
CR12: Statistical Learning & Applications

Kernel-based Methods and Stochastic Learning

Lecturer: Zaid Harchaoui Scribes: Massimiliano Fasi & Sébastien Maulat

1 Kernel-based Methods

1.1 Introduction

The procedure of lifting we discussed at the end of the last lecture is powerful, and represents a workaround
to get rid of the constraint of linear separability of the training samples, that constitutes one the main
limitations of the perceptron, that is just a linear classifier. Nevertheless, even tough it allows us to work
even with non separable training sets, on the other hand it suffers seriously the growth of dimensionality of
the learning space that linearly depends on the cardinality of the training set. This drawback makes that
trick impractical to use when dealing with most of the real scale problems, because of the performance loss
introduced by working with high-dimensional object.

Nevertheless, the possibility of using a linear classifier with non-linearly separable data paying a – possibly
slight – increase of domain’s dimensionality, seems worth of attention. We will briefly discuss again the
lifting technique later, under the light of what we will introduce in the following paragraphs.

x1

x2

x3

ϕ(x1)

ϕ(x2)

ϕ(x3)

X H

ϕ

Figure 1: A simple representation of the situation

Let us begin with an informal introduction to the basic notions and ideas of the kernel-based learning
methods. Let us suppose that we are working with a training set Dn ⊆ X × Y, where X is a general set
and Y the set of targets, i.e. the possible responses of the classification algorithm, that are usually −1 and
+1 when the goal is a binary classification. It can happen that X is weakly structured or, as we have just
seen, that data are not linearly separable there, and in such cases mapping the points of the training set
into another space can be the key. For kernel-based methods we will discuss here, we will try to map points

1

2 Kernel-based Methods and Stochastic Learning

of X into a vector space H, called feature space and equipped with a scalar product1, through a function
ϕ : X → H called feature map. In this context, we will require a map

K : X × X → R,

that will be called kernel, satisfying for all x, x′ ∈ X

K (x, x′) = 〈ϕ (x) , ϕ (x′)〉H

where 〈·, ·〉H : X × X → H denotes, and will denote from now on, the scalar product of H. The main
advantage of such approach, usually called kernel trick, is the possibility to work in the feature space H
without having to know the value of ϕ (x) on any of the x ∈ X . Once the kernel is given, indeed, it will not
be required to compute the images of the points: it will suffice to evaluate K for every pair of elements of
the domain.

Now, it is easy to see that the lifting is nothing more than an explicit feature map, since in that case we
defined an explicit way for computing a vector of the higher-dimensional space from a sample of the training
set. This way of proceeding is precisely the one the use of a kernel is meant to avoid. Indeed, these kind of
methods are based on the observation that some learning algorithms – and the preceptron is one of these, as
we have seen – do not need to explicitly know the coordinates of a training point in the feature space, but
just need a way to compute its scalar product with a given vector.

1.2 Definitions

In the rest of this section, we will formally introduce the concepts, starting with the definition of a particular
kind of kernel that, as we will see, has a nice characterization in the context of functional analysis.

Definition (Positive semi-definite kernel). Let X be an arbitrary set. A form K : X ×X → R is a positive
semi-definite kernel, often abbreviated as psd, if

1. it is symmetric, i.e. ∀x, x′ ∈ X it holds that K (x, x′) = K (x′, x);

2. it is positive definite, i.e ∀n ∈ N, ∀a ∈ Rn it holds that aᵀKa ≥ 0 where ki,j = K (xi, xj).

According to the above definition, it is easy to see that a positive semi-definite kernel is just a semi-definite
positive matrix K ∈ Rn×n, whose entries are given by the evaluation of K on each pair of vectors from a
chosen subset X ⊂ X such that |X| = n.

A first – quite straightforward – example of kernel is represented by the linear kernel, that is simply given
by the inner product of the domain. If we consider a vector space Y the linear kernel K has the form

K (y, y′) = yᵀy′ = 〈y, y′〉Y ,

where y, y′ ∈ Y.

The second object we will define is a functional Hilbert space of real-valued functions.

