twice differentiable and

$$\forall \theta \in \mathbb{R}^p, \ g''(\theta) \leq L \cdot \mathrm{Id}$$

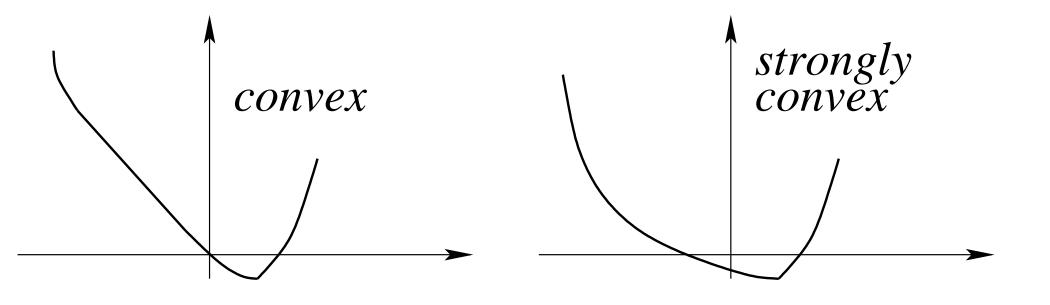
Machine learning

- with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$
- Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \otimes \Phi(x_i)$
- Bounded data

• A function $g: \mathbb{R}^p \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \geqslant g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2$$

• If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$



• A function $g: \mathbb{R}^p \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \geqslant g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2$$

• If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$

Machine learning

- with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$
- Hessian \approx covariance matrix $\frac{1}{n}\sum_{i=1}^n \Phi(x_i)\otimes \Phi(x_i)$
- Data with invertible covariance matrix (low correlation/dimension)

• A function $g: \mathbb{R}^p \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \geqslant g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2$$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$
- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \otimes \Phi(x_i)$
 - Data with invertible covariance matrix (low correlation/dimension)
- Adding regularization by $\frac{\mu}{2} \|\theta\|^2$
 - creates additional bias unless μ is small

Iterative methods for minimizing smooth functions

- **Assumption**: g convex and smooth on \mathbb{R}^p
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions
 - $O(e^{-\rho t})$ convergence rate for strongly convex functions
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $-O(e^{-\rho 2^t})$ convergence rate

Iterative methods for minimizing smooth functions

- **Assumption**: g convex and smooth on \mathbb{R}^p
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions
 - $O(e^{-\rho t})$ convergence rate for strongly convex functions
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $-O(e^{-\rho 2^t})$ convergence rate
- Key insights from Bottou and Bousquet (2008)
 - 1. In machine learning, no need to optimize below statistical error
 - 2. In machine learning, cost functions are averages
 - ⇒ Stochastic approximation

Stochastic approximation

- Goal: Minimizing a function f defined on \mathbb{R}^p
 - given only unbiased estimates $f_n'(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathbb{R}^p$

Stochastic approximation

- Observation of $f'_n(\theta_n) = f'(\theta_n) + \varepsilon_n$, with $\varepsilon_n = \text{i.i.d.}$ noise
- Non-convex problems

Stochastic approximation

- Goal: Minimizing a function f defined on \mathbb{R}^p
 - given only unbiased estimates $f_n'(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathbb{R}^p$

Stochastic approximation

- Observation of $f'_n(\theta_n) = f'(\theta_n) + \varepsilon_n$, with $\varepsilon_n = \text{i.i.d.}$ noise
- Non-convex problems

Machine learning - statistics

- loss for a single pair of observations: $f_n(\theta) = \ell(y_n, \langle \theta, \Phi(x_n) \rangle)$
- $-f(\theta) = \mathbb{E}f_n(\theta) = \mathbb{E}\ell(y_n, \langle \theta, \Phi(x_n) \rangle) =$ generalization error
- Expected gradient: $f'(\theta) = \mathbb{E}f'_n(\theta) = \mathbb{E}\left\{\ell'(y_n, \langle \theta, \Phi(x_n) \rangle) \Phi(x_n)\right\}$

