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Outline

4

• Background

• Estimating the hemodynamic response 
function [Pedregosa et al. Neuroimage 2015]

• Mapping the visual pathways with 
computational models and fMRI [Eickenberg 
et al. Neuroimage 2016]

• Optimal transport barycenter for group 
studies [Gramfort et al. IPMI 2015]
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Functional MRI
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Oxy. Hb

Deoxy. Hb

Neurons

Scanner

Magnetic
resonance

imaging
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courtesy of Gael Varoquauxhttp://www.youtube.com/watch?v=uhCF-zlk0jY

≈ 1 image / 2s

http://www.youtube.com/watch?v=uhCF-zlk0jY
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fMRI supervised learning (decoding)
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Image,
sound, task

fMRI volume

Challenge: Predict a behavioral variable from the fMRI data

Scanning
Decoding

Objective: Predict y given X or learn a function f : X -> y

stim

Any variable:
healthy?

y

��������
�����������	

�
�����
�����
�����������
�	
���������

	����������������
������������������

 
!�����������

X



A. Gramfort            Statistical Learning and optimization for functional MRI data mining  

Classification example with fMRI
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The objective is to be able
to predict
given an fMRI activation map 
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ie.

objective: Predict                       given              y = {�1, 1} x 2 Rp

y = {�1, 1}
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fMRI supervised learning (Encoding)
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Image,
sound, task

fMRI volume

Challenge: Predict the BOLD response from the stimuli descriptors

Scanning
Encoding

Objective: Predict y given X or learn a function f : X -> y

stim

X
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[Thirion et al. 06, Kay et al. 08, Naselaris et al. 11, Nishimoto et al. 2011, 
Schoenmakers et al. 13 ...]



Learning the hemodynamic response 
function (HRF) for encoding and 

decoding models

thanks to Fabian Pedregosa Michael Eickenberg

Code: https://pypi.python.org/pypi/hrf_estimation

Data-driven HRF estimation for encoding and decoding models, Fabian Pedregosa, Michael 
Eickenberg, Philippe Ciuciu, Bertrand Thirion and Alexandre Gramfort, Neuroimage 2015

PDF: https://hal.inria.fr/hal-00952554/en

https://pypi.python.org/pypi/hrf_estimation
https://hal.inria.fr/hal-00952554/en
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fMRI paradigm and HRF
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HRF: Hemodynamic
response function
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fMRI paradigm and HRF
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General Linear Model (GLM)
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=

Observed
BOLD

Design Matrix

+

Activation
coefficients

Noisey  
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Basis constrained HRF
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Two basis-constrained models of the HRF: FIR and 3HRF

D. Handwerker et al., “Variation of BOLD hemodynamic responses across subjects and brain 
regions and their effects on statistical analyses.,” Neuroimage 2004.

Hemodynamic response function (HRF) is known to vary 
substantially across subjects, brain regions and age.

S. Badillo et al., “Group-level impacts of within- and between-subject hemodynamic variability in 
fMRI,” Neuroimage 2013.
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Rank1-GLM

15
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Rank1-GLM

16

From 1 HRF per condition

From 1 HRF shared between all conditions
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Rank1-GLM

17

Assuming 1 HRF shared between all conditions and a different 
amplitude/scale per condition this leads to:
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Rank1-GLM

18

argminh, � ky �Xvec(h�T )k2

subject to khk = 1 and hh,hrefi > 0

=) solved locally using quasi-Newton methods

Remark: Worked better than alternated optimization or 1st order methods

Challenge: This optimization problem is not big yet it needs to be done tens 
of thousands of time (typically 30,000 to 50,000 times for each voxel)

1
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Results

19

Cross-validation score in two different datasets

S. Tom et al., “The neural basis of loss aversion in decision-making under risk,” Science 2007.

K. N. Kay et al., “Identifying natural images from human brain activity.,” Nature 2008.
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Results

20

Measure: voxel-wise encoding score. Correlation with 
the BOLD at each voxel on left-out data.

