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1 Regularized Empirical Risk Minimization

Let us denote by (yi, z;)i=1..n a set of training data where y; € {—1;1} and z; € RP. We want to find

w € RP such that y; ~ w'z;. To do so, we propose to minimize the sum of two terms w.r.t w. The
first one is the empirical risk R(w) = 2 3" | I (y;;w' ;) where [ is called the loss function (in this
course, it refers to a convex function). This term enforces a fit to data measurements The second term

%Hw”% permits to introduce some regularity on w.

Proposition 1.1. There is a “moral” equivalence between the following two problems :

_ . Ao
w(A) = arg min R(w) + 3 |Jwllz (1)
(T) = arg min R(w) s.t. w3 <T (2)
we

in a sense that for all A, there exists T > 0 such that wW(\) C w(T).

1.1 Ridge Regression

Ridge regression works for regularization problems and also for classifications problems. It is the
specific case where (Va € R), (Vb € R), I(a,b) = £(a — b)%. The Ridge regression problem consists in
finding the unique minimizer w of the following quantity :

1 1 A

)= 530500 = wT) + Gl (3)
1 A

Fw) = 5-lly = Xwl + 5wl @

where y € R™ and X € R™*P. From first-order stationary condition :

Viw) =0 <= _%XT[y_Xw]Hw:o (5)
(XTX + \nDw=X"ycRP (6)

one finds that W(A\) = (X "X + MI)"' X Ty. In order to compute @w()\) there exist different methods
such as :

e Method 1 : Direct inversion O(p?). In this case we have to invert a matrix of size p x p.
e Method 2 : Conjugate gradient method O(p?), which is faster than method (1) in practice.
Notice (the small n large p trick): In the case where n < p, @, we can look for a solution of the

form w = X Tz where z € R™ permits to reformulate the problem as finding : z = (XX ' + Anl) " y.
Thus one needs to invert a matrix with a lower size (n x n).
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1.2 Logistic Regression

Logistic regression is only used for classification problems. In this case, the loss function is defined as
(Va € R), (Vb eR), l(a,b) =log (1 + exp(—ab)). From first-order stationary condition

1 Yi
Vilw)=0 +— —-— +Aw=0 7
fw) n ; 1 + exp(yiz, w) ()
it is not easy to exhibit an explicit solution for w(\). However, it is possible to find the solution by
means of the following iterations wy41 = wy—nV f(wy). Indeed, for this kind of problem (minimization

of a strongly convex function) the gradient descent is very fast.

Theorem 1.2. If we choose n, = L%—A where L 1s the Lipschitz constant of R, then

L-X\\'
flwy) — Irllli}n flw) < <L+/\> C , where C is a constant. (8)
The second method one can use is called the Newton method.
1
Fw) = f(w) + Vf(w) (w—wy) + (w— wy) TV f(we) (w — we) + 0 (Jlw — w3 (9)

The Newton method consist of finding a direction that minimizes the quadratic approximation, and
make a step into that direction: z; = wy — 1 (VQf(wt))fl V f(w). The number of iterations required
by the Newton method is faster than for the gradient descent method, but each iteration is more costly.

.
Notice (probabilistic interpretation of logistic regression): For P[y|z] = exp(wixggggxpﬁwu)

and assuming that (y;,x;) are i.i.d, then :

Hlj}XP[yl,--- ,yn|$1,"‘ ,l‘n] — mui)n_IOg(P[yla"' ,yn|$1,'-' ,xn]) (10)
n

max I Plyilz] < mu%nz log(1 + exp(—yiz; w)) (11)
i=1

1.3 Support Vector Machine

In this case, the loss function is the Hinge loss function defined as (Va € R), (Vb € R), I(a,b) =
max(0,1 — ab) which is convex but non smooth. The problem consists in finding the minimizer @ :

o1 A
min — g max(0,1 — y;x; w) + §||w|]% (12)
By using slack variables (, it can be recast into :

B I Ao ¢G>0
2 £ 13
TONED SRS PR 13)

wERP,CER™ N G>1-— yixiTw

which is called a “quadratic program” (minimizing a quadratic function under linear constraints), for
which efficient solvers exists.

1.4 Kernels

‘H is an Hilbert space representing a class of functions f : x — R. In this case, for the purpose of
clagsification, we minimize over a space of functions H.

1 A
min (i /(@) + 51 1 (14
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Example 1.3. Linear kernel K(z,2') =z "2/, x = RP
VweRP: Kw:z—w' zeH.
and H is the space of linear functions.

Theorem 1.4. Representer theorem
Let us define the subspace H' = {x — > 1" | ;K (xi,z),c € R"} CH.
Then, all f solutions of are subject to f € H'.

Proof. The proof rely on the following observation :

f// 6 H/’
VfeH, f=f"+f" where {fL 2L
Then, [|f15, = I1F"13 + If 115, fx) = (", Kai) + (f, Ka). O
~———— T
e -

This theorem is interesting because we just need to find the set of a € R™.

e In the case of the ridge regression :

1 1 A
min =S5 (v = F@) + 51 (15)
Let us choose o € R™ :

f(zi) = (f, Kz;) (16)
= <Z Ongl'j,K.’BZ> (17)

j=1
= En:ozj<K$j,Kxi> = [KO&h (18)

j=1

In the same way, one can show that (f, f) = o' Ka. Then the minimization problem can
be reformulate as follow :

1 A
in —||Y — Ka|l2+ Za'K 1
min | alz + 50" Ke (19)

From the first order stationary condition, one finds that the solution of this problem is
a(\) = (K + Anl)"'Y. Note that with a linear kernel K = X' X, we find back the “small
n, large p trick”

e In the case of SVM :

1o Ao G>0
min — i + = ; s.t. - 20
which can be recast into :

1< A ;>0
min  — Z G+ Za'Ka st G2 (21)
Q€R™ (ER™ T 2 G >1—y[Ka;

which can again be solved using quadratic programming.
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2 Cross Validation

Given a model, how do we estimate the prediction error 7 This is not something obvious. In addition,
how to choose the regularization parameter A 7

w\y

[wllz I3 (22)
Teo

w(A) = arg min —Zl yl,w x;)

weRP N

Question : Ej,(\) = Eq [y, W(\) "x)] ?