Convex stochastic approximation

• **Key assumption**: smoothness and/or strongly convexity

Convex stochastic approximation

- **Key assumption**: smoothness and/or strongly convexity
- **Key algorithm:** stochastic gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n+1} \sum_{k=0}^n \theta_k$
- Which learning rate sequence γ_n ? Classical setting: $\gamma_n = Cn^{-\alpha}$

$$\gamma_n = C n^{-\alpha}$$

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Many contributions in optimization and online learning: Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov and Vial (2008); Nemirovski et al. (2009)

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
 Ruppert, 1988)
 - All step sizes $\gamma_n=Cn^{-\alpha}$ with $\alpha\in(1/2,1)$ lead to $O(n^{-1})$ for smooth strongly convex problems

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
 Ruppert, 1988)
 - All step sizes $\gamma_n=Cn^{-\alpha}$ with $\alpha\in(1/2,1)$ lead to $O(n^{-1})$ for smooth strongly convex problems
- A single algorithm for smooth problems with convergence rate O(1/n) in all situations?

Outline

- Introduction: stochastic approximation algorithms
 - Supervised machine learning and convex optimization
 - Stochastic gradient and averaging
 - Strongly convex vs. non-strongly convex
- Fast convergence through smoothness and constant step-sizes
 - Online Newton steps (Bach and Moulines, 2013)
 - O(1/n) convergence rate for all convex functions
- More than a single pass through the data
 - Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)
 - Linear (exponential) convergence rate for strongly convex functions

Least-mean-square algorithm

- Least-squares: $f(\theta) = \frac{1}{2}\mathbb{E}\big[(y_n \langle \Phi(x_n), \theta \rangle)^2\big]$ with $\theta \in \mathbb{R}^p$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - usually studied without averaging and decreasing step-sizes
 - with strong convexity assumption $\mathbb{E}\big[\Phi(x_n)\otimes\Phi(x_n)\big]=H\succcurlyeq\mu\cdot\mathrm{Id}$

Least-mean-square algorithm

- Least-squares: $f(\theta) = \frac{1}{2}\mathbb{E}\left[(y_n \langle \Phi(x_n), \theta \rangle)^2\right]$ with $\theta \in \mathbb{R}^p$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - usually studied without averaging and decreasing step-sizes
 - with strong convexity assumption $\mathbb{E}\big[\Phi(x_n)\otimes\Phi(x_n)\big]=H\succcurlyeq\mu\cdot\mathrm{Id}$
- New analysis for averaging and constant step-size $\gamma = 1/(4R^2)$
 - Assume $\|\Phi(x_n)\| \leqslant R$ and $|y_n \langle \Phi(x_n), \theta_* \rangle| \leqslant \sigma$ almost surely
 - No assumption regarding lowest eigenvalues of H
 - Main result: $\mathbb{E} f(\bar{\theta}_{n-1}) f(\theta_*) \leqslant \frac{2}{n} \Big[\sigma \sqrt{p} + R \|\theta_0 \theta_*\| \Big]^2$

• Matches statistical lower bound (Tsybakov, 2003)

Markov chain interpretation of constant step sizes

• LMS recursion for $f_n(\theta) = \frac{1}{2} (y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma (\langle \Phi(x_n), \theta_{n-1} \rangle - y_n) \Phi(x_n)$$

- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma}\stackrel{\mathrm{def}}{=}\int \theta \pi_{\gamma}(\mathrm{d}\theta)$

