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1 Regularized Empirical Risk Minimization

Let us denote by (yi, xi)i=1···n a set of training data where yi ∈ {−1; 1} and xi ∈ Rp. We want to �nd
w ∈ Rp such that yi ≈ w>xi. To do so, we propose to minimize the sum of two terms w.r.t w. The
�rst one is the empirical risk R(w) = 1

n

∑n
i=1 l

(
yi;w

>xi
)
where l is called the loss function (in this

course, it refers to a convex function). This term enforces a �t to data measurements The second term
λ
2‖w‖

2
2 permits to introduce some regularity on w.

Proposition 1.1. There is a �moral� equivalence between the following two problems :

ŵ(λ) = arg min
w∈Rp

R(w) +
λ

2
‖w‖22 (1)

w̃(T ) = arg min
w∈Rp

R(w) s.t. ‖w‖22 ≤ T (2)

in a sense that for all λ, there exists T > 0 such that ŵ(λ) ⊆ w̃(T ).

1.1 Ridge Regression

Ridge regression works for regularization problems and also for classi�cations problems. It is the
speci�c case where (∀a ∈ R) , (∀b ∈ R) , l(a, b) = 1

2(a − b)2. The Ridge regression problem consists in
�nding the unique minimizer ŵ of the following quantity :

f(w) =
1

n

n∑
i=1

1

2
(yi − w>xi)2 +

λ

2
‖w‖22 (3)

f(w) =
1

2n
‖y −Xw‖22 +

λ

2
‖w‖22 (4)

where y ∈ Rn and X ∈ Rn×p. From �rst-order stationary condition :

∇f(w) = 0 ⇐⇒ − 1

n
X>[y −Xw] + λw = 0 (5)

(X>X + λnI)w = X>y ∈ Rp (6)

one �nds that ŵ(λ) = (X>X + λnI)−1X>y. In order to compute ŵ(λ) there exist di�erent methods
such as :

• Method 1 : Direct inversion O(p3). In this case we have to invert a matrix of size p× p.

• Method 2 : Conjugate gradient method O(p3), which is faster than method (1) in practice.

Notice (the small n large p trick): In the case where n < p, (6), we can look for a solution of the
form w = X>z where z ∈ Rn permits to reformulate the problem as �nding : z = (XX> + λnI)−1y.
Thus one needs to invert a matrix with a lower size (n× n).
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1.2 Logistic Regression 1 REGULARIZED EMPIRICAL RISK MINIMIZATION

1.2 Logistic Regression

Logistic regression is only used for classi�cation problems. In this case, the loss function is de�ned as
(∀a ∈ R) , (∀b ∈ R) , l(a, b) = log (1 + exp(−ab)). From �rst-order stationary condition

∇f(w) = 0 ⇐⇒ − 1

n

n∑
i=1

yi

1 + exp(yix>i w)
+ λw = 0 (7)

it is not easy to exhibit an explicit solution for ŵ(λ). However, it is possible to �nd the solution by
means of the following iterations wt+1 = wt−ηt∇f(wt). Indeed, for this kind of problem (minimization
of a strongly convex function) the gradient descent is very fast.

Theorem 1.2. If we choose ηt = 1
L+λ where L is the Lipschitz constant of R, then

f(wt)−min
w
f(w) ≤

(
L− λ
L+ λ

)t
C , where C is a constant. (8)

The second method one can use is called the Newton method.

f(w) = f(wt) +∇f(wt)
>(w − wt) +

1

2
(w − wt)>∇2f(wt)(w − wt) + o

(
‖w − wt‖22

)
(9)

The Newton method consist of �nding a direction that minimizes the quadratic approximation, and
make a step into that direction: zt = wt − ηt

(
∇2f(wt)

)−1∇f(wt). The number of iterations required
by the Newton method is faster than for the gradient descent method, but each iteration is more costly.

Notice (probabilistic interpretation of logistic regression): For P[y|x] = exp(yw>x)
exp(w>x)+exp(−w>x)

and assuming that (yi, xi) are i.i.d, then :

max
w

P[y1, · · · , yn|x1, · · · , xn] ⇐⇒ min
w
− log (P[y1, · · · , yn|x1, · · · , xn]) (10)

max
w

Πn
i=1P[yi|xi] ⇐⇒ min

w

n∑
i=1

log(1 + exp(−yix>i w)) (11)

1.3 Support Vector Machine

In this case, the loss function is the Hinge loss function de�ned as (∀a ∈ R) , (∀b ∈ R) , l(a, b) =
max(0, 1− ab) which is convex but non smooth. The problem consists in �nding the minimizer ŵ :

min
w∈Rp

1

n

n∑
i=1

max(0, 1− yix>i w) +
λ

2
‖w‖22 (12)

By using slack variables ζ, it can be recast into :

min
w∈Rp,ζ∈Rn

1

n

n∑
i=1

ζi +
λ

2
‖w‖22 s.t.