R1-GLM (FIR basis) improves voxel-wise encoding score on more than 
98% of the voxels. 
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Results

21
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Results

22



Convolutional Networks Map 
the Architecture of the 
Human Visual System

joint work with Bertrand Thirion and Gaël Varoquaux

work of Michael Eickenberg

“Seeing it all: Convolutional network layers map the function of the human visual system”
Michael Eickenberg, Alexandre Gramfort, Gaël Varoquaux, Bertrand Thirion (submitted)
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Convolutional Nets for Computer Vision

24

[Krizhevski et al, 2012]
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Relating biological and computer vision

[Hubel & Wiesel, 1959] [Sermanet 2013]

25

● V1 functionality comprises edge detection
● Convolutional nets learn edge detectors, color boundary detectors 

and blob detectors

Cat V1 
orientation selectivity

ConvNet Layer 1

Low 
Level



Can we use computer vision 
models and a large fMRI data to 
better understand human vision?
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Approach

+
Nonlinear Feature Extraction

Via 
Convolutional Net Layers

Voxel-Wise Prediction
Using Linear Model
(Ridge Regression)

[Kay et al, 2008]

● Encoding model [Naselaris et al., 2011]
● Make sure complexity resides in feature extraction

Forward Model Setup:
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Convolutional Net Forward Models
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Convolutional Net Forward Models
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Best Predicting Layers per Voxel



A. Gramfort            Statistical Learning and optimization for functional MRI data mining  31

Score Fingerprints per Region of Interest
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Score Fingerprints per Region of Interest
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Score Fingerprints per Region of Interest
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Score Fingerprints per Region of Interest
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Fingerprints summary statistic
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Photos Videos

Fingerprints summary statistic



A. Gramfort            Statistical Learning and optimization for functional MRI data mining  

If our model is strong enough, we can use it to 
reproduce known experiments

Generate BOLD response, do GLM analysis

New 
stimuli

Activation 
Maps

37

Convolutional net  
forward model

Synthesizing Brain activation maps
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High-level Validation: Faces / Places
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Convolutional Net Forward Model

Activation Maps

GLM Contrast Maps
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Faces vs Places: Ground Truth
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Stimuli from [Kay 2008]
Close-up faces and scenes

Contrast of
stimuli from [Kay 2008]

Close-up faces and scenes
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Faces vs Places

Simulation on
[Kay 2008] Left out stimuli

BOLD ground truth



Fast Optimal Transport Averaging of 
Neuroimaging Data

Joint work with: Gabriel Peyré Marco Cuturi

[Fast Optimal Transport Averaging of Neuroimaging Data
Alexandre Gramfort, Gabriel Peyré, Marco Cuturi, Proc. IPMI 2015]
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The overall goal
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Functional 
neuroimaging 
experiment 
20 subjects

What is an “average 
activation”?
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with Magnetoencephalography (MEG)

43

From sensors to 
sources at every ms 

for each subject

V2d
V1

Dipoles dSPM LCMV



A. Gramfort            Statistical Learning and optimization for functional MRI data mining  

Motivation 

44

Motivation

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

4 points in R2

x1, x2, x3, x4

13.1.15 2Imagine a 2D flat brain with 4 activations…



A. Gramfort            Statistical Learning and optimization for functional MRI data mining  

Motivation
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Mean

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Their mean is (x1 + x2 + x3 + x4) /4.

13.1.15 3
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Motivation 

46

Computing Means

Consider for each point the function ∥·− xi∥22

13.1.15 4
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Motivation 

47

Computing Means

The mean is the argmin 1
4

∑4
i=1∥·− xi∥22.

13.1.15 5
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Motivation 

48

Means in Metric Spaces

Consider the distance functions ∆(·, xi), i = 1, 2, 3, 4.

13.1.15 8

Means in Metric Spaces

! = argmin 1
N

∑N
i=1∆(·, xi).

13.1.15 9

Now if the domain
is not flat: you have

a ground metric
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From points to probability measures
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to Probability Measures

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Assume that each datum is now an empirical measure.
What could be the mean of these 4 measures?

13.1.15 11
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From points to probability measures

50

Should preserve the uncertainty 
& take into account the metric
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Problem formulation
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Problem of interest

Given a discrepancy function ∆ between probabilities,
compute their mean: argmin

∑

i∆(·, νi)

• The idea is useful, sometimes tractable & appears in

◦ Bregman clustering for histograms [Banerjee’05]..

◦ Topic modeling [Blei & al.’03]..

◦ Clustering problems (k-means).