Markov chain interpretation of constant step sizes

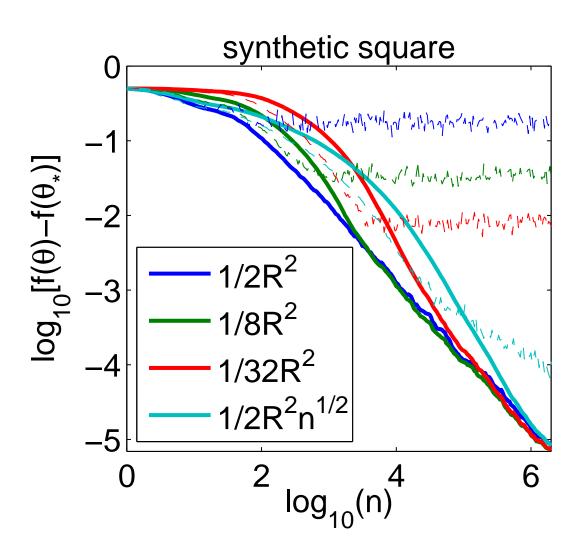
• LMS recursion for $f_n(\theta) = \frac{1}{2} (y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma (\langle \Phi(x_n), \theta_{n-1} \rangle - y_n) \Phi(x_n)$$

- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\text{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$
- ullet For least-squares, $ar{ heta}_{\gamma}= heta_*$
 - θ_n does not converge to θ_* but oscillates around it
 - oscillations of order $\sqrt{\gamma}$
- Ergodic theorem:
 - Averaged iterates converge to $\bar{\theta}_{\gamma}=\theta_{*}$ at rate O(1/n)

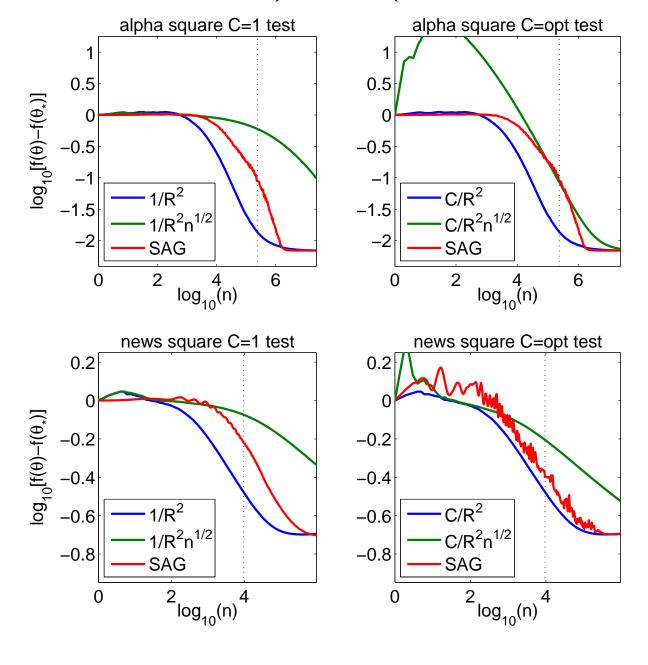
Simulations - synthetic examples

ullet Gaussian distributions - p=20



Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)



Beyond least-squares - Markov chain interpretation

- Recursion $\theta_n = \theta_{n-1} \gamma f_n'(\theta_{n-1})$ also defines a Markov chain
 - Stationary distribution π_{γ} such that $\int f'(\theta)\pi_{\gamma}(\mathrm{d}\theta)=0$
 - When f' is not linear, $f'(\int \theta \pi_{\gamma}(d\theta)) \neq \int f'(\theta) \pi_{\gamma}(d\theta) = 0$

