Statistical learning and optimization for functional MRI data mining

Alexandre Gramfort

alexandre.gramfort@telecom-paristech.fr

Assistant Professor LTCI, Télécom ParisTech, Université Paris-Saclay

Macaron Workshop - INRIA Grenoble - 2017

Visual Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local Image Decoders

Yoichi Miyawaki,^{1,2,6} Hajime Uchida,^{2,3,6} Okito Yamashita,² Masa-aki Sato,² Yusuke Morito,^{4,5} Hiroki C. Tanabe,^{4,5} Norihiro Sadato,^{4,5} and Yukiyasu Kamitani^{2,3,*}

http://www.youtube.com/watch?v=hIGuIYSoDaY

Report

Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies

Shinji Nishimoto,¹ An T. Vu,² Thomas Naselaris,¹ Yuval Benjamini,³ Bin Yu,³ and Jack L. Gallant^{1,2,4,*}

mental processes. It has therefore been assumed that fMRI data would not be useful for modeling brain activity evoked

Presented clip

Clip reconstructed from brain activity

http://www.youtube.com/watch?v=nsjDnYxJ0bo

Outline

• Background

• Estimating the hemodynamic response function [Pedregosa et al. Neuroimage 2015]

 Mapping the visual pathways with computational models and fMRI [Eickenberg et al. Neuroimage 2016]

• Optimal transport barycenter for group studies [Gramfort et al. IPMI 2015]

A. Gramfort

Functional MRI

A. Gramfort

≈ 1 image / 2s

courtesy of Gael Varoquaux

http://www.youtube.com/watch?v=uhCF-zlk0jY

fMRI supervised learning (decoding)

Challenge: Predict a behavioral variable from the fMRI data

Objective: Predict y given X or learn a function f : X -> y

Classification example with fMRI

The **objective** is to be able to predict or given an fMRI activation map Patient vs. Controls Faces vs. Houses VS. VS. ie. $y = \{-1, 1\}$

objective: Predict $y = \{-1, 1\}$ given $x \in \mathbb{R}^p$

A. Gramfort

fMRI supervised learning (Encoding)

Challenge: Predict the BOLD response from the stimuli descriptors

Objective: Predict y given X or learn a function f : X -> y

[Thirion et al. 06, Kay et al. 08, Naselaris et al. 11, Nishimoto et al. 2011, Schoenmakers et al. 13 ...]

A. Gramfort

9

Learning the hemodynamic response function (HRF) for encoding and decoding models

thanks to

Fabian Pedregosa

Michael Eickenberg

Data-driven HRF estimation for encoding and decoding models, Fabian Pedregosa, Michael Eickenberg, Philippe Ciuciu, Bertrand Thirion and Alexandre Gramfort, Neuroimage 2015

PDF: <u>https://hal.inria.fr/hal-00952554/en</u> Code: <u>https://pypi.python.org/pypi/hrf_estimation</u>

fMRI paradigm and HRF

HRF: Hemodynamic response function

A. Gramfort

Statistical Learning and optimization for functional MRI data mining

fMRI paradigm and HRF

A. Gramfort

General Linear Model (GLM)

Basis constrained HRF

Hemodynamic response function (HRF) is known to vary substantially across subjects, brain regions and age.

D. Handwerker et al., "Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses.," Neuroimage 2004.

S. Badillo et al., "Group-level impacts of within- and between-subject hemodynamic variability in fMRI," Neuroimage 2013.

Two basis-constrained models of the HRF: FIR and 3HRF

From I HRF per condition

From I HRF shared between all conditions

Assuming I HRF shared between all conditions and a different amplitude/scale per condition this leads to:

$$\begin{vmatrix} \beta_1 h_1 & \beta_2 h_1 & & \beta_k h_1 \\ \beta_1 h_2 & \beta_2 h_2 & \vdots & \beta_k h_2 \\ \beta_1 h_3 & \beta_2 h_3 & & \beta_k h_3 \end{vmatrix} = \mathbf{h} \boldsymbol{\beta}^T$$

1

$$\begin{vmatrix} \beta_1 h_1 & \beta_2 h_1 \\ \beta_1 h_2 & \beta_2 h_2 & \vdots & \beta_k h_2 \\ \beta_1 h_3 & \beta_2 h_3 & \beta_k h_3 \end{vmatrix} = \mathbf{h} \boldsymbol{\beta}^T$$

$$\begin{aligned} \operatorname{argmin}_{\mathbf{h}, \beta} \|\mathbf{y} - \mathbf{X}\operatorname{vec}(\mathbf{h}\boldsymbol{\beta}^{T})\|^{2} \\ \operatorname{subject to} \|\mathbf{h}\|_{\infty} = 1 \text{ and } \langle \mathbf{h}, \mathbf{h}_{\operatorname{ref}} \rangle > 0 \\ \implies \text{ solved locally using quasi-Newton methods} \end{aligned}$$

Challenge: This optimization problem is not big yet it needs to be done tens of thousands of time (typically 30,000 to 50,000 times for each voxel)

Remark: Worked better than alternated optimization or 1st order methods

Cross-validation score in two different datasets

S.Tom et al., "The neural basis of loss aversion in decision-making under risk," Science 2007. K. N. Kay et al., "Identifying natural images from human brain activity.," Nature 2008.