• Our goal in this talk: study the case ∆ = Wasserstein

13.1.15 17

Remark: If discrepancy is a squared Riemanian distance it’s a 
Fréchet mean.
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Optimal Transport 

52

The Optimal Transport Approach

(Ω,D)

µ
ν

x
y

D(x,y)

Optimal Transport distances rely on 2 key concepts:

• A metric D : Ω× Ω→ R+ ;

• Π(µ,ν): joint probabilities with marginals µ,ν.

13.1.15 20
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Example of joint probabilities
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Joint Probabilities of (µ, ν)

−2
−1

0
1

2
3

4
5−2

−1

0
1

2
3

4
5

0

0.5

µ(x)
ν(y)

x y

P

0

0.2

0.4

0.6

P (x, y)

Π(µ,ν) = probability measures on Ω2

with marginals µ and ν.

13.1.15 23

...on the real line
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Example of joint probabilities
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...on the real line
Joint Probabilities of (µ, ν)

−2
−1

0
1

2
3

4
5−2

−1

0
1

2
3

4
5

0

0.5

µ(x)
ν(y)

x y

P

0

0.2

0.4

0.6

P (x, y)

Π(µ,ν) = probability measures on Ω2

with marginals µ and ν.

13.1.15 22
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Optimal Transport 

55

[Monge-Kantorovich, Kantorovich-Rubinstein, Wasserstein, Earth Mover’s Distance, Mallows ...]

Optimal Transport Distance

(Ω,D)

µ
ν

x
y

D(x,y)

p-Wasserstein distance for p ≥ 1 is:

Wp(µ,ν) =

(

inf
P∈Π(µ,ν)

∫ ∫

Ω×Ω
D(x, y)pdP (x, y)

)1/p

.
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Optimal Transport in dimension d 

56

Computing the OT Distance

ν =
∑m

j=1 bjδyj

µ =
∑n

i=1 aiδxi

(Ω, D)

Wp
p (µ,ν) can be cast as a linear program in Rn×m:

1. MXY
def
=[D(xi,yj)p]ij ∈ Rn×m (metric information)

2. Transportation Polytope (joint probabilities)

U(a, b) = {P ∈ R
n×m
+ |P1m = a, P T

1n = b}

13.1.15 30
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Fast Optimal Transport Averaging of Neuroimaging Data 3

Wasserstein Distance for Normalized Histograms. Consider two vectors a, b 2

Rd
+ such that |a|1 = |b|1. Both can be interpreted as histograms on ⌦ of the

same mass. A non-trivial example of such normalized data in medical imaging
is the discretized ODF used for di↵usion imaging data [10]. For p � 1, the p-
Wasserstein distance Wp(a, b) between a and b is the pth root of the optimum
of a linear program, known as a transportation problem [4, §7.2]. A transport
problem is a network flow problem on a bipartite graph with cost Mp (the
pairwise distance matrix M raised element-wise to the power p), and feasible
set of flows U(a, b) (known as the transportation polytope of a and b), where
U(a, b) is the set of d⇥ d nonnegative matrices such that their row and column
marginals are equal to a and b respectively:

U(a, b)
def
= {T 2 Rd⇥d

+ | T1d = a, TT1d = b}. (1)

Given the constraints induced by a and b, one naturally has that U(a, b) is empty
when |a|1 6= |b|1 and non-empty when |a|1 = |b|1 (in which case one can easily
check that the matrix abT /|a|1 belongs to that set). The p-Wasserstein distance
Wp(a, b) raised to the power p (written W p

p (a, b) below) is equal to the optimum
of a parametric Optimal Transport (OT) problem on d2 variables,

W p
p (a, b) = OT(a, b,Mp)

def
= min

T2U(a,b)
hT,Mp

i, (2)

parameterized by the marginals a, b and matrix Mp.

