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1 Kernel Inventory

Linear Kernel

The linear kernel is de�ned as K(x, y) = xTy, where K : Rp×Rp −→ R. Let us show that the corresponding
reproducible kernel Hilbert space is H = {y 7→ wTy | w ∈ Rp} where fw is the function which maps y to
wTy, with the inner product < fw1

, fw2
>H= wT

1 w2. We check the following conditions:

(1) ∀x ∈ Rp,
{Kx | y 7→ K(x, y)} ∈ H

(2) ∀fw ∈ H, ∀x ∈ Rp,
fw(x) =< fw,Kx >H= wTx

(3) K is positive semide�nite i.e. ∀m ∈ R, ∀(x1, . . . , xm) ∈ (Rp)m,

[K]i,j = K(xi, xj) and ∀α ∈ Rm, αTKα ≥ 0

Polynomial kernel with degree 2

The polynomial kernel is given by K(x, y) = (xTy)2. We now see that it is positive semide�nite as,∑
i,j

αiαjK(xi, xj)
2 =

∑
i,j

αiαjTrace(xix
T
i xjx

T
j )

=
∑
i,j

αiαj < xix
T
i , xjx

T
j >F

=
∑
i,j

< αixix
T
i , αjxjx

T
j >F

= Trace

(∑
i

αixix
T
i

)∑
j

αjxjx
T
j


= Trace

(
ZTZ

) (
where Z =

(∑
i

αixix
T
i

))
=|| Z ||2

F

≥ 0

1



2 Examples of Kernels and Unsupervised Learning

It is important here to de�ne the Frobenius norm. || Z ||
F

=
√∑

i,j Z
2
i,j . Also note that < Z1, Z2 >=

Trace(ZT
1 Z2).

Now we would like to �nd H such that (1) and (2) mentioned above are satis�ed. To satisfy (1), we need
fx : y 7→ K(x, y) ∈ H,∀x ∈ Rp and,

fx(y) = (xTy)2

=< xxT, yyT >F

= yT(xxT)y

Because H is a Hilbert space, we also have ∀β in Rn, ∀(x1, . . . , xn) ∈ (Rp)n, y 7→ yT
(∑n

i=1 βixix
T
i

)
y is in H.

A good candidate for H is thus H : {y 7→ yTAy,A symmetric ∈ Rp×p} with < fA, fB >H= Trace(A>B).
This is easy to check: fA(x) = xTAx =< A, xxT >

F
, Kx = fxxT , which implies fA(x) =< fA,Kx >.

Gaussian kernel

The Gaussian kernel is given by K(x, y) = e−
‖y−x‖2

ω2 = k(x− y).

The corresponding r.k.h.s is more involved. We will admit that if we de�ne < f, g >H = 1
(2π)p

∫ f̂(w)ĝ(w)∗

k̂(w)
dw,

we have,
H = {f | f is integrable, continuous and < f, f >H< +∞}

The min kernel

Let K(x, y) = min(x, y). ∀x, y ∈ [0, 1].
Let is show that K is positive semide�nite: ∀α ∈ Rn,∀(x1, .., xn) ∈ [0, 1]n we have,∑

i,j

αiαj min(xi, xj) =
∑
i,j

αiαj

∫ 1

0

1t≤x(t)1t≤y(t)

=

∫ 1

0

(
n∑
i=1

αi1t≤xi

) n∑
j=1

αj1t≤xj

 dt

=

∫ 1

0

Z(t)2dt

 where Z(t) =

 n∑
j=1

αj1t≤xj

 =

(
n∑
i=1

αi1t≤xi

)
≥ 0

It is thus appealing to believe that H = {f | f ∈ L2[0, 1]} and < f, g >=
∫ 1

0
f(t)g(t)dt. However, this is a

mistake since < f, f >= 0 does not imply that f = 0. In fact,

H = {f : [0, 1]→ R | continuous and di�erentiable almost everywhere and f(0) = 0}

Now we have < f, g >H=
∫ 1

0
f ′(t)g′(t)dt and thus < f, f >H= 0⇔ f ′ = 0⇔ f = 0.

We can now check the remaining conditions

• Kx : y 7→ min(x, y) ∈ H
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• f ∈ H, x ∈ [0; 1]

f(x) =< f,Kx >=

∫ 1

0

f ′(t)1t<=xdt =

∫ 1

0

f ′(t)dt = f(x)− f(0) = f(x)

x

x Kx

Figure 1: Graph of Kx

Histogram kernel

The Histogram kernel is given by K(h1, h2) =
∑k
j=1 min(h1(j), h2(j)) where h1 ∈ [0, 1]k. It is notably used

in computer vision for comparing histograms of visual words.

