Course 4

November 21, 2013

1 Regularized Empirical Risk Minimization

Let us denote by $(y_i, x_i)_{i=1\cdots n}$ a set of training data where $y_i \in \{-1, 1\}$ and $x_i \in \mathbb{R}^p$. We want to find $w \in \mathbb{R}^p$ such that $y_i \approx w^\top x_i$. To do so, we propose to minimize the sum of two terms w.r.t w. The first one is the empirical risk $R(w) = \frac{1}{n} \sum_{i=1}^n l(y_i; w^\top x_i)$ where l is called the loss function (in this course, it refers to a convex function). This term enforces a fit to data measurements The second term $\frac{\lambda}{2} \|w\|_2^2$ permits to introduce some regularity on w.

Proposition 1.1. There is a "moral" equivalence between the following two problems :

$$\widehat{w}(\lambda) = \arg\min_{w \in \mathbb{R}^p} R(w) + \frac{\lambda}{2} \|w\|_2^2 \tag{1}$$

$$\tilde{w}(T) = \arg\min_{w \in \mathbb{R}^p} R(w) \quad s.t. \quad \|w\|_2^2 \le T$$
(2)

in a sense that for all λ , there exists T > 0 such that $\widehat{w}(\lambda) \subseteq \widetilde{w}(T)$.

1.1 Ridge Regression

Ridge regression works for regularization problems and also for classifications problems. It is the specific case where $(\forall a \in \mathbb{R}), (\forall b \in \mathbb{R}), l(a, b) = \frac{1}{2}(a - b)^2$. The Ridge regression problem consists in finding the unique minimizer \hat{w} of the following quantity :

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (y_i - w^\top x_i)^2 + \frac{\lambda}{2} ||w||_2^2$$
(3)

$$f(w) = \frac{1}{2n} \|y - Xw\|_2^2 + \frac{\lambda}{2} \|w\|_2^2$$
(4)

where $y \in \mathbb{R}^n$ and $X \in \mathbb{R}^{n \times p}$. From first-order stationary condition :

$$\nabla f(w) = 0 \quad \Longleftrightarrow \quad -\frac{1}{n} X^{\top} [y - Xw] + \lambda w = 0 \tag{5}$$

$$(X^{\top}X + \lambda nI)w = X^{\top}y \in \mathbb{R}^p$$
(6)

one finds that $\widehat{w}(\lambda) = (X^{\top}X + \lambda nI)^{-1}X^{\top}y$. In order to compute $\widehat{w}(\lambda)$ there exist different methods such as :

- Method 1 : Direct inversion $O(p^3)$. In this case we have to invert a matrix of size $p \times p$.
- Method 2 : Conjugate gradient method $O(p^3)$, which is faster than method (1) in practice.

Notice (the small *n* large *p* trick): In the case where n < p, (6), we can look for a solution of the form $w = X^{\top}z$ where $z \in \mathbb{R}^n$ permits to reformulate the problem as finding : $z = (XX^{\top} + \lambda nI)^{-1}y$. Thus one needs to invert a matrix with a lower size $(n \times n)$.

1.2 Logistic Regression

Logistic regression is only used for classification problems. In this case, the loss function is defined as $(\forall a \in \mathbb{R}), (\forall b \in \mathbb{R}), l(a, b) = \log(1 + \exp(-ab))$. From first-order stationary condition

$$\nabla f(w) = 0 \quad \Longleftrightarrow \quad -\frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{1 + \exp(y_i x_i^\top w)} + \lambda w = 0 \tag{7}$$

it is not easy to exhibit an explicit solution for $\widehat{w}(\lambda)$. However, it is possible to find the solution by means of the following iterations $w_{t+1} = w_t - \eta_t \nabla f(w_t)$. Indeed, for this kind of problem (minimization of a strongly convex function) the gradient descent is very fast.

Theorem 1.2. If we choose $\eta_t = \frac{1}{L+\lambda}$ where L is the Lipschitz constant of R, then

$$f(w_t) - \min_{w} f(w) \le \left(\frac{L-\lambda}{L+\lambda}\right)^t C \quad , \text{ where } C \text{ is a constant.}$$

$$\tag{8}$$

The second method one can use is called the Newton method.

$$f(w) = f(w_t) + \nabla f(w_t)^{\top} (w - w_t) + \frac{1}{2} (w - w_t)^{\top} \nabla^2 f(w_t) (w - w_t) + o\left(\|w - w_t\|_2^2 \right)$$
(9)

The Newton method consist of finding a direction that minimizes the quadratic approximation, and make a step into that direction: $z_t = w_t - \eta_t \left(\nabla^2 f(w_t)\right)^{-1} \nabla f(w_t)$. The number of iterations required by the Newton method is faster than for the gradient descent method, but each iteration is more costly.