Optimal Transport for Unnormalized Measures. If the total masses of a and b
di↵er, namely |a|1 6= |b|1, the definition provided above is not useful because
U(a, b) = ;. Several extensions of the OT problem have been proposed in that
setting; we recall them here for the sake of completeness. In the computer vi-
sion literature, [23] proposed to handle that case by: (i) relaxing the equality
constraints of U(a, b) to inequality constraints T1d  a, TT1d  b in Equa-
tion (1); (ii) adding an equality constraint on the total mass of the solution
1T
d T1d = min(|a|1, |b|1); (iii) dividing the minimum of hT,M i under constraints

(i,ii) by min(|a|1, |b|1). This modification does not, however, result in a metric.
[20] proposed later a variant of this approach called EMD-hat that incorporates
constraints (i,ii) but (iii’) adds to the optimal cost hT ?,M i a constant times
min(|a|1, |b|1). When that constant is large enough M , [20] claim that EMD-hat
is a metric. We also note that [2] proposed a quadratic penalty between the dif-
ferences of masses and made use of a dynamic formulation of the transportation
problem.

Kantorovich Norms for Signed Measures. We propose to build on early contribu-
tions by Kantorovich to define a generalization of optimal transport distance for
unnormalized measures, making optimal transport applicable to a wider class of
problems, such as the averaging of functional imaging data. [18] proposed such
a generalization as an intermediary result of a more general definition, the Kan-
torovich norm for signed measures on a compact metric space, which was itself
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problem is a network flow problem on a bipartite graph with cost Mp (the
pairwise distance matrix M raised element-wise to the power p), and feasible
set of flows U(a, b) (known as the transportation polytope of a and b), where
U(a, b) is the set of d⇥ d nonnegative matrices such that their row and column
marginals are equal to a and b respectively:

U(a, b)
def
= {T 2 Rd⇥d

+ | T1d = a, TT1d = b}. (1)

Given the constraints induced by a and b, one naturally has that U(a, b) is empty
when |a|1 6= |b|1 and non-empty when |a|1 = |b|1 (in which case one can easily
check that the matrix abT /|a|1 belongs to that set). The p-Wasserstein distance
Wp(a, b) raised to the power p (written W p

p (a, b) below) is equal to the optimum
of a parametric Optimal Transport (OT) problem on d2 variables,

W p
p (a, b) = OT(a, b,Mp)

def
= min

T2U(a,b)
hT,Mp

i, (2)

parameterized by the marginals a, b and matrix Mp.

Optimal Transport for Unnormalized Measures. If the total masses of a and b
di↵er, namely |a|1 6= |b|1, the definition provided above is not useful because
U(a, b) = ;. Several extensions of the OT problem have been proposed in that
setting; we recall them here for the sake of completeness. In the computer vi-
sion literature, [23] proposed to handle that case by: (i) relaxing the equality
constraints of U(a, b) to inequality constraints T1d  a, TT1d  b in Equa-
tion (1); (ii) adding an equality constraint on the total mass of the solution
1T
d T1d = min(|a|1, |b|1); (iii) dividing the minimum of hT,M i under constraints

(i,ii) by min(|a|1, |b|1). This modification does not, however, result in a metric.
[20] proposed later a variant of this approach called EMD-hat that incorporates
constraints (i,ii) but (iii’) adds to the optimal cost hT ?,M i a constant times
min(|a|1, |b|1). When that constant is large enough M , [20] claim that EMD-hat
is a metric. We also note that [2] proposed a quadratic penalty between the dif-
ferences of masses and made use of a dynamic formulation of the transportation
problem.

Kantorovich Norms for Signed Measures. We propose to build on early contribu-
tions by Kantorovich to define a generalization of optimal transport distance for
unnormalized measures, making optimal transport applicable to a wider class of
problems, such as the averaging of functional imaging data. [18] proposed such
a generalization as an intermediary result of a more general definition, the Kan-
torovich norm for signed measures on a compact metric space, which was itself

Transportation Polytope

• U(r, c) is the transportation polytope of r, c

U(r, c) = {P ∈ R
n×m
+ |P1m = r, P T

1n = c}
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⎢
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Optimal Transport in dimension d 
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Computing the OT Distance

ν =
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µ =
∑n
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(Ω, D)

Wp
p (µ,ν) can be cast as a linear program in Rn×m:
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=[D(xi,yj)p]ij ∈ Rn×m (metric information)

2. Transportation Polytope (joint probabilities)

U(a, b) = {P ∈ R
n×m
+ |P1m = a, P T

1n = b}
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Optimal transport problem reads:

hT,Mpi =
dX

i=1

dX

j=1

TijM
p
ij T is the transport plan

Problem: No solution if

|a|1 =
dX

i=1

|ai| 6= |b|1

Need to add and remove mass



A. Gramfort            Statistical Learning and optimization for functional MRI data mining  

non-negative and non-normalized data
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Add a virtual point ! whose distance to element i in ⌦