Encoding (mean correlation) score

Results

Measure: voxel-wise encoding score. Correlation with the BOLD at each voxel on left-out data.

RI-GLM (FIR basis) improves voxel-wise encoding score on more than 98% of the voxels.

A. Gramfort

Statistical Learning and optimization for functional MRI data mining

20

Results

Statistical Learning and optimization for functional MRI data mining

Time to peak on top voxels

A. Gramfort

Convolutional Networks Map the Architecture of the Human Visual System

work of Michael Eickenberg

joint work with Bertrand Thirion and Gaël Varoquaux

"Seeing it all: Convolutional network layers map the function of the human visual system" Michael Eickenberg, Alexandre Gramfort, Gaël Varoquaux, Bertrand Thirion (submitted)

Convolutional Nets for Computer Vision

[Krizhevski et al, 2012]

A. Gramfort

Relating biological and computer vision

- VI functionality comprises edge detection
- Convolutional nets learn edge detectors, color boundary detectors and blob detectors

A. Gramfort

Can we use computer vision models and a large fMRI data to better understand human vision?

Approach

Forward Model Setup:

- Encoding model [Naselaris et al., 2011]
- Make sure complexity resides in feature extraction

A. Gramfort

Convolutional Net Forward Models

A. Gramfort

Convolutional Net Forward Models

Score maps (R²)

A. Gramfort

Best Predicting Layers per Voxel

A. Gramfort

A. Gramfort

A. Gramfort

A. Gramfort

Fingerprints summary statistic

A Fingerprint summaries for Kay2008

Lower level

Higher level

A. Gramfort

Fingerprints summary statistic

Photos

Videos

Synthesizing Brain activation maps

If our model is strong enough, we can use it to reproduce known experiments Generate BOLD response, do GLM analysis

High-level Validation: Faces / Places

A stimuli from Kay2008

A. Gramfort

Faces vs Places: Ground Truth

Stimuli from [Kay 2008] Close-up faces and scenes

Contrast of stimuli from [Kay 2008] Close-up faces and scenes

A. Gramfort

Faces vs Places

Simulation on [Kay 2008] Left out stimuli

BOLD ground truth

A. Gramfort

Fast Optimal Transport Averaging of Neuroimaging Data

Joint work with:

Gabriel Peyré

25

Marco Cuturi

[Fast Optimal Transport Averaging of Neuroimaging Data Alexandre Gramfort, Gabriel Peyré, Marco Cuturi, Proc. IPMI 2015]

The overall goal

Functional neuroimaging experiment 20 subjects

A. Gramfort

with Magnetoencephalography (MEG)

From sensors to sources at every ms for each subject

A. Gramfort

1= 20.0 fT

Imagine a 2D flat brain with 4 activations...

A. Gramfort

Their mean is $(x_1 + x_2 + x_3 + x_4)/4$.

Consider for each point the function $\|\cdot - x_i\|_2^2$

The mean is the argmin $\frac{1}{4} \sum_{i=1}^{4} || \cdot - x_i ||_2^2$.

A. Gramfort

Statistical Learning and optimization for functional MRI data mining

47

Now if the domain is not flat: you have a ground metric

From points to probability measures

Assume that each datum is now an **empirical measure**. What could be the mean of these 4 measures?

From points to probability measures

maive mean of all observations. Mean of 4 measures = a point?

Should preserve the uncertainty & take into account the metric

A. Gramfort

Problem formulation

Given a discrepancy function Δ between probabilities, compute **their mean:** $\operatorname{argmin} \sum_{i} \Delta(\cdot, \nu_{i})$

Remark: If discrepancy is a squared Riemanian distance it's a Fréchet mean.

Optimal Transport

Optimal Transport distances rely on 2 key concepts:

- A metric $D: \Omega \times \Omega \to \mathbb{R}_+$;
- $\Pi(\mu, \nu)$: joint probabilities with marginals μ, ν .

Example of joint probabilities

 $\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) = \text{probability measures on } \Omega^2$ with marginals $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$.

A. Gramfort

Example of joint probabilities

 $\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) = \text{probability measures on } \Omega^2$ with marginals $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$.

A. Gramfort

Optimal Transport

p-Wasserstein distance for $p \ge 1$ is: $W_p(\mu, \nu) = \left(\inf_{\boldsymbol{P} \in \Pi(\mu, \nu)} \int \int_{\Omega \times \Omega} D(x, y)^p d\boldsymbol{P}(x, y) \right)^{1/p}.$

[Monge-Kantorovich, Kantorovich-Rubinstein, Wasserstein, Earth Mover's Distance, Mallows ...]