Beyond least-squares - Markov chain interpretation

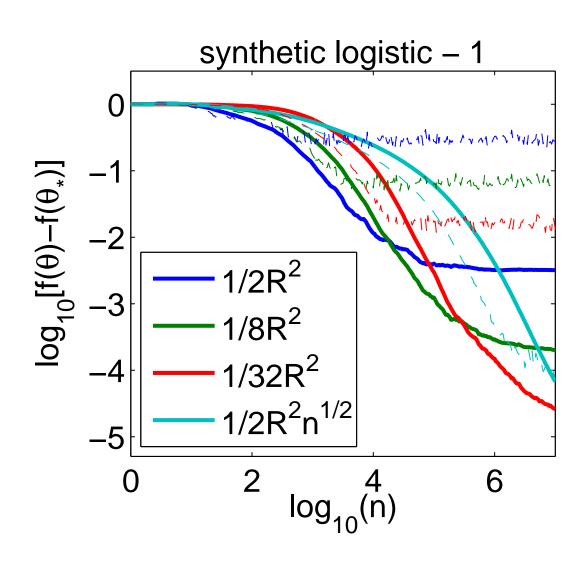
- Recursion $\theta_n = \theta_{n-1} \gamma f_n'(\theta_{n-1})$ also defines a Markov chain
 - Stationary distribution π_{γ} such that $\int f'(\theta)\pi_{\gamma}(d\theta)=0$
 - When f' is not linear, $f'(\int \theta \pi_{\gamma}(d\theta)) \neq \int f'(\theta) \pi_{\gamma}(d\theta) = 0$
- θ_n oscillates around the wrong value $\bar{\theta}_{\gamma} \neq \theta_*$
 - moreover, $\|\theta_* \theta_n\| = O_p(\sqrt{\gamma})$

Ergodic theorem

- averaged iterates converge to $\bar{\theta}_{\gamma} \neq \theta_{*}$ at rate O(1/n)
- moreover, $\|\theta_* \bar{\theta}_{\gamma}\| = O(\gamma)$ (Bach, 2013)

Simulations - synthetic examples

ullet Gaussian distributions - p=20



Restoring convergence through online Newton steps

• The Newton step for $f = \mathbb{E} f_n(\theta) \stackrel{\text{def}}{=} \mathbb{E} \big[\ell(y_n, \langle \theta, \Phi(x_n) \rangle) \big]$ at $\tilde{\theta}$ is equivalent to minimizing the quadratic approximation

$$g(\theta) = f(\tilde{\theta}) + \langle f'(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= f(\tilde{\theta}) + \langle \mathbb{E}f'_n(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, \mathbb{E}f''_n(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= \mathbb{E}\Big[f(\tilde{\theta}) + \langle f'_n(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''_n(\tilde{\theta})(\theta - \tilde{\theta}) \rangle\Big]$$

Restoring convergence through online Newton steps

• The Newton step for $f = \mathbb{E} f_n(\theta) \stackrel{\text{def}}{=} \mathbb{E} \big[\ell(y_n, \langle \theta, \Phi(x_n) \rangle) \big]$ at $\tilde{\theta}$ is equivalent to minimizing the quadratic approximation

$$g(\theta) = f(\tilde{\theta}) + \langle f'(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= f(\tilde{\theta}) + \langle \mathbb{E}f'_n(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, \mathbb{E}f''_n(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= \mathbb{E}\Big[f(\tilde{\theta}) + \langle f'_n(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''_n(\tilde{\theta})(\theta - \tilde{\theta}) \rangle\Big]$$

• Complexity of least-mean-square recursion for g is O(p)

$$\theta_n = \theta_{n-1} - \gamma \left[f'_n(\tilde{\theta}) + f''_n(\tilde{\theta})(\theta_{n-1} - \tilde{\theta}) \right]$$

- $-f_n''(\tilde{\theta}) = \ell''(y_n, \langle \tilde{\theta}, \Phi(x_n) \rangle) \Phi(x_n) \otimes \Phi(x_n)$ has rank one
- New online Newton step without computing/inverting Hessians

Choice of support point for online Newton step

Two-stage procedure

- (1) Run n/2 iterations of averaged SGD to obtain $\tilde{\theta}$
- (2) Run n/2 iterations of averaged constant step-size LMS
 - Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
 - Provable convergence rate of O(p/n) for logistic regression
 - Additional assumptions but no strong convexity

Choice of support point for online Newton step

Two-stage procedure

- (1) Run n/2 iterations of averaged SGD to obtain $\tilde{\theta}$
- (2) Run n/2 iterations of averaged constant step-size LMS
 - Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
 - Provable convergence rate of O(p/n) for logistic regression
 - Additional assumptions but no strong convexity