D(i,!) = D(!, i) = �i

Map each      to                (Kind of feature map)a [a, |a|1 � 1]

4 A. Gramfort, G. Peyré, M. Cuturi

extended to separable metric spaces by [15]. We summarize this idea here by
simplifying it to the case of interest in this paper where ⌦ is a finite (of size d)
probability space, in which case signed measures are equivalent to vectors in Rd.
[18] propose first a norm for vectors z in the orthogonal of 1d (vectors z such
that zT1d = 0), by considering the 1-Wasserstein distance between the positive
and negative parts of z, kzkK = W1(z+, z�). A penalty vector � 2 Rd

+ is then
introduced to define the norm kxkK of any vector x as the minimal value of
kzkK +�T

|z � x| when z is taken in the space of all vectors z with zero sum,
and |z � x| is the element-wise absolute value of the di↵erence of vectors z and
x. For this to define a true norm in Rd, � must be such that �i � maxj mij

and |�i ��j |  mij . The distance between two arbitrary non-negative vectors
a, b of di↵erent mass is then defined as ka� bkK . As highlighted by [26, p.108],
and if we write ei for the ith vector of the canonical basis of Rd, this norm is the
maximal norm in Rd such that for any i, j  d, kei � ejkK = mij , namely the
maximal norm in the space of signed measures on ⌦ such that the norm between
two Dirac measures coincides with ⌦’s metric between these points.

Kantorovich Distances for Unnormalized Nonnegative Measures. [14] noticed
that Kantorovich’s distance between unnormalized measures can be cast as a
regular optimal transport problem. Indeed, one simply needs to: (i) add a virtual
point ! to the set ⌦ = {1, · · · , d} whose distance D(i,!) = D(!, i) to any
element i in ⌦ is set to �i ; (ii) use that point ! as a bu↵er when comparing
two measures of di↵erent mass. The appeal of Kantorovich’s formulation in the
context of this work is that it boils down to a classic optimal transport problem,
which can be approximated e�ciently using the smoothing approach of [6] as
discussed in Section 3. To simplify our analysis in the next section, we only
consider non-negative vectors (histograms) a 2 Rd

+ such that their total mass
is upper bounded by a known positive constant. This assumption alleviates the
definition of our distance below, since it does not require to treat separately the
cases where either |a|1 � |b|1 or |a|1 < |b|1 when comparing a, b 2 Rd

+. Note also
that this assumption always holds when dealing with finite collections of data.
Without loss of generality, this is equivalent to considering vectors a in Rd

+ such
that |a|1  1 with a simple rescaling of all vectors by that constant. We define
next the Kantorovich metric on Sd, where Sd = {u 2 Rd

+, |u|1  1}.

Definition 1 (Kantorovich Distances on Sd). Let � 2 Rd
+ such that �i �

maxj mij and |�i ��j |  mij. Let p � 0. For two elements a and b of Sd, we
write ↵ = 1� |a|1 � 0 and � = 1� |b|1 � 0. Their p-Kantorovich distance raised
to the power p is

Kp
p�(a, b) = OT([ a↵ ] ,

⇥
b
�

⇤
, M̂p), where M̂ =


M �
�T 0

�
2 Rd+1⇥d+1

+ . (3)

The Kantorovich distance inherits all metric properties of Wasserstein distances:
the mapping which to a vector a associates a vector [a; 1� |a|1] 2 ⌃d+1 can be
regarded as a feature map, to which the standard Wasserstein distance using M̂
(which is itself a metric matrix) is applied.

Use as metric

Scale each observation                       so that |bj |1  1bj , 1  j  n

… but a huge linear program
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3 Kantorovich Mean of Unnormalized Measures

Consider now a collection {b1, · · · , bN} of N non-negative measures on (⌦, D)
with mass upper-bounded by 1, namely N vectors in Sd. Let �j = 1 �

��bj
�� be

the deficient mass of bj . Our goal in this section is to find, given a vector of
virtual costs � and an exponent p, a vector a in Sd which minimizes the sum of
its p-Kantorovich distances Kp

p� to all the bj ,

a 2 argmin
u2Sd

1

N

NX

j=1

Kp
p�(u, bj) = argmin

u2Sd

1

N

NX

j=1

OT(
⇥ u
1�|u|1

⇤
,
h

bj

�j

i
, M̂p). (P1)

Because of the equivalence between Kantorovich distances for points in Sd and
Wasserstein distances in the d + 1 simplex, this problem can be naturally cast
as a Wasserstein barycenter problem [1] with metric M̂ . Problem (P1) can be
cast as a linear program with N(d+ 1)2 variables. For the applications we have
in mind, where d is of the order or larger than 104, solving that program is not
tractable. We discuss next computational approaches to solve it e�ciently.