Spectrum kernel

We now try to motivate the spectrum kernel through biology. There are 25000 human protein�coding
genes. In other words there are 3, 000, 000, 000 bases of building blocks A, T,C,G. Consider a sequence
u ∈ Ak of size k (where in this case we assume A = {A, T,C,G}). Let φu(x) = number of occurrences of u

in x. We de�ne the spectrum kernel as K(x, x′) =
∑
u∈Ak φu(x)φu(x′) =< φ(x), φ(x′) > where φ(x) ∈ R|A|k .

We are interested in computing K(x, x′) e�ciently.

K(x, x′) =
∑|x|−k+1
i=1

∑|x′|−k+1
j=1 1x[i,i+k−1]=x[j,j+k−1]. The computation of this can be done in O(| x || x′ | k)

by using a trie. We demonstrate this with an example.

Let x = ACGTTTACGA and x′ = AGTTTACG. The corresponding tries are:
ε

A C G T

AC CG GT TT TA

ACG CGT CGA GTT TTT TTA TAC

1 1 1 1 1 12

ε

A G T

AG AC GT TT TA

AGT ACG GTT TTA TTT TAC

1 1 1 1 1 1

x x′
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Algorithm 1 Process Node(v)

Input: Trie representation for sequences x and x′.
Output: Compute K(x, x′).
1: if v is a leaf then
2: K(x, x′) = K(x, x′) + i(vx) · i(vx′)
3: else

4: for All children in common of vx, v
′
x do

5: Process Node(children).
6: end for

7: end if

8: Repeat Process for Node(r).

Exercises

1. Show that if K1 and K2 are positive semide�nite then,

(a) K1 +K2 is positive semide�nite.

(b) αK1 + βK2 is positive semide�nite, where α, β > 0.

2. Show that if (Kn)n>0 → K (pointwise), then K is positive semide�nite.

3. Show that K(x, y) = 1
1−min(x,y) is positive semide�nite for all x, y ∈ [0, 1[.

Walk kernel

We de�ne G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V , E′ ⊆ E and labels(V ) = labels(V ′). Let φU (G) = {
Number of times U appears as a subgraph of G}. The subgraph kernel is de�ned as,

K(G,G′) =
∑
U

φU (G)φU (G′)

Unfortunately computing this in NP-complete.

We now de�ne the walk kernel. We recall some de�nitions �rst. A walk is an alternating sequence of vertices
and connecting edges. Less formally a walk is any route through a graph from vertex to vertex along edges.
A walk can end on the same vertex on which it began or on a di�erent vertex. A walk can travel over any
edge and any vertex any number of times. A path is a walk that does not include any vertex twice, except
that its �rst vertex might be the same as its last. Now let,
Wk = {walks inG of size k} Sk = {sequence of labels of size k} =| A |k So ∀s ∈ Sk, φs(G) =

∑
w∈Wk(G) 1labels(w)=s.

This gives us K(G1, G2) =
∑
s∈S φs(G1)φs(G2).

Computing the walk kernel seems hard at �rst sight, but it can be done e�ciently by using the product
graph, de�ned as follows. Given graphs G1 = (V1, E1) and G2 = (V2, E2), we de�ne,

G1×G2 = ({(v1, v2) ∈ V1 × V2 with same labels}{((v1, v2), (v′1, v
′
2)) where ((v1, v

′
1) ∈ E1 and (v2, v

′
2) ∈ E2)})

There is a bijection between walks in G1 ×G2 and walks in G1 and G2 with same labels. More formally,
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Figure 2: Example of graph product

K(G1, G2) =
∑

w1∈Wk(G1)

∑
w2∈Wk(G2)

1l(w1)=l(w2)

=
∑

w∈Wk(G1×G2)

1

Exercise Let A be the adjacency matrix of G ∈ R|V |×|V |,

1. Prove that number of walks of size k starting at i and ending at j is [Ak]i,j .

2. Show that K(G1, G2) can be computed in polynomial time.
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2 Unsupervised Learning

Unsupervised learning consists of discovering the underlying structure of data without labels. It is useful
for many tasks, such as removing noise from data (preprocessing), interpreting and visualizing the data,
compression...