Y,)

2.1 Case with lots of data

We can cut the set of data into two parts : a training sample T and a validation sample V. [ref, p220,
fig7.1]. Then we find @ by minimizing over T and we choose A which minimize the validation
error.

2.2 Bias-variance decomposition

y = f(z) + €. Estimator fA’issued from training data. Given some data zg, and calling T the training
data :

En(w0) = Er | (90 - ﬂ:co))?] (23)
=5 (e Saw) - Flaw)) | (24)
= B[] +Er [(/(w0) - Flw0))?] (25)
= 02+ EBr [(f(an) - Exlfla))?] + B | (Fla) - Erf(e0)) | (26)

Biais squared -~
Var(f(zo)

Some intuition is that a highly regularized model has low variance, but can have a large bias: for exam-
ple, when A goes to infinity, w(A) will always be close to zero. On the other hand, a low regularization
can lead to low bias, but large variance. The goal of cross-validation is to find a A which is a good
trade-off.

2.3 Cross-validation

K-folds cross-validation.

1. Compute CV(A) = % 305, 7= S scvaqe i [V (20)).
2. Find A = arg min CV(\)

3. Learn j} on the full training data

4. Test £ = ﬁ ZiETest L(yi7 fX(xi))

K =5 or K =10 are often used in practice.
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3 Nearest Neighbors

M different neighbors. Training data (z;,¥;)i=1,.. » and y; € {1,--- , M}. Given a new test point x,
how do I classify it ?

ynn = label (arg‘ min d(:ri,x)> (27)

i=1,--.n

K-Nearest neighbors [ref p466].

Theorem 3.1. Correr and Hart (1967)
"Asymptotically, the error rate of 1-NN is never more than twice the Bayes error rate”.

We are going to give a sketch of the proof, by making simplifying assumptions.

Definition 3.2. Bayes Fstimator

m r) =ar max PlY =y|lX ==z 28

yBayes( ) gye{l,---,M} [ y‘ ] ( )

Note that the Bayes estimator does not exist in realistic setting since the conditional probability
PlY = y|X = ] is unknown. This is an “ideal” classifier, used for theoretical purposes.

Definition 3.3. Bayes error
Given a data point x, and a label Y (x) drawn according to the conditional probability P[Y|X = z],

EBayesC”) =P [Y # ?//\Bayes(x)} ) (29)

Note that in this definition, only the label Y (x) is a random variable, with P[Y (z) = y] = P[Y =
y|X = z]. First let us show that the error rate of the nearest neighbors classifier is lower bounded by
the Bayes error rate.

PlY (z) # ?//\Bayes(x)] =1-PY(z) = @\Bayes(x)] (30)

Assume that we live in a ideal world, where there exist some Z in the training set such that z = 7,
associated to a label Y (), which is drawn according to P[Y|X = z]. It is important here to notice
that Y (z) and Y (&) are two independent random variables identically distributed. Even though, they
correspond to the same data point £ = Z, they do not necessarily have the same value! Then, we have
that gy n(x) = Y (%) is a random variable drawn according to P[Y|X = z].

M

Plovn (@) £ Y (@)] = S P[¥ () =y, Gvn (o) # vy (31)
j=1
M
= > P[Y (@) = ;] B|gvn(@) # 5] (32)
j=1
1-P[Y(2)=y;]
M
= ZP[Y(x> = yj] (1 - P[Y({L‘) = @\Bayes(l')]) (33)
j=1
=1- ]P)[Y(:E) = /y\Bayes(l‘)] = EBayes (34)

When M = 2, one can show that Plyyn(x) # Y (2)] < 2E), Bayes- Indeed,

P|jvw(@) # V()| = Y P[Y(2) = 4]0~ P[Y(2) = y,]) (35)
j=1

= 2P [{U\Bayes(x) = yj] (1 - P[@\Bayes(l‘) = yj]) (36)

< 2(1 - P[?/J\Bayes(x) = y]D = 2EBaLyes (37)



4 LASSO

Let us now treat the case M > 2. To simplify the notation, we will write P; = P|
and P* = P[Y = ygayes(7)| X = 2].

z)| = ipju - P

P[@NN(:C) LY

=P*(1-P")+ > Py
J#T*
=P*(1-P)+(1-P)- > P}
J#5*
=21-P)—(1-P)-> P’
J#T*
If one notices that )

VI IED YT}
J#5* J#5"
Then :
- K
Y P-P)<2(1- P~ o (1= P
j=1 B
4 LASSO
mm—zz o w) + 3wl
weRP N T 2
mm—Zlyz,:cZw st. |w|p<T

weRP N

Assume that the "true" w is sparse, meaning that it has a lots of zeros.
sparsity would be to minimize :

A
wmélgjﬁzlyuxzw)—i_ Q( )

If we choose Q(w) =
convex set, the problem is easily feasible and introduce sparsity.

A
ﬁﬁgZﬂ%%w S lwlh

min —Zl yi,x; w) st |wl <T

weR?P N

Y = y;|X =1

(45)

One way to introduce

(46)

#{w; # 0} then the problem is NP-hard. If we choose Q(w) = ||w||y which is a

(47)

(48)
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