Definition (Reproducing Kernel Hilbert Space). Let X be an arbitrary set. The Hilbert space H =
{f : X → R} is a reproducing kernel Hilbert space, often abbreviated rkhs if and only if

1. ∀x ∈ X , each form K (x, ·) : t 7→ K (x, t) is in H
1We will actually consider Hilbert spaces.

Kernel-based Methods and Stochastic Learning 3

2. ∀x ∈ X and for all f ∈ H we have that f (x) = 〈f, k (x, ·)〉H .

According to the above definitions, in a krhs each functional k (x, ·) is continuous with respect to the point-
wise evaluation, i.e. if seen as an operator Fx as x varies in X . Moreover, each evaluation of f(x) with x ∈ X
and f ∈ H can be computed as the scalar product of f and a functional of the form k (x, ·).

1.3 Aronszajn’s theorem

Now that we all both the ingredients, we can mix them up in the following theorem, due to Aronszajn, that
gives us a neat way for characterizing a rkhs.

Theorem (Aronszajn, 1950). Let X be a compact set. Then K : X × X → R is a partial semi-definite
kernel if and only in there exist a Hilbert space H, a feature map such that for any x, x′ ∈ X it holds that
K (x, x′) = 〈ϕ (x) , ϕ (x′)〉H.

Proof. We well consider here just the proof of a very specific case, namely that of the set X = {x1, . . . , xn}
such that |X | = n <∞, but the proof can be extended to countable and also compact sets.

In order to prove the first implication, let us suppose that K is a positive semi-definite kernel. Then the
matrix K = [k (xi, xj)]i,j∈J1,nK is symmetric positive semi-definite and hence diagonalizable, i.e. there exist
λ1, . . . , λn ∈ R and u1, . . . ,un ∈ Rn such that

K =

n∑
p=1

λpupup
ᵀ.

Then, we can write each entry of K as follows

ki,j = K (xi, xj)

=

n∑
p=1

λpupi
upj

ᵀ

=
(√

λ1u1i , . . .
√
λnuni

)ᵀ (√
λ1u1j , . . .

√
λnunj

)
,

where uij represents the j-th component of the vector ui. To conclude the proof, it suffices to take, as i
varies in J1, nK, the definition

ϕ (xi) =
(√

λ1u1i , . . .
√
λnuni

)
.

For the converse, let us consider a kernel k (xi, xj) = 〈ϕ (xi) , ϕ (xj)〉H and prove that it is positive semi-
definite. The symmetry is a direct consequence of the commutativity of the scalar product, while the positive
definiteness descend from the fact that a Hilbert space is also an Euclidean space, with respect to to the
metric induced by the norm || x ||H= 〈ϕ (x) , ϕ (x)〉H.

1.4 The Kernel Perceptron

The following algorithm is a perceptron that, given a training set and a kernel function, is able to return a
function f in some Hilbert space H.

To convince ourselves that the above algorithm actually computes a function f , linear in H, that acts as
a non-linear classifier in X provided that it can works on some feature map ϕ : X → H, let us suppose to

4 Kernel-based Methods and Stochastic Learning

Algorithm 1 The Kernel Perceptron
Input: Dn = {(x1, y1) , . . . , (xn, yn)} ⊂ X × {−1,+1} and k (·, ·) : X × X → R

Output: fw (. . .) ∈ H
fw = 0
while ∃i ∈ J1, nK : yifw (xi) ≤ 0 do
fw (·)← fw (·) + yik (xi, ·)

end while
return fw

run the perceptron in H on modified instance of the training set D̃n = {(ϕ (x1) , y1) , . . . , (ϕ (xn) , yn)}. Let
w ∈ H be the output of an execution of the algorithm on D̃n, then for sure

w =

n∑
i=1

βiϕ (xi) .

Looking at the standard algorithm presented in the last lecture, we can note that the only operation per-
formed during its execution that involved the data points is the scalar product 〈w, ϕ (xi)〉, that can be
rewritten as follows

〈w, ϕ (xj)〉 =

〈
n∑

i=1

βiϕ (xi) , ϕ (xj)

〉

=

n∑
i=1

βi 〈ϕ (xi) , ϕ (xj)〉

=

n∑
i=1

βik (xi, xj)

in order avoid explicitly calculating the feature map, thank to the use of the kernel function. By mean of
that observation, we can say that the output of the algorithm 1.4 is

fw (·) =

n∑
i=1

βik (xi, ·) ,

as we expected.