Smooth Optimal Transport. [22] and [5] have proposed e�cient algorithms to
solve the Wasserstein barycenter problem in low dimensional Euclidean spaces.
These approaches are not, however, suitable when one considers observations
on the cortex, for which all pairs shortest path metrics (inferred from a graph
structure connecting all voxels) are preferred over Euclidean metrics. To solve
Problem (P1) we turn instead to a recent series of algorithms proposed in [7],
[3] and [8] that all exploit the regularized OT approach suggested in [6]. Among
these recent approaches, we propose to build in this work upon the first algo-
rithm in [7], which can be easily modified to incorporate constraints on a. This
flexibility will prove useful in the next section.

The strategy of [7] is to regularize directly the optimal transport problem by
an entropic penalty, whose weight is parameterized by a parameter � > 0,

OT�(a, b,M
p)

def
= min

T2U(a,b)
hT,Mp

i �

1

�
H(T ),

where H(T ) stands for the entropy of the matrix T seen as an element of the sim-

plex of size d2, H(T )
def
= �

P
ij tij log(tij). As shown by [7], the regularized trans-

port problem OT� admits a unique optimal solution. As such, OT�(a, b,Mp)
is a di↵erentiable function of a whose gradient can be recovered through the
solution of the corresponding smoothed dual optimal transport. Without elabo-
rating further on this approach, we propose to simply replace all expressions that
involve an optimal transport problem OT in our formulations by their smoothed
counterpart OT�.

Sensitivity of Kantorovich Means to the Parameter �. The magnitude of the
solution a to Problem (P1) depends directly on the virtual distance �. Suppose,

4 A. Gramfort, G. Peyré, M. Cuturi
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Smoothing to speed things up
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Strongly convex with unique minimum
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3 Kantorovich Mean of Unnormalized Measures
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��bj
�� be
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p� to all the bj ,

a 2 argmin
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1

N

NX

j=1
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p�(u, bj) = argmin

u2Sd
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N

NX
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OT(
⇥ u
1�|u|1

⇤
,
h
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i
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as a Wasserstein barycenter problem [1] with metric M̂ . Problem (P1) can be
cast as a linear program with N(d+ 1)2 variables. For the applications we have
in mind, where d is of the order or larger than 104, solving that program is not
tractable. We discuss next computational approaches to solve it e�ciently.

Smooth Optimal Transport. [22] and [5] have proposed e�cient algorithms to
solve the Wasserstein barycenter problem in low dimensional Euclidean spaces.
These approaches are not, however, suitable when one considers observations
on the cortex, for which all pairs shortest path metrics (inferred from a graph
structure connecting all voxels) are preferred over Euclidean metrics. To solve
Problem (P1) we turn instead to a recent series of algorithms proposed in [7],
[3] and [8] that all exploit the regularized OT approach suggested in [6]. Among
these recent approaches, we propose to build in this work upon the first algo-
rithm in [7], which can be easily modified to incorporate constraints on a. This
flexibility will prove useful in the next section.

The strategy of [7] is to regularize directly the optimal transport problem by
an entropic penalty, whose weight is parameterized by a parameter � > 0,

OT�(a, b,M
p)

def
= min

T2U(a,b)
hT,Mp

i �

1

�
H(T ),

where H(T ) stands for the entropy of the matrix T seen as an element of the sim-

plex of size d2, H(T )
def
= �

P
ij tij log(tij). As shown by [7], the regularized trans-

port problem OT� admits a unique optimal solution. As such, OT�(a, b,Mp)
is a di↵erentiable function of a whose gradient can be recovered through the
solution of the corresponding smoothed dual optimal transport. Without elabo-
rating further on this approach, we propose to simply replace all expressions that
involve an optimal transport problem OT in our formulations by their smoothed
counterpart OT�.