Notice (probabilistic interpretation of logistic regression): For $\mathbb{P}[y|x] = \frac{\exp(yw^{\top}x)}{\exp(w^{\top}x) + \exp(-w^{\top}x)}$ and assuming that (y_i, x_i) are i.i.d, then :

$$\max_{w} \mathbb{P}[y_1, \cdots, y_n | x_1, \cdots, x_n] \quad \Longleftrightarrow \quad \min_{w} -\log\left(\mathbb{P}[y_1, \cdots, y_n | x_1, \cdots, x_n]\right) \tag{10}$$

$$\max_{w} \prod_{i=1}^{n} \mathbb{P}[y_i|x_i] \quad \Longleftrightarrow \quad \min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^{\top} w))$$
(11)

1.3 Support Vector Machine

In this case, the loss function is the Hinge loss function defined as $(\forall a \in \mathbb{R}), (\forall b \in \mathbb{R}), l(a, b) = \max(0, 1 - ab)$ which is convex but non smooth. The problem consists in finding the minimizer \hat{w} :

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \max(0, 1 - y_i x_i^\top w) + \frac{\lambda}{2} \|w\|_2^2$$
(12)

By using slack variables ζ , it can be recast into :

$$\min_{w \in \mathbb{R}^p, \zeta \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \zeta_i + \frac{\lambda}{2} \|w\|_2^2 \quad \text{s.t.} \quad \begin{cases} \zeta_i \ge 0\\ \zeta_i \ge 1 - y_i x_i^\top w \end{cases}$$
(13)

which is called a "quadratic program" (minimizing a quadratic function under linear constraints), for which efficient solvers exists.

1.4 Kernels

 \mathcal{H} is an Hilbert space representing a class of functions $f : \chi \to \mathbb{R}$. In this case, for the purpose of classification, we minimize over a space of functions \mathcal{H} .

$$\min_{f \in \mathcal{H}} \frac{1}{n} l(y_i; f(x_i)) + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2$$
(14)

Example 1.3. Linear kernel $K(x, x') = x^{\top}x', \ \chi = \mathbb{R}^p$ $\forall w \in \mathbb{R}^p : Kw : x \to w^{\top}x \in \mathcal{H}.$ and \mathcal{H} is the space of linear functions.

Theorem 1.4. Representer theorem Let us define the subspace $\mathcal{H}' = \{x \to \sum_{i=1}^{n} \alpha_i K(x_i, x), \alpha \in \mathbb{R}^n\} \subseteq \mathcal{H}$. Then, all f solutions of (14) are subject to $f \in \mathcal{H}'$.

Proof. The proof rely on the following observation :

$$\forall f \in \mathcal{H}, \quad f = f'' + f^{\perp} \quad \text{where} \quad \begin{cases} f'' \in \mathcal{H}', \\ f^{\perp} \in \mathcal{H}'^{\perp}. \end{cases}$$

$$\text{Then, } \|f\|_{\mathcal{H}}^{2} = \|f''\|_{\mathcal{H}}^{2} + \|f^{\perp}\|_{\mathcal{H}}^{2}. \quad f(x_{i}) = \underbrace{\langle f'', Kx_{i} \rangle}_{=f''(x_{i})} + \underbrace{\langle f^{\perp}, Kx_{i} \rangle}_{=0}. \end{cases}$$

This theorem is interesting because we just need to find the set of $\alpha \in \mathbb{R}^n$.

• In the case of the ridge regression :

$$\min_{f \in \mathcal{H}'} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \left(y_i - f(x_i) \right) + \frac{\lambda}{2} \| f \|_{\mathcal{H}'}^2 \tag{15}$$

Let us choose $\alpha \in \mathbb{R}^n$:

$$f(x_i) = \langle f, Kx_i \rangle \tag{16}$$

$$= \langle \sum_{j=1} \alpha_j K x_j, K x_i \rangle \tag{17}$$

$$=\sum_{j=1}^{n}\alpha_{j}\langle Kx_{j}, Kx_{i}\rangle = [K\alpha]_{i}$$
(18)

In the same way, one can show that $\langle f, f \rangle = \alpha^{\top} K \alpha$. Then the minimization problem can be reformulate as follow :

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{2n} \|Y - K\alpha\|_2^2 + \frac{\lambda}{2} \alpha^\top K\alpha$$
(19)

From the first order stationary condition, one finds that the solution of this problem is $\widehat{\alpha}(\lambda) = (K + \lambda n \mathbb{1})^{-1} Y$. Note that with a linear kernel $K = X^{\top} X$, we find back the "small n, large p trick"

• In the case of SVM :

$$\min_{f \in \mathcal{H}', \zeta \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \zeta_i + \frac{\lambda}{2} \|f\|_{\mathcal{H}'}^2 \quad \text{s.t.} \quad \begin{cases} \zeta_i \ge 0\\ \zeta_i \ge 1 - y_i f(x_i) \end{cases}$$
(20)

which can be recast into :

$$\min_{\alpha \in \mathbb{R}^n, \zeta \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \zeta_i + \frac{\lambda}{2} \alpha^\top K \alpha \quad \text{s.t.} \quad \begin{cases} \zeta_i \ge 0\\ \zeta_i \ge 1 - y_i [K\alpha]_i \end{cases}$$
(21)

which can again be solved using quadratic programming.