As an example of use of the algorithm let us consider the problem of binary classification of graphs: we are
given n graphs x1, . . . , xn such that each of them has at least a path of length 2, and we want to classify them
using a similarity metric. Since we cannot run a perceptron on set of graphs, we need another way to describe
them, and the one we are going to give reveals itself to be very suitable to define a positive semi-definite
kernel. Let us consider, for each graph xk = (Vk, Ek), the enumeration Zk = {p1, . . . pnk

} ∈ P
(
{0, 1}3

)
of

all the paths of length 2 and the following kernel function

k (xi, xj) =
1

ni nj

Ni∑
l=1

Nj∑
m=1

h (pl, pm) (1)

where h (w1, w2) is the function that computes the Hamming distance between two words w1, w2 ∈ Σ∗ for
some alphabet Σ. Is it straightforward to see that (1) is a positive definite kernel, since the symmetry is
consequence of the commutative and associative properties of the sum, and the positive definiteness comes
directly from the non-negativity of the used metric.

Kernel-based Methods and Stochastic Learning 5

2 Stochastic learning

Stochastic learning is a way to implement machine learning algorithms using stochastic gradient descent.

• Input : (x1, y1), . . . , (xn, yn) = z1, . . . , zn, with zi ∼ Pz (Pz unknown).

• The loss function : l(x, y; f(x)) measures the cost incurred when predicting f(x) whereas the right
label is y.

Learning is solving the stochastic optimization problem :

min
f
Ex,y∼Px,y l(x, y; f(x))

We shall index the functionals f as fw over a finite-dimensional space w ∈ Rn, and set practical conditions
on l for the optimization problem to be feasible (f convex).

Example. For classification, the loss functions considered2 write as:

• the misclassification loss : l(x, y;w) = 1{y · wᵀx ≤ 0}

• the linear hinge loss : l(x, y;w) = max (0, 1− y · wᵀx) also denoted by (1− y · wᵀx)+

• the squared hinge loss : l(x, y;w) = (1− y · wᵀx)
p
+ with p = 2

The aim of this section is to provide generic algorithms for minimizing convex (but not necessarily differen-
tiable) functions l. For this, let us recall some convexity results.

Convexity and (sub)gradients.

Definition (Convexity). Given a convex subset A ⊆ Rd, a function f : A → R is convex if it satisfies :
∀u, v ∈ A,∀α ∈ [0, 1], f(αu+ (1− α)v) ≤ αf(u) + (1− α)f(v).

Definition (gradient). For differentiable functions f : Rd → R, we can define the gradient ∇f(w) also
written f ′(w) such as :

f(u) = f(w) +∇f(w)
ᵀ
(u− v) + o(...)︸ ︷︷ ︸

≥0 if f is convex

(2)

This property is far easier to use in practice to compute a gradient (by hand) than the explicit expression :
∇f = (∂f

∂w1
, . . . , ∂f

∂wd
).

For not differentiable functions, we introduce a similar notion of subgradient, which intuitively denotes “any
vector satisfying the inequality (with ≥) corresponding to equation (2)”.

Definition (subgradient). Formally, the subgradient ∂f(w) is the set of vectors v such that ∀u ∈ A, f(u)−
f(w) ≥ vᵀ(u− w).

2written with Euclidean dot-products here, but everything can readily be extended with Hilbertian dot-products using the
kernel trick

6 Kernel-based Methods and Stochastic Learning

-0.5 0.5 1 1.5

0.5

1

1.5
Misclassification Loss
Linear Hinge Loss
Squared Hinge Loss
(parameter : a)

Figure 2: Usual Loss Functions

Proposition. • If f is differentiable at w (and convex), then ∂f(w) = {∇f(w)}.

• If f = max1≤i≤n gi(w) where the gi are convex, then ∀i,∇gi(w) ∈ ∂f(w).