{
ζi ≥ 0

ζi ≥ 1− yix>i w
(13)

which is called a �quadratic program� (minimizing a quadratic function under linear constraints), for
which e�cient solvers exists.

1.4 Kernels

H is an Hilbert space representing a class of functions f : χ → R. In this case, for the purpose of
classi�cation, we minimize over a space of functions H.

min
f∈H

1

n
l(yi; f(xi)) +

λ

2
‖f‖2H (14)
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1.4 Kernels 1 REGULARIZED EMPIRICAL RISK MINIMIZATION

Example 1.3. Linear kernel K(x, x′) = x>x′, χ = Rp
∀w ∈ Rp : Kw : x→ w>x ∈ H.
and H is the space of linear functions.

Theorem 1.4. Representer theorem

Let us de�ne the subspace H′ = {x→
∑n

i=1 αiK(xi, x), α ∈ Rn} ⊆ H.
Then, all f solutions of (14) are subject to f ∈ H′.

Proof. The proof rely on the following observation :

∀f ∈ H, f = f ′′ + f⊥ where

{
f ′′ ∈ H′,
f⊥ ∈ H′⊥.

Then, ‖f‖2H = ‖f ′′‖2H + ‖f⊥‖2H. f(xi) = 〈f ′′,Kxi〉︸ ︷︷ ︸
=f ′′(xi)

+ 〈f⊥,Kxi〉︸ ︷︷ ︸
=0

.

This theorem is interesting because we just need to �nd the set of α ∈ Rn.

• In the case of the ridge regression :

min
f∈H′

1

n

n∑
i=1

1

2
(yi − f(xi)) +

λ

2
‖f‖2H′ (15)

Let us choose α ∈ Rn :

f(xi) = 〈f,Kxi〉 (16)

= 〈
∑
j=1

αjKxj ,Kxi〉 (17)

=
n∑
j=1

αj〈Kxj ,Kxi〉 = [Kα]i (18)

In the same way, one can show that 〈f, f〉 = α>Kα. Then the minimization problem can
be reformulate as follow :

min
α∈Rn

1

2n
‖Y −Kα‖22 +

λ

2
α>Kα (19)

From the �rst order stationary condition, one �nds that the solution of this problem is
α̂(λ) = (K + λn1)−1 Y . Note that with a linear kernel K = X>X, we �nd back the �small
n, large p trick�

• In the case of SVM :

min
f∈H′,ζ∈Rn

1

n

n∑
i=1

ζi +
λ

2
‖f‖2H′ s.t.

{
ζi ≥ 0

ζi ≥ 1− yif(xi)
(20)

which can be recast into :

min
α∈Rn,ζ∈Rn

1

n

n∑
i=1

ζi +
λ

2
α>Kα s.t.

{
ζi ≥ 0

ζi ≥ 1− yi[Kα]i
(21)

which can again be solved using quadratic programming.
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2 CROSS VALIDATION

2 Cross Validation

Given a model, how do we estimate the prediction error ? This is not something obvious. In addition,
how to choose the regularization parameter λ ?

ŵ(λ) = arg min
w∈Rp

1

n

n∑
i=1

l(yi, w
>xi︸ ︷︷ ︸

(f(xi)

) +
λ

2
‖w‖22︸ ︷︷ ︸
(‖f‖2H)

(22)

Question : En(λ) = E(y,x)[l(y, ŵ(λ)>x)] ?

2.1 Case with lots of data

We can cut the set of data into two parts : a training sample T and a validation sample V. [ref, p220,
�g7.1]. Then we �nd ŵ by minimizing (22) over T and we choose λ which minimize the validation
error.

2.2 Bias-variance decomposition

y = f(x) + ε. Estimator f̂ issued from training data. Given some data x0, and calling T the training
data :

En(x0) = ET
[
(y0 − f̂(x0))

2
]

(23)

= ET
[(
ε+ f(x0)− f̂(x0)

)2]
(24)

= ET [ε2] + ET
[
(f(x0)− f̂(x0))

2
]

(25)

= σ2ε + ET
[
(f(x0)− ET [f̂(x0)])

2
]

︸ ︷︷ ︸
Biais squared

+ET
[(
f̂(x0)− ET f̂(x0)

)2]
︸ ︷︷ ︸

Var(f̂(x0)

(26)

Some intuition is that a highly regularized model has low variance, but can have a large bias: for exam-
ple, when λ goes to in�nity, ŵ(λ) will always be close to zero. On the other hand, a low regularization
can lead to low bias, but large variance. The goal of cross-validation is to �nd a λ which is a good
trade-o�.

2.3 Cross-validation

K-folds cross-validation.

1. Compute CV(λ) = 1
K

∑K
k=1

1
nVal

∑
i∈Val(k) l(yi, f̂

\k(xi)).