2 Cross Validation

Given a model, how do we estimate the prediction error ? This is not something obvious. In addition, how to choose the regularization parameter λ ?

$$\widehat{w}(\lambda) = \arg\min_{w\in\mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n l(y_i, \underbrace{w^\top x_i}_{(f(x_i))}) + \frac{\lambda}{2} \underbrace{\|w\|_2^2}_{(\|f\|_{\mathcal{H}}^2)}$$
(22)

Question : $E_n(\lambda) = \mathbb{E}_{(y,x)}[l(y, \widehat{w}(\lambda)^\top x)]$?

2.1 Case with lots of data

We can cut the set of data into two parts : a training sample T and a validation sample V. [ref, p220, fig7.1]. Then we find \hat{w} by minimizing (22) over T and we choose λ which minimize the validation error.

2.2 Bias-variance decomposition

 $y = f(x) + \epsilon$. Estimator \hat{f} issued from training data. Given some data x_0 , and calling T the training data :

$$E_n(x_0) = \mathbb{E}_T \left[(y_0 - \widehat{f}(x_0))^2 \right]$$
(23)

$$=\mathbb{E}_T\left[\left(\epsilon + f(x_0) - \widehat{f}(x_0)\right)^2\right]$$
(24)

$$= \mathbb{E}_T[\epsilon^2] + \mathbb{E}_T\left[(f(x_0) - \hat{f}(x_0))^2 \right]$$
(25)

$$= \sigma_{\epsilon}^{2} + \underbrace{\mathbb{E}_{T}\left[(f(x_{0}) - \mathbb{E}_{T}[\widehat{f}(x_{0})])^{2}\right]}_{\text{Biais squared}} + \underbrace{\mathbb{E}_{T}\left[\left(\widehat{f}(x_{0}) - \mathbb{E}_{T}\widehat{f}(x_{0})\right)^{2}\right]}_{\text{Var}(\widehat{f}(x_{0})}$$
(26)

Some intuition is that a highly regularized model has low variance, but can have a large bias: for example, when λ goes to infinity, $\hat{w}(\lambda)$ will always be close to zero. On the other hand, a low regularization can lead to low bias, but large variance. The goal of cross-validation is to find a λ which is a good trade-off.

2.3 Cross-validation

K-folds cross-validation.

- 1. Compute $\operatorname{CV}(\lambda) = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{n_{\operatorname{Val}}} \sum_{i \in \operatorname{Val}(k)} l(y_i, \widehat{f}^{\setminus k}(x_i)).$
- 2. Find $\hat{\lambda} = \arg \min CV(\lambda)$
- 3. Learn $\widehat{f}_{\widehat{\lambda}}$ on the full training data

4. Test
$$E = \frac{1}{n_{\text{test}}} \sum_{i \in \text{Test}} L(y_i, \hat{f}_{\widehat{\lambda}}(x_i))$$

K = 5 or K = 10 are often used in practice.

3 Nearest Neighbors

M different neighbors. Training data $(x_i, y_i)_{i=1,\dots,n}$ and $y_i \in \{1, \dots, M\}$. Given a new test point x, how do I classify it ?

$$\widehat{y}_{\rm NN} = \text{label}\left(\arg\min_{i=1,\cdots,n} d(x_i, x)\right)$$
(27)

K-Nearest neighbors [ref p466].

Theorem 3.1. Correr and Hart (1967)

"Asymptotically, the error rate of 1-NN is never more than twice the Bayes error rate".

We are going to give a sketch of the proof, by making simplifying assumptions.

Definition 3.2. Bayes Estimator

$$\widehat{y}_{Bayes}(x) = \arg \max_{y \in \{1, \cdots, M\}} \mathbb{P}[Y = y | X = x]$$
(28)

Note that the Bayes estimator does not exist in realistic setting since the conditional probability $\mathbb{P}[Y = y | X = x]$ is unknown. This is an "ideal" classifier, used for theoretical purposes.