Lemma. The following properties imply the convexity of f :

• f is differentiable and satisfies : ∀w,∇f(w) ∈ ∂f(w).

• f admits a Hessian ∇2f(w) that is positive definite.

• f = g ◦ h where g is convex and h linear.

• f is the maximum of linear functions.

Example. • The logistic loss (also called logit) is defined by :

l(x, y;w) = log (1 + exp(−y · wᵀx))

It is convex since log(1+e−az) is convex in z independently from a (check that f ′′(z) =
a

1 + exp(az)
exp(az)a),

and wᵀx is linear (in w).

Kernel-based Methods and Stochastic Learning 7

a bbar(a,b)

Figure 3: Convexity

• l(x, y;w) = (1− y · wᵀx)+ = max(0, . . .︸ ︷︷ ︸
linear

) is convex. Still, it is not differentiable at one point (see on

figure 2). We have

{
1− y · wᵀx > 0 ⇒ −y · x ∈ ∂l
1− y · wᵀx < 0 ⇒ 0 ∈ ∂l

. Show as an exercise that

∂l(w) =


{−y · x} if l(x, y;w) > 0

{0} if l(x, y;w) < 0

{−αy · x; 0 ≤ α ≤ 1} if l(x, y;w) = 0

We now want to investigate the consequences of further regularity of f on the subgradient.

Proposition (Lipschitz and subgradients). If f is ρ-Lipschitz (∀u, v ∈ A, |f(u)− f(v)| ≤ ρ‖u− v‖) then
we have : ∀w,∀v ∈ ∂f(w), ‖v‖ ≤ ρ.

2.1 The subgradient stochastic descent.

We start with the case of f differentiable.

Definition (Gradient descent). The gradient descent algorithm (Algo. 2) for a differentiable, convex func-

tion f(w) =
n∑

i=1

l(xi, yi;w) aims at finding arg minw f(w), in “going down” (like hiking down a mountain)

incrementally in steps towards the opposite direction of the gradient, with step sizes given in advance.

In practice, taking ηt ∼ 1/t gives good results (but the coefficient depends on the Lipschitz constant).

2.2 Algorithm for the general case : f only convex.

To adapt this algorithm to non differentiable convex functions, we can rely on fundamental algorithm in
machine learning : the Stochastic Subgradient Descent Algorithm (Algo.3). The aim of this algorithm is to
find a w? minimizing Ex,y∼Px,y l(x, y;w) over w ∈ A (A being a closed convex set). Roughly speaking, it is

8 Kernel-based Methods and Stochastic Learning

Algorithm 2 Gradient Descent
Input: f differentiable (and convex), T > 0 , (ηt)t=0...T−1 ∈ (R∗+)T

Output: w, probably around a minimum of f
w0 ← 0
for t = 0 to T − 1 do
wt+1 ← wt − ηt∇f(wt)

end for
return wT

done in adapting the gradient descent with subgradients picked randomly instead of gradients. Stochastic
gradient descent iterates could correspond to the sequences of moves of a drunk (stochastic) bug who tries
to go back home (the minimum).

Algorithm 3 Stochastic Subgradient Descent
Input: f convex, T > 0 , η0 > 0
Output: w, probably around a minimum of f
1: w0 ← 0
2: for t = 1 to T do
3: choose vt s.t. E(vt) ∈ ∂f(wt−1)

4: ηt ←
η1√
t

5: w′t ← wt−1 − ηtvt
6: wt ← ΠA(w′t) // “slap the drunk bug” back to A if it goes too far away from its hometown
7: end for

8: return w̄ =
1

T

T∑
t=1

wt

Note that in line 6, we project the new vector onto A to prevent the stochastics from taking us too far away
from the base set A (see figure 2.2). Returning a mean value of all the computed vectors counterbalances
the stochastic choices of vt that do not necessarily decrease Ex,y∼Px,y

l(x, y;w).