Principal component analysis

We have a centered data set X = [x1, . . . , xn] ∈ Rp×n.
Consider the projection of x onto the direction w ∈ Rp, then x 7→ wTx

‖w‖22
· w
‖w‖22

. We observe that the empirical

variance captured by w is Var′(w) = 1
n

∑n
i=1

(wTxi)
2

‖w‖22
.

We provide below the PCA (Principle Component Analysis) algorithm:

Algorithm 2 PCA

1: Suppose we have (w1, . . . , wi−1)
2: Construct wi ∈ arg maxV ar(w) under the condition wi ⊥ (w1, . . . , wi−1)

Lemma: wi

‖wi‖2 are successive vectors of XXT ordered by decreasing eigenvalue.

Proof: We have w1 = arg max
‖w‖2=1

1
n

∑n
i=1 w

Txix
T
i w = arg max

‖w‖2=1

wTXXTw.

XXT is symmetric, so it can be diagonalized into XXT = USUT where U is orthogonal and S is diagonal.

w1 = arg max
‖w‖2=1

wTUSUTw

= arg max
‖w‖2=1

(UTw)TS(UTw)

=

(
arg max
‖z‖2=1

zTSz

)
where z = wTU

For wi, i > 1 we have,

wi = arg max
‖w‖2=1,w⊥u1,...,ui−1

wTUSUTw

= arg max
‖w‖2=1,w⊥u1,...,ui−1

(UTw)TS(UTw)

= arg max
‖z‖2=1,z=e1,...,ei−1

zTSz �

As a consequence we have PCA can be computed with SVD.

Theorem(Aqart - Young theorem)
PCA (SVD) provides the best low�rank approximation.

min
X′∈Rn×p

‖X −X ′‖2, rank(X ′) < k

Proof: Any matrix X ′ of rank k can be written X ′ =
∑k
i=1 siuiv

T
i = UkSkV

T
k where Uk ∈ Rp×k, Vk ∈ Rk×n,
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UkVk = I and Sk ∈Mk(R) is diagonal. Thus,

min
X∈Rn×p

rank(X′)<k

‖X −X ′‖2 = min
UTU=I
V TV=I
S diagonal

rank(USV T)=k

‖X − USV T‖2p �

Lemma: Let U ∈ Rp×m and V ∈ Rn×m where m = min(n, p). If UTU = I and V TV = I
then Zij = UiV

T
j form an orthogonal basis of Rp×n for the Frobenius norm.

Proof: It su�ces to check the scalar product:

< Zij , Zkl > = Trace(ZT
ijZkl)

= Trace(VjU
T
i UkV

T
l )

= (V T
j Vl)(U

T
j Uk)

= 1{j=k and i=l} since U and V are orthogonal.�

We have X =
∑m
i=1 siZii and because of the lemma we can write X ′ in the basis Zij :

X ′ =

m∑
i=1

s′ijZij

Under the condition rank(X ′) = r,
‖X −X ′‖2 is minimal i�

∑
i,j(s

′
ij − sij)2 is minimal

i�
∑n
i=1(s′ii − si)2 +

∑
i 6=j(s

′
ij)

2 is minimal

Then, the �rst term should be minimized by taking s′ii = si for the k longest values of si with respect to the
rank constaint and the second term should be set to 0.

Kernel PCA

If we have the kernel φ : x 7→ φ(x)

V ar(f) = 1
n

∑n
i=1

f2(xi)
‖f‖2H

assuming φ(xi) are centered in the feature space

fi ∈ arg max
f1⊥f2,...,fi−1

fi∈H

V ar(f) (1)

There are few remaining questions

1. What does it mean to have φ(xi) centered?

2. How do we solve (1)

1. Having φ(xi) centered means that you want to implicitely replace φ(xi) by φ(xi) − m where m =
1
n

∑n
i=1 φ(xi) is the average of φ. If our kernel is K(xi, xj) =< φ(xi), φ(xj) >H , the new kernel becomes:

Kc(xi, xj) =< φ(xi)−m,φ(xj)−m >

=< φ(xi), φ(xj) > − <
1

n

n∑
l=1

φ(xl), φ(xi) > − <
1

n

m∑
l=1

φ(xl), φ(xj) > +
1

n2

∑
i,k

< φ(xl), φ(xk) >
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In term of matrices, it is writen Kc = (I − 1
n1)K(I − 1

n1) where 1 is the square matrix with all coe�cients
equal to 1.