Definition 3.3. Bayes error

Given a data point x, and a label Y(x) drawn according to the conditional probability $\mathbb{P}[Y|X=x]$,

$$E_{Bayes}(x) = \mathbb{P}\left[Y \neq \widehat{y}_{Bayes}(x)\right],\tag{29}$$

Note that in this definition, only the label Y(x) is a random variable, with $\mathbb{P}[Y(x) = y] = \mathbb{P}[Y = y|X = x]$. First let us show that the error rate of the nearest neighbors classifier is lower bounded by the Bayes error rate.

$$\mathbb{P}[Y(x) \neq \widehat{y}_{\text{Bayes}}(x)] = 1 - \mathbb{P}[Y(x) = \widehat{y}_{\text{Bayes}}(x)]$$
(30)

Assume that we live in a ideal world, where there exist some \tilde{x} in the training set such that $x = \tilde{x}$, associated to a label $\tilde{Y}(\tilde{x})$, which is drawn according to $\mathbb{P}[Y|X = x]$. It is important here to notice that Y(x) and $\tilde{Y}(\tilde{x})$ are two independent random variables identically distributed. Even though, they correspond to the same data point $x = \tilde{x}$, they do not necessarily have the same value! Then, we have that $\hat{y}_{NN}(x) = \tilde{Y}(\tilde{x})$ is a random variable drawn according to $\mathbb{P}[Y|X = x]$.

$$\mathbb{P}\Big[\widehat{y}_{NN}(x) \neq Y(x)\Big] = \sum_{j=1}^{M} \mathbb{P}\Big[Y(x) = y_j, \widehat{y}_{NN}(x) \neq y_j x\Big]$$
(31)

$$=\sum_{j=1}^{M} \mathbb{P}[Y(x) = y_j] \underbrace{\mathbb{P}[\widehat{y}_{NN}(x) \neq y_j]}_{1 - \mathbb{P}[Y(x) = y_j]}$$
(32)

$$\geq \sum_{j=1}^{M} \mathbb{P}\big[Y(x) = y_j\big] \left(1 - \mathbb{P}\big[Y(x) = \widehat{y}_{\text{Bayes}}(x)\big]\right)$$
(33)

$$= 1 - \mathbb{P}[Y(x) = \hat{y}_{\text{Bayes}}(x)] = E_{\text{Bayes}}$$
(34)

When M = 2, one can show that $\mathbb{P}[\widehat{y}_{NN}(x) \neq Y(x)] \leq 2E_{n,\text{Bayes}}$. Indeed,

$$\mathbb{P}\Big[\widehat{y}_{NN}(x) \neq Y(x)\Big] = \sum_{j=1}^{2} \mathbb{P}\big[Y(x) = y_j\big](1 - \mathbb{P}\big[Y(x) = y_j\big])$$
(35)

$$= 2\mathbb{P}[\widehat{y}_{\text{Bayes}}(x) = y_j](1 - \mathbb{P}[\widehat{y}_{\text{Bayes}}(x) = y_j])$$
(36)

$$\leq 2(1 - \mathbb{P}[\widehat{y}_{\text{Bayes}}(x) = y_j]) = 2E_{\text{Bayes}}$$
(37)

Let us now treat the case M > 2. To simplify the notation, we will write $P_j = \mathbb{P}[Y = y_j | X = x]$ and $P^* = \mathbb{P}[Y = y_{\text{Bayes}}(x) | X = x]$.

$$\mathbb{P}\Big[\widehat{y}_{NN}(x) \neq Y(x)\Big] = \sum_{j=1}^{n} P_j(1-P_j)$$
(38)

$$= P^*(1 - P^*) + \sum_{j \neq j^*} P_j(1 - P_j)$$
(39)

$$= P^*(1 - P^*) + (1 - P^*) - \sum_{j \neq j^*} P_j^2$$
(40)

$$= 2(1 - P^*) - (1 - P^*)^2 - \sum_{j \neq j^*}^{2} P_j^2$$
(41)

If one notices that

$$\left(\sum_{j \neq j^*} P_j\right)^2 \le \sum_{j \neq j^*} P_j^2 (K-1)$$
(42)

Then :

$$\sum_{j=1}^{n} P_j (1 - P_j) \le 2(1 - P^*) - \frac{K}{K - 1} (1 - P^*)^2$$
(43)

4 LASSO

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n l(y_i, x_i^\top w) + \frac{\lambda}{2} \|w\|_2^2$$
(44)

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n l(y_i, x_i^\top w) \quad \text{s.t.} \quad \|w\|_2^2 \le T$$
(45)

Assume that the "true" w is sparse, meaning that it has a lots of zeros. One way to introduce sparsity would be to minimize :

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n l(y_i, x_i^\top w) + \frac{\lambda}{2} \Omega(w)$$
(46)

If we choose $\Omega(w) = \#\{w_i \neq 0\}$ then the problem is NP-hard. If we choose $\Omega(w) = \|w\|_1$ which is a convex set, the problem is easily feasible and introduce sparsity.

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n l(y_i, x_i^\top w) + \frac{\lambda}{2} \|w\|_1$$
(47)

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n l(y_i, x_i^\top w) \quad \text{s.t.} \quad \|w\|_1 \le T$$
(48)