And here is the central theorem on this algorithm :

Theorem. Assume that f = l(x, y;w) is convex (in w), and E‖vt‖2 ≤ ρ2,
let w? ∈ arg minw∈A f(w), and u a real number such that sup{‖w? − w‖, w ∈ A} ≤ u,

then E(f(w̄)− f(w?)) ≤ 1√
T

(
u2

2η1
+ ρ2η1

)

Note that in the particular case of η1 =
u

ρ
√

2
we have E [f(w̄)− f(w?)] ≤ uρ

√
2

T
.

Proof. Convexity and Jensen’s inequalities give :

f(w̄) ≤ 1

T

T∑
t=1

f(wt)

E [f(w̄)] ≤ 1

T

T∑
t=1

E [f(wt)]

Kernel-based Methods and Stochastic Learning 9

?

Figure 4: Slapping the bug

So it suffices to prove that :

1

T

T∑
t=1

E [f(wt)]− f(w?) ≤ 1√
T

(
u2

2η1
+ ρ2η1

)
The idea is to prove that for any t,

Ef(wt)− f(w?) ≤ E
(
‖wt − w?‖2 − ‖wt+1 − w?‖2

2ηt

)
+
ηt
2
ρ2 (3)

Which will telescope into :

T∑
t=1

{Ef(wt)− f(w?)} ≤ E


‖w1 − w?‖2

2η1
+

T∑
t=2

‖wt − w?‖2
(

1

2ηt
− 1

2ηt−1

)
−‖wT+1 − w?‖2

ηt︸ ︷︷ ︸
≤0

+

T∑
t=1

ηt
2
ρ2

Then as ∀t, ‖wt − w?‖2 ≤ u2 we have the result of the theorem :

T∑
t=1

{Ef(wt)− f(w?)} ≤ u2
{

1

2η1
+

T∑
t=2

(
1

2ηt
− 1

2ηt−1

)}
+
η1ρ

2

2

T∑
t=1

1√
t︸ ︷︷ ︸

≤

∫ T

0

dt

t
= 2
√
T

≤ u2
(

1

2ηT
+ η1ρ

2
√
T

)
= u2

√
T

(
1

2η1
+ η1ρ

2

)
Let’s now prove inequality (3) :

∀t,Ef(wt)− f(w?) ≤ E
(
‖wt − w?‖2 − ‖wt+1 − w?‖2

2ηt

)
+
ηt
2
ρ2

First, the following technical lemma enables to bound the effect of projection (on A convex) :

∀w,∀x ∈ A, ‖w − x‖2 − ‖ΠA(w)− x‖2 ≥ 0

10 Kernel-based Methods and Stochastic Learning

Let us consider E‖wt −w?‖. By definition, ‖w0 −w?‖2 = ‖w?‖2. Then, for any t ≥ 0. Recall that w′t is the
“value” of wt before the projection, so that w′t = wt−1 − ηtvt, and :

‖wt−1 − w?‖2 − ‖wt − w?‖2 = ‖wt−1 − w?‖2 − ‖ΠA(w′t)− w?‖2

=
(
‖wt−1 − w?‖2 − ‖w′t − w?‖2

)
−
(
‖ΠA(w′t)− w?)‖2 − ‖w′t − w?‖2︸ ︷︷ ︸

≤0 (projection lemma)

)
≥ ‖wt−1 − w?‖2 − ‖(wt−1 − w?)− ηtvt‖2

≥ 2ηt(wt−1 − w?)
ᵀ
vt − η2t ‖vt‖2

but by independance of the vis :

Ev1,...,vt

(
‖wt−1 − w?‖2 − ‖w′t − w?‖2

)
= Ev1,...,vt−1

{
2ηt(wt−1 − w?)

ᵀ
(Evtvt)− η2tEvt(‖vt‖2)

}
and as Evt(vt) is a subgradient of f at wt−1,

(wt−1 − w?)
ᵀ
(Evt

vt) ≥ f(wt−1)− f(w?)

and as we assumed that E‖vt‖2 ≤ ρ, we finally get :

E
(
‖wt−1 − w?‖2 − ‖w′t − w?‖2

)
≥ 2ηtE (f(wt)− f(w?))− η2t ρ2

which is exactly the inequality (3).