Sensitivity of Kantorovich Means to the Parameter �. The magnitude of the
solution a to Problem (P1) depends directly on the virtual distance �. Suppose,

In practice: solved with an exponentiated gradient with 
projection in the dual (matrix-matrix computations and 
element wise multiplications which are GPGPU friendly)

Idea: Regularize cost with entropy [Cuturi NIPS 2013]

6 A. Gramfort, G. Peyré, M. Cuturi

for instance, that � = "1d with " arbitrarily small. In that case a should con-
verge to a unit mass on the last (virtual) bin and would therefore be equal to
the null histogram 0d on the d other bins. If, on the contrary, � = �1d and � is
large, we obtain that Kp

p�(a, b)/� grows as | |a|1 � |b|1|. Therefore a minimum
of Problem (P1) would necessarily need to have a total mass that minimizesP

j

��
|a|1 � |bj |1

��, namely a total mass equal to the median mass of all bj . This
sensitivity of the solution a to the magnitude of � may be di�cult to control.
Choosing adequate values for �, namely setting the distance of the virtual point
to the d other points, may also be a di�cult parameter choice. To address this
issue we propose to simplify our framework by introducing an equality constraint
on the mass of the barycenter a in our definition, and let � be any non-negative
vector, typically set to a large quantile of the distribution of all pairwise distances
Mp

ij times the vector of ones 1d. Under these assumptions, we can now propose
p-Kantorovich means with a constraint on the total mass of a. Remaining pa-
rameters in our approach are therefore only p and �. In practice we will fix p = 1,
which corresponds to the Earth Mover’s Distance [23], and use a high �, namely
a small entropic regularization of order 1/�, which has also the merit of making
Problem (P1) strongly convex. � is set in our experiments to 100/median(M),
where median(M) is the median of all pairwise distances {Mij}ij .

Definition 2 (p-Kantorovich Means with Constrained Mass). Let � 2

Rd
+ and p � 0. A Kantorovich mean with a target mass ⇢  1 of a set of N

histograms {b1, · · · , bN} in Sd is the unique vector a in Sd such that:

a 2 argmin
a2Sd
|a|1=⇢

1

N

X

j

OT�(a, b
j , M̂p).

We provide in Algorithm 1 an implementation of [7, Alg.1]. Unlike their version,
we only consider a fixed step-length exponentiated gradient descent, and add a
mass renormalization step. We set the default mass of the barycenter to be the
mean of the masses of all histograms. We use the notation � for the elementwise
(Schur) product of vectors. Note that the computations of N dual optima in line
7 of Algorithm 1 below can be vectorized and computed using only matrix-matrix
products. We use GPGPUs to carry out these computations.

4 Application to the Averaging of Neuroimaging Data

Neuromaging data are defined on a grid of voxels, eventually restricted to the
brain volume, or on a triangulation of the cortical mantle obtained by segmenta-
tion of MRI data. Examples of data most commonly analyzed on a grid are fMRI
data, while neural activity estimates derived from MEG/EEG data are often re-
stricted to the cortical surface [9]. Anatomical data such as cortical thickness,
which is a biomarker of certain neurodegenerative pathologies, is also defined on
the surface. In all cases the data are defined on a discrete set of points (voxels or
vertices) which have a natural distance given by the geometry of the brain. The

Problem reads:



BA45 MT n = 100 d = 10242
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Results fMRI
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• 20 subjects

• Left hand button press

• Averaging of standardized effect size

Sharp activation foci & less amplitude reduction

[Pinel et al. 2007]
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Results MEG
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• 20 subjects

• Left hand button press

• Averaging of standardized effect size

• 16 subjects

• Visual presentation of faces and scrambled faces

• Averaging of dSPM source estimates

V1

[Henson et al. 2011]
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Results MEG

63

• Contrast between faces and scrambled faces

With Tesla K40 GPU card (< a minute of computation)
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“Philosophical” Conclusion 
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• The world of neuroimaging is full of challenging maths and 

computer science problems ...

• … look at the data to find the relevant ones

"An approximate answer to the right problem is worth a good deal more 
than an exact answer to an approximate problem. ~ John Tukey"

• … but don’t be scared if they are not well posed
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