2. Due to the representation theorem, any solution of (1) has the form f : x 7→
∑n
i=1 αiK(xi, x). What we

need are the α's. We have ‖f‖2H = αTKα, f(xi) = [Kα]i and < f, fl >= 0 = αTKαl

We want to �nd maxα∈Rn
1
n
‖Kα‖22
αTKα s.t. αTKαl = 0,∀l < i. i.e. maxα

αTK2α
αTKα and αTKαl = 0,∀l < i. K is

symetric soK = US2UT where U is orthogonal and S diagonal. We want maxα
αTUS4UTα
αTUS2UTα = maxβ∈Rn

βTS2β
‖β‖22

where β = SUTα, βl = SUTαl. If we assume that the eigenvalues are ordered in S, the solutions are the
duals of βl = el.

Recipe:

1. Center the kernel matrix.

2. KL = US2UT .

3. al = 1
D2Ui (eigenvalue decomposition)

4. fi(xi) = [Kiα]i

K-means clustering

Let X = [X1, .., Xn] ∈ Rp×n be data points and we would like to form clusters C = [C1, ..., Ck] ∈ Rp×k where
each of these are centroids of the cluster.

Our goals are to:

1. Learn C.

2. Assign each data point to a centroid Cj .
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A popular way to do this is by K-means algorithm:

Algorithm 3 K-means

1: for i = 1, . . . , n do

2: Assign li ← argminj=1,..,K‖Xi − Cj‖22
3: end for

4: for j = 1, . . . , k do
5: Re�estimate centroids by Cj ← 1

nj

∑
i such that li=j

Xi

6: end for

The interpretation of the algorithm can be seen as following:
We are trying to �nd C such that we have minC,li

∑n
i=1 ‖Xi − Cli‖22.

Now given some �xed labels,

∇c1f(C1) =
∑

i such that li=1

2[C1 −Xi] = 0

. Note that K�means is not an optimal algorithm because minC,li
∑n
i=1 ‖Xi − Cli‖22 is a non-convex opti-

mization problem with several local minima.

Kernel K-means

Let us de�ne the Kernel for this to be minc,l∈H
∑n
i=1 ‖φ(Xi)− Cli‖2H.

Given some labels (re�estimation)
Cj ← 1

nj

∑
i such that li=j

φ(Xi)
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Now li ← arg minj ‖φ(Xi)− 1
nj

∑
l∈Sj

φ(Xl)‖2 = ‖φ(xi)‖2 + ‖Cj‖2 − 2
nj

∑
i∈Sj

K(xi, xj).

Mixture of Gaussians

The Gaussian distribution is given by:

N(x | µ,Σ) =
1

(2π)p/2 | Σ |1/2
exp

(
−1

2
(x− µ)Σ−1(x− µ)

)
Assume that the data is generated by the following procedure:

1. Random class assignment: C: P(C = Cj) = πj where
∑k
j=1 πj = 1, πj ≥ 0.

2. x ≈ N(x, µi, σi)

The parameters are:

• π1, . . . , πk

• (µ1, σ1), . . . , (µi, σi)

If we observe X1, . . . , Xn, can we infer the parameters (π, µ,Σ) ?
Let θ represent the parameters.
Let θ̂ = arg maxθ Pθ(X1, . . . , Xn) (Maximum = arg maxθ

∏n
i=1 Pθ(Xi)

One algorithm to get an approximate solution is called EM for "Expectation-maximization", which iteratively
increases the likelihood

Algorithm 4 Expectation Maximizer

1: De�ne Lθ = − logPθ(X1, ..., Xn) =
∑n
i=1− log | Pθ(Xi) |.

2: for 1 = 1, . . . , n do

3: E-step: �nd q given θ �xed (auxiliary soft assignment)
4: M-step: Maximize some function l(θ, q) with q �xed.
5: end for

6: Repeat step 2 until convergence.

Explanations:

At E-step qi,j =
∏

j N(xi|µj ,σj)∑
N(xi|µj′ ;σj′ )

. Notice that ∀i,
∑k
j=1 qij = 1. This can be interpreted as a soft assignment

of very data point to the classes
At M-step we have:

πj ←
1

n

n∑
i=1

qij

µj ←
n∑
i=1

qijxi

Σj ←
m∑
i=1

qij(xi − µj(xi − µj)T
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The key ingredient here is the use of Jensen inequality, but we will not have the time to present the details
in this course.