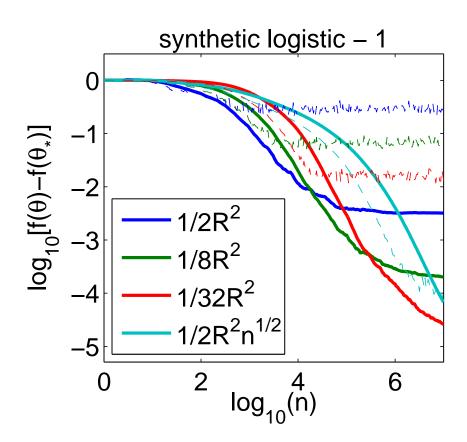
• Update at each iteration using the current averaged iterate

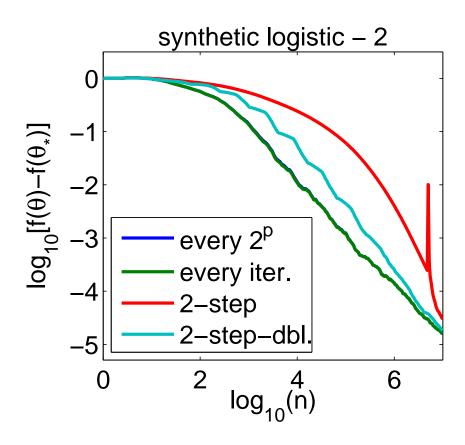
- Recursion:
$$\theta_n = \theta_{n-1} - \gamma [f'_n(\bar{\theta}_{n-1}) + f''_n(\bar{\theta}_{n-1})(\theta_{n-1} - \bar{\theta}_{n-1})]$$

No provable convergence rate but best practical behavior

Simulations - synthetic examples

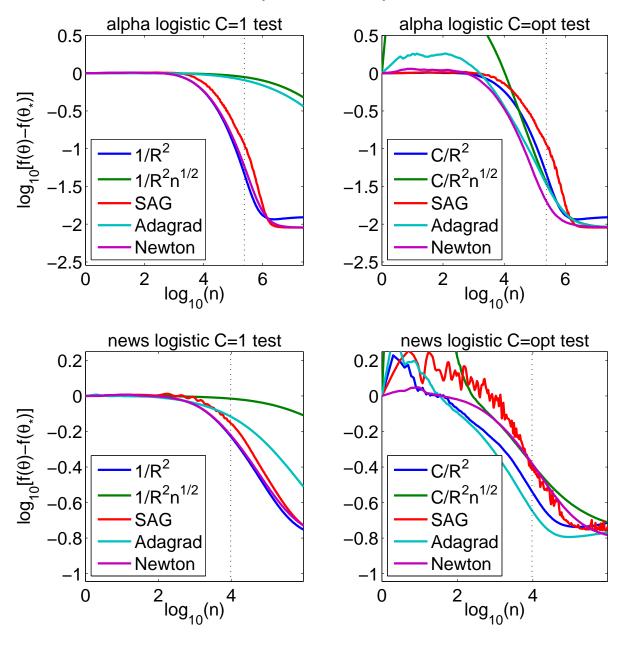
• Gaussian distributions - p=20





Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)



Outline

- Introduction: stochastic approximation algorithms
 - Supervised machine learning and convex optimization
 - Stochastic gradient and averaging
 - Strongly convex vs. non-strongly convex
- Fast convergence through smoothness and constant step-sizes
 - Online Newton steps (Bach and Moulines, 2013)
 - O(1/n) convergence rate for all convex functions
- More than a single pass through the data
 - Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)
 - Linear (exponential) convergence rate for strongly convex functions

Going beyond a single pass over the data

Stochastic approximation

- Assumes infinite data stream
- Observations are used only once
- Directly minimizes testing cost $\mathbb{E}_{(x,y)} \ell(y, \langle \theta, \Phi(x) \rangle)$

Going beyond a single pass over the data

Stochastic approximation

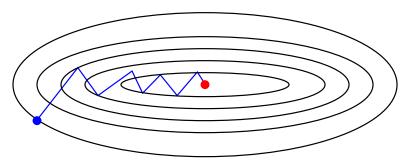
- Assumes infinite data stream
- Observations are used only once
- Directly minimizes testing cost $\mathbb{E}_{(x,y)} \ell(y, \langle \theta, \Phi(x) \rangle)$

