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Multiclass Classification: Introduction

Figure : Digit
Classification

Figure : Image
Classification

Figure : Text
Classification

Finite set of categories (K > 2)

Popular applications: image and text classification.
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Multiclass classification: Related Work

1 Combined approaches based on binary classification:
I One-Vs-Rest

F One binary problem for each class
F K binary problems
F O(K × d)

I One-Vs-One
F One binary problem for each pair of classes
F O(K 2× d)

2 Uncombined Approaches
I for example: multiclass SVM, MLP
I One scoring function per class

3 Logarithmic Time Algorithms
I For example: logTree, Recall-Tree
I Each leaf node represents a class
I O(logK)
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Multiclass classification : Challenges

The number of classes, K, in new emerging multiclass problems, for
example in text and image classification, may reach 105 to 106

categories.

For example:

I 4 × 106 sites

I 106 categories

I 105 editors

I Imbalanced nature
of hierarchies
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Multiclass classification : Challenges

Class imbalance problem

Majority of classes have few representative examples

Long tailed distribution
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Text Classification:

Task: Automatic classification of an example text to one of fixed set of
categories.
Feature Representation:

Bag of Words:
I From training corpus extract vocabulary.
I Represent each terms as 0 or 1
I Highly sparse

Document-class joint feature representation:
I Inspired by learning to rank
I Similarity features between an example and class of examples
I For example: ∑

t∈y∩x

1

Where,
x → One document
y → Class of documents
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Motivation of our work

Baselines: Model complexity increases with classes(K) and feature
dimension (d).

Algorithm that scales well for large scale data

Does not suffer from class imbalance problem

Less complex model

Competitive with the state of the art approaches
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Framework

X ⊆ Rd : Input Space

Y = 1,...,K : Output Space

S = (xyii )mi=1 : Training set of i.i.d. pairs

G = g : X × Y → R : Class of predictors

Instantaneous Loss

e(g , xy ) =
1

K − 1

∑
y ′∈Y\y

1
g(xy )≤g(xy

′
)

(1)

1π is the indicator function (Value is 0 or 1)

Average number of classes that get greater scoring by g than true
class

Ranking loss used in Multiclass-SVM a

aWeston et. al. (1998)
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Framework

Empirical Loss

Empirical error of g ∈ G over S is:

Lm(g ,S) =
1

m(K − 1)

m∑
i=1

∑
y ′∈Y \yi

1
g(x

yi
i )≤g(xy

′
i )

(2)

=
1

m(K − 1)

m∑
i=1

∑
y ′∈Y \yi

1

h(xyii , x
y
′

i )︸ ︷︷ ︸
g(x

yi
i

)−g(x
y
′

i
)

≤0
(3)

Resembles to binary-classification-loss based risk

Selection of a hypothesis in G minimizing risk over S is equivalent to
search a hypothesis in H minimizing risk over T(S) of size m× (K − 1)
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Multiclass to binary reduction example

We consider the following transformation

T (S) =

({ (
zj =

(
xki , x

yi
i

)
, ỹj = −1

)
if k < yi(

zj =
(
xyii , x

k
i

)
, ỹj = +1

)
elsewhere

)
j
.
=(i−1)(K−1)+k

,

|T (S)| = m × (K - 1)
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Multiclass to binary reduction algorithm

[Bikash et al. 2015]
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Improvements and New challenges

Improvements:

One parameter vector for all classes.

Low-dimensional feature space.

Overcome class imbalance.

New Challenges:

Number of transformations huge for larger K

Large computational overhead

Large memory requirement
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Aggressive double sampling

1 Drawing uniformly µ examples per class, in order to form practical set
Sµ;

I Reduce redundancy in examples
I Emphasizing rare classes

2 For each example xy in Sµ, drawing uniformly κ adversarial classes in
Y\{y}.

I Reduces time complexity
I Low memory requirement
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Double Sampled Multi to Binary Reduction
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Experimental Setup

Datasets:

Application: Text Classification

DMOZ and Wikipedia datasets. (LSHTC challenge)

Pre-processed with stop word removal and stemming.

Random samples of 1000, 2000, 3000, 4000, 5000, 7500, 10000,
20000.

Comparison:

DS-m2b: Proposed double sampled multiclass to binary algorithm

OVA: One-Vs-All algorithm

M-SVM: Crammar-Singer implementation of multiclass SVM

Recall Tree: Hierarchical One-Vs-Some algorithm
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Feature representation Φ(xy)

Features

1.
∑

t∈y∩x

ln(1 + yt) 2.
∑

t∈y∩x

ln(1 +
lS
St

)

3.
∑

t∈y∩x

It 4.
∑

t∈y∩x

ln(1 +
yt
|y | )

5.
∑

t∈y∩x

ln(1 +
yt
|y | .It) 6.

∑
t∈y∩x

ln(1 +
yt
|y | .

lS
St

)

7.
∑

t∈y∩x

1 8.
∑

t∈y∩x

yt
|y | .It

9. BM25 10. d(xy , centroid(y))

xt : number of occurrences of terme t in document x ,

V: Number of distinct terms in S,

yt =
∑

x∈y xt , |y | =
∑

t∈V yt , St =
∑

x∈S xt , lS =
∑

t∈V St .
It : idf of the term t,
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Results: Runtime Comparison
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Results: Memory Comparison
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Results: Prediction Performance Comparison
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Conclusion:

Multiclass to binary reduction to handle large-class scenario and
overcome class imbalance problem.

Use of double sampling to further improve computational complexity
and memory usage.
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Questions?
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