Optimal Transport in dimension d

 $W_p^p(\mu, \nu)$ can be cast as a linear program

- 1. $M_{\boldsymbol{X}\boldsymbol{Y}}^{p} \stackrel{\text{def}}{=} [D(\boldsymbol{x}_{i}, \boldsymbol{y}_{j})^{p}]_{ij} \in \mathbb{R}^{d \times d}_{+}$ (metric information)
- 2. Transportation Polytope (joint probabilities)

$$U(a,b) \stackrel{\text{def}}{=} \{T \in \mathbb{R}^{d \times d} \mid T\mathbf{1}_d = a, \ T^T\mathbf{1}_d = b\}.$$

Example:

$$T = \begin{bmatrix} .1 & 0 & .1 \\ .1 & 0 & .1 \\ .2 & .1 & .3 \end{bmatrix} \in U\left(\begin{bmatrix} .2 \\ .2 \end{bmatrix}, \begin{bmatrix} .4 \\ .5 \end{bmatrix} \right)$$

Optimal Transport in dimension d

 $W_p^p(\mu, \nu)$ can be cast as a linear program

Optimal transport problem reads:

$$\begin{cases} W_p^p(a,b) = \mathbf{OT}(a,b,M^p) \stackrel{\text{def}}{=} \min_{T \in U(a,b)} \langle T, M^p \rangle \\ \langle T, M^p \rangle = \sum_{i=1}^d \sum_{j=1}^d T_{ij} M_{ij}^p & T \text{ is the transport plan} \end{cases}$$

Problem: No solution if

$$|a|_1 = \sum_{i=1}^{a} |a_i| \neq |b|_1$$

Need to add and remove mass

A. Gramfort

non-negative and non-normalized data

Add a virtual point $\,\omega\,$ whose distance to element i in $\Omega\,$

$$D(i,\omega) = D(\omega,i) = \Delta_i$$

Scale each observation $b^j, 1 \le j \le n$ so that $|b^j|_1 \le 1$ Map each a to $[a, |a|_1 - 1]$ (Kind of feature map)

Use as metric
$$\hat{M} = \begin{bmatrix} M & \Delta \\ \Delta^T & 0 \end{bmatrix} \in \mathbb{R}^{d+1 \times d+1}_+$$
$$\operatorname{argmin}_{u \in S_d} \frac{1}{N} \sum_{j=1}^N \mathbf{OT}(\begin{bmatrix} u \\ 1-|u|_1 \end{bmatrix}, \begin{bmatrix} b^j \\ \beta^j \end{bmatrix}, \hat{M}^p).$$

 $S_d = \{u \in \mathbb{R}^d_+, |u|_1 \le 1\}$... but a huge linear program

Smoothing to speed things up

Idea: Regularize cost with entropy

[Cuturi NIPS 2013]

$$\mathbf{OT}_{\lambda}(a, b, M^{p}) \stackrel{\text{def}}{=} \min_{T \in U(a, b)} \langle T, M^{p} \rangle - \frac{1}{\lambda} H(T)$$

Strongly convex with unique minimum

Problem reads:

$$\underset{\substack{a \in S_d \\ |a|_1 = \rho}}{\operatorname{argmin}} \frac{1}{N} \sum_{j} \mathbf{OT}_{\lambda}(a, b^j, \hat{M}^p)$$

In practice: solved with an exponentiated gradient with projection in the dual (matrix-matrix computations and element wise multiplications which are GPGPU friendly)

BA45 MT n = 100 d = 10242

0,0 7,2 14,3

Results fMRI

- 20 subjects
- Left hand button press

- [Pinel et al. 2007]
- Averaging of standardized effect size

Sharp activation foci & less amplitude reduction

Results MEG

- 16 subjects [Henson et al. 2011]
- Visual presentation of faces and scrambled faces
- Averaging of dSPM source estimates

Results MEG

Contrast between faces and scrambled faces

With Tesla K40 GPU card (< a minute of computation)

"Philosophical" Conclusion

- The world of neuroimaging is full of challenging maths and computer science problems ...
- ... look at the data to find the relevant ones
- ... but don't be scared if they are not well posed

"An approximate answer to the right problem is worth a good deal more than an exact answer to an approximate problem. ~ John Tukey"

Some refs:

Fabian Pedregosa, Michael Eickenberg, Philippe Ciuciu, Bertrand Thirion and Alexandre Gramfort, *Data-driven HRF estimation for encoding and decoding models*, Neuroimage 2015

Michael Eickenberg, Alexandre Gramfort, Gaël Varoquaux, Bertrand Thirion, Seeing it all: Convolutional network layers map the function of the human visual system, Neuroimage 2016

Alexandre Gramfort, Gabriel Peyré, Marco Cuturi, Fast Optimal Transport Averaging of Neuroimaging Data, Proc. IPMI 2015

I position to work on scikit-learn available !