Machine learning practice

- Finite data set $(x_1, y_1, \dots, x_n, y_n)$
- Multiple passes
- Minimizes training cost $\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$
- Need to regularize (e.g., by the ℓ_2 -norm) to avoid overfitting
- Goal: minimize $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$ with $f_i(\theta) = \ell \left(y_i, \theta^\top \Phi(x_i) \right) + \mu \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$
 - Linear (e.g., exponential) convergence rate in $O(e^{-\alpha t})$
 - Iteration complexity is linear in n (with line search)

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$

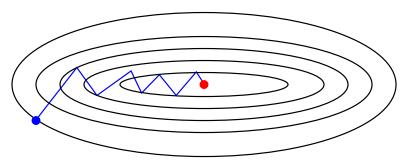


- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^{n} f_i'(\theta_{t-1})$
 - Linear (e.g., exponential) convergence rate in $O(e^{-\alpha t})$
 - Iteration complexity is linear in n (with line search)

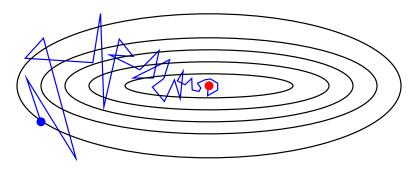
- Stochastic gradient descent: $\theta_t = \theta_{t-1} \gamma_t f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1,\ldots,n\}$
 - Convergence rate in O(1/t)
 - Iteration complexity is independent of n (step size selection?)

• Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$ with $f_i(\theta) = \ell \big(y_i, \theta^\top \Phi(x_i) \big) + \mu \Omega(\theta)$

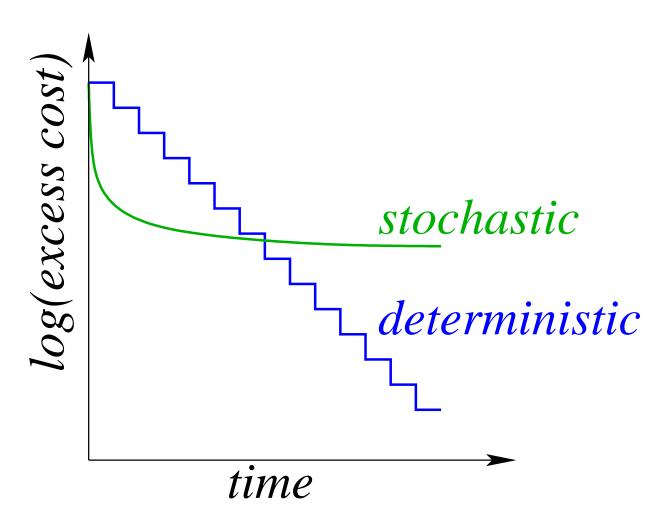
• Batch gradient descent: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$



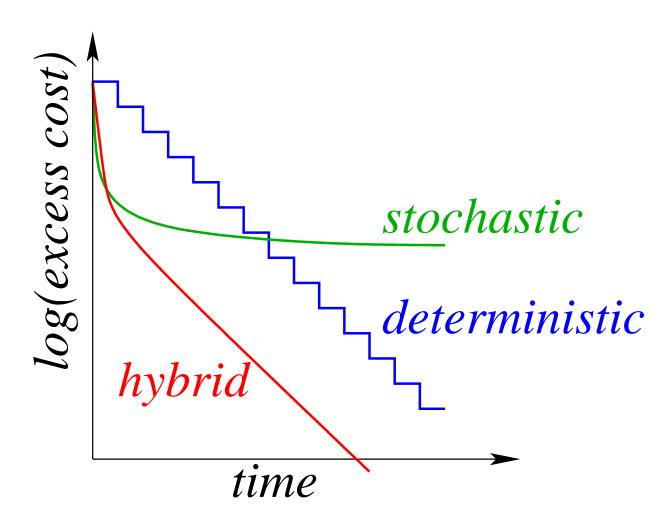
• Stochastic gradient descent: $\theta_t = \theta_{t-1} - \gamma_t f'_{i(t)}(\theta_{t-1})$