2. Find λ̂ = arg min CV(λ)

3. Learn f̂
λ̂
on the full training data

4. Test E = 1
ntest

∑
i∈Test L(yi, f̂λ̂(xi))

K = 5 or K = 10 are often used in practice.
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3 NEAREST NEIGHBORS

3 Nearest Neighbors

M di�erent neighbors. Training data (xi, yi)i=1,··· ,n and yi ∈ {1, · · · ,M}. Given a new test point x,
how do I classify it ?

ŷNN = label

(
arg min

i=1,··· ,n
d(xi, x)

)
(27)

K-Nearest neighbors [ref p466].

Theorem 3.1. Correr and Hart (1967)

"Asymptotically, the error rate of 1-NN is never more than twice the Bayes error rate".

We are going to give a sketch of the proof, by making simplifying assumptions.

De�nition 3.2. Bayes Estimator

ŷBayes(x) = arg max
y∈{1,··· ,M}

P[Y = y|X = x] (28)

Note that the Bayes estimator does not exist in realistic setting since the conditional probability
P[Y = y|X = x] is unknown. This is an �ideal� classi�er, used for theoretical purposes.

De�nition 3.3. Bayes error

Given a data point x, and a label Y (x) drawn according to the conditional probability P[Y |X = x],

EBayes(x) = P [Y 6= ŷBayes(x)] , (29)

Note that in this de�nition, only the label Y (x) is a random variable, with P[Y (x) = y] = P[Y =
y|X = x]. First let us show that the error rate of the nearest neighbors classi�er is lower bounded by
the Bayes error rate.

P[Y (x) 6= ŷBayes(x)] = 1− P[Y (x) = ŷBayes(x)] (30)

Assume that we live in a ideal world, where there exist some x̃ in the training set such that x = x̃,
associated to a label Ỹ (x̃), which is drawn according to P[Y |X = x]. It is important here to notice
that Y (x) and Ỹ (x̃) are two independent random variables identically distributed. Even though, they
correspond to the same data point x = x̃, they do not necessarily have the same value! Then, we have
that ŷNN (x) = Ỹ (x̃) is a random variable drawn according to P[Y |X = x].

P
[
ŷNN (x) 6= Y (x)

]
=

M∑
j=1

P
[
Y (x) = yj , ŷNN (x) 6= yjx

]
(31)

=
M∑
j=1

P
[
Y (x) = yj

]
P
[
ŷNN (x) 6= yj

]
︸ ︷︷ ︸

1−P
[
Y (x)=yj

] (32)

≥
M∑
j=1

P
[
Y (x) = yj

] (
1− P

[
Y (x) = ŷBayes(x)

])
(33)

= 1− P
[
Y (x) = ŷBayes(x)

]
= EBayes (34)

When M = 2, one can show that P[ŷNN (x) 6= Y (x)] ≤ 2En,Bayes. Indeed,

P
[
ŷNN (x) 6= Y (x)

]
=

2∑
j=1

P
[
Y (x) = yj

]
(1− P

[
Y (x) = yj

]
) (35)

= 2P
[
ŷBayes(x) = yj

]
(1− P

[
ŷBayes(x) = yj

]
) (36)

≤ 2(1− P
[
ŷBayes(x) = yj

]
) = 2EBayes (37)
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4 LASSO

Let us now treat the case M > 2. To simplify the notation, we will write Pj = P [Y = yj |X = x]
and P ∗ = P [Y = yBayes(x)|X = x].

P
[
ŷNN (x) 6= Y (x)

]
=

n∑
j=1

Pj(1− Pj) (38)

= P ∗(1− P ∗) +
∑
j 6=j∗

Pj(1− Pj) (39)

= P ∗(1− P ∗) + (1− P ∗)−
∑
j 6=j∗

P 2
j (40)

= 2(1− P ∗)− (1− P ∗)2 −
∑
j 6=j∗

P 2
j (41)

If one notices that ∑
j 6=j∗

Pj

2

≤
∑
j 6=j∗

P 2
j (K − 1) (42)

Then :
n∑
j=1

Pj(1− Pj) ≤ 2(1− P ∗)− K

K − 1
(1− P ∗)2 (43)

4 LASSO

min
w∈Rp

1

n

n∑
i=1

l(yi, x
>
i w) +

λ

2
‖w‖22 (44)

min
w∈Rp

1

n

n∑
i=1

l(yi, x
>
i w) s.t. ‖w‖22 ≤ T (45)

Assume that the "true" w is sparse, meaning that it has a lots of zeros. One way to introduce
sparsity would be to minimize :

min
w∈Rp

1

n

n∑
i=1

l(yi, x
>
i w) +

λ

2
Ω(w) (46)

If we choose Ω(w) = #{wi 6= 0} then the problem is NP-hard. If we choose Ω(w) = ‖w‖1 which is a
convex set, the problem is easily feasible and introduce sparsity.

min
w∈Rp

1

n

n∑
i=1

l(yi, x
>
i w) +

λ

2
‖w‖1 (47)

min
w∈Rp

1

n

n∑
i=1

l(yi, x
>
i w) s.t. ‖w‖1 ≤ T (48)
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