• Goal = best of both worlds: Linear rate with O(1) iteration cost Robustness to step size



• Goal = best of both worlds: Linear rate with O(1) iteration cost Robustness to step size



Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

- Iteration:
$$\theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t$$
 with $y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$

Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

$$- \text{ Iteration: } \theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t \text{ with } y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$$

- Stochastic version of incremental average gradient (Blatt et al., 2008)
- Extra memory requirement
 - Supervised machine learning
 - If $f_i(\theta) = \ell_i(y_i, \Phi(x_i)^\top \theta)$, then $f_i'(\theta) = \ell_i'(y_i, \Phi(x_i)^\top \theta) \Phi(x_i)$
 - Only need to store n real numbers

Stochastic average gradient - Convergence analysis

Assumptions

- Each f_i is L-smooth, $i = 1, \ldots, n$
- $-g = \frac{1}{n} \sum_{i=1}^{n} f_i$ is μ -strongly convex (with potentially $\mu = 0$)
- constant step size $\gamma_t = 1/(16L)$
- initialization with one pass of averaged SGD

Stochastic average gradient - Convergence analysis

Assumptions

- Each f_i is L-smooth, $i = 1, \ldots, n$
- $-g = \frac{1}{n} \sum_{i=1}^{n} f_i$ is μ -strongly convex (with potentially $\mu = 0$)
- constant step size $\gamma_t = 1/(16L)$
- initialization with one pass of averaged SGD
- Strongly convex case (Le Roux et al., 2012, 2013)

$$\mathbb{E}\left[g(\theta_t) - g(\theta_*)\right] \leqslant \left(\frac{8\sigma^2}{n} + \frac{4L\|\theta_0 - \theta_*\|^2}{n}\right) \exp\left(-t \min\left\{\frac{1}{8n}, \frac{\mu}{16L}\right\}\right)$$

- Linear (exponential) convergence rate with O(1) iteration cost
- After one pass, reduction of cost by $\exp\left(-\min\left\{\frac{1}{8},\frac{n\mu}{16L}\right\}\right)$

Stochastic average gradient - Convergence analysis

Assumptions

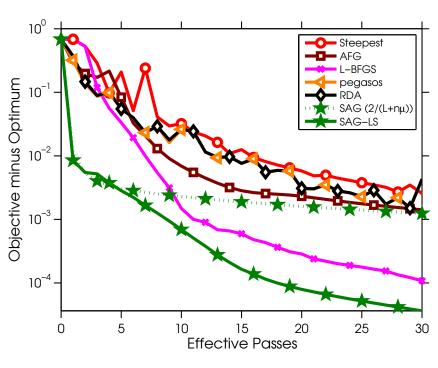
- Each f_i is L-smooth, $i = 1, \ldots, n$
- $-g = \frac{1}{n} \sum_{i=1}^{n} f_i$ is μ -strongly convex (with potentially $\mu = 0$)
- constant step size $\gamma_t = 1/(16L)$
- initialization with one pass of averaged SGD
- Non-strongly convex case (Le Roux et al., 2013)

$$\mathbb{E}\left[g(\theta_t) - g(\theta_*)\right] \leqslant 48 \frac{\sigma^2 + L\|\theta_0 - \theta_*\|^2}{\sqrt{n}} \frac{n}{t}$$

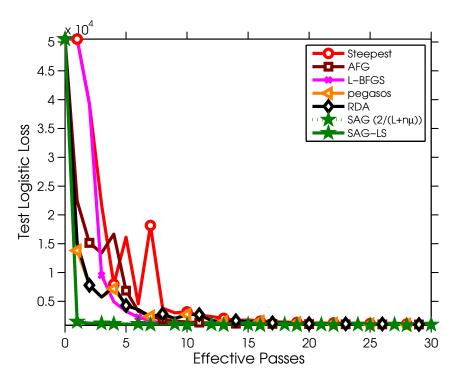
- Improvement over regular batch and stochastic gradient
- Adaptivity to potentially hidden strong convexity

Stochastic average gradient Simulation experiments

- protein dataset (n = 145751, p = 74)
- Dataset split in two (training/testing)



Training cost



Testing cost

Stochastic average gradient Simulation experiments

1.95

1.85

1.8

1.75

1.7

1.65

1.6

1.55

1.5

Test Logistic Loss

1.9 -

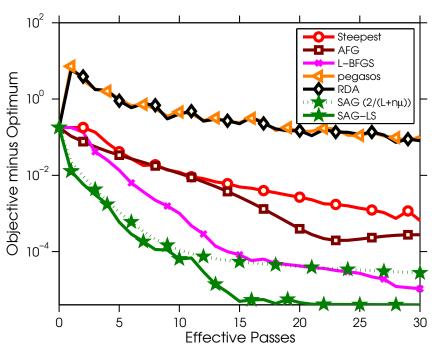
SAG (2/(L+n_µ))

25

15

Effective Passes

- covertype dataset (n = 581012, p = 54)
- Dataset split in two (training/testing)



Training cost Testing cost

Conclusions

• Constant-step-size averaged stochastic gradient descent

- Reaches convergence rate O(1/n) in all regimes
- Improves on the $O(1/\sqrt{n})$ lower-bound of non-smooth problems
- Efficient online Newton step for non-quadratic problems

Going beyond a single pass through the data

- Keep memory of all gradients for finite training sets
- Randomization leads to easier analysis and faster rates
- Relationship with Shalev-Shwartz and Zhang (2012); Mairal (2013)

Extensions

Non-differentiable terms, kernels, line-search, parallelization, etc.

References

- A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. *Information Theory, IEEE Transactions on*, 58(5):3235–3249, 2012.
- F. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. Technical Report 00804431, HAL, 2013.
- F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate o(1/n). Technical Report 00831977, HAL, 2013.
- D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method with a constant step size. *SIAM Journal on Optimization*, 18(1):29–51, 2008.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.
- L. Bottou and Y. Le Cun. On-line learning for very large data sets. *Applied Stochastic Models in Business and Industry*, 21(2):137–151, 2005.
- J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. *Journal of Machine Learning Research*, 10:2899–2934, 2009. ISSN 1532-4435.
- E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. *Machine Learning*, 69(2):169–192, 2007.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. In *Adv. NIPS*, 2012.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence

- rate for strongly-convex optimization with finite training sets. Technical Report 00674995, HAL, 2013.
- O. Macchi. Adaptive processing: The least mean squares approach with applications in transmission. Wiley West Sussex, 1995.
- Julien Mairal. Optimization with first-order surrogate functions. arXiv preprint arXiv:1305.3120, 2013.
- A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on Optimization*, 19(4):1574–1609, 2009.
- A. S. Nemirovsky and D. B. Yudin. *Problem complexity and method efficiency in optimization*. Wiley & Sons, 1983.
- Y. Nesterov and J. P. Vial. Confidence level solutions for stochastic programming. *Automatica*, 44(6): 1559–1568, 2008. ISSN 0005-1098.
- B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. *SIAM Journal on Control and Optimization*, 30(4):838–855, 1992.
- H. Robbins and S. Monro. A stochastic approximation method. *Ann. Math. Statistics*, 22:400–407, 1951. ISSN 0003-4851.
- D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical Report 781, Cornell University Operations Research and Industrial Engineering, 1988.
- S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set size. In *Proc. ICML*, 2008.
- S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. Technical Report 1209.1873, Arxiv, 2012.

- S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In *Proc. ICML*, 2007.
- S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In *proc. COLT*, 2009.
- A. B. Tsybakov. Optimal rates of aggregation. In *Proc. COLT*, 2003.
- A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge Univ. press, 2000.
- L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. *Journal of Machine Learning Research*, 9:2543–2596, 2010. ISSN 1532-4435.