Fast and efficient dense variational stereo on GPU

J. Mairal - R. Keriven
A. Chariot
CERTIS, ENPC
Marne-La-Vallée, France

Problem Statement: Achieve fast variational stereo reconstruction.

Context:
- Variational stereo algorithms are usually slow but provide smooth and accurate results.
- Graphics cards can be considered nowadays as very efficient parallel SIMD machines.

Achievements:
- Parallelization and discretization of an algorithm on a GPU.
- Speedup of 10-15 times between a recent GPU and a CPU (3 GHz).
- Extension to three cameras.

Future work:
- Work with more than one GPU.
- Achieve fast multi-view reconstruction on GPU.
- Taking discontinuities into account.

GPU Discretization

A simple two-cameras model which runs entirely on the GPU.

- The images are back-projected onto the surface \mathcal{S}, which is composed of triangles \mathcal{T}.
- ρ_T denotes the normalized cross-correlation function on the triangle \mathcal{T}.
- $\tau(s)$ denotes a regularization function which is adapted for a GPU implementation.

Energy minimization by means of a descent gradient.

- Several levels of detail to prevent from converging toward a local minima.
- For each vertex M of the mesh, $\frac{\partial E(S)}{\partial d_M} = \sum_{T \in \mathcal{T}} \frac{\partial E_T}{\partial d_M}$. is computed, where $V(M)$ is the set of the 6 triangles to which M belongs.

Direct regularization by smoothing d_M.

- For each vertex M, where M' is its neighbors. The obtained results here were better than the use of mean curvature motion.

An extension to three cameras

An algorithm almost as fast as the two-cameras version, which still runs on the GPU.

- One camera is denoted as the « left » or « center » camera.
- We consider the « left » and the « right » camera.
- The triangles are classified in a first step in three categories, using the Stencil Buffer of the graphics cards:
 - Occluded triangles.
 - Triangles associated with the « left » camera: S_L.
 - Triangles associated with the « right » camera: S_R.

- For each « non-occluded » triangle, a simple normal test to select the best camera.
- Then, the two-camera algorithm is run on S_L, then on S_R.
- The complexities of the two-camera and the three-cameras version are the same.
- The overhead between them is about 30% on the GPU.

Results on data sets with occluded areas are better.

Results:

- These examples were obtained with two input images.
- The two first datasets are courtesy of Kyros Kutulakos (University of Toronto).

Fast results:

- These examples were computed in less than 250ms with a NVIDIA Geforce 7800 GTX.
- Not as fast as plane-sweep based methods, but more accurate !

GPU/CPU speedup : 10 to 15
- Geforce 7800 vs 3GHz CPU, Iterations per second for one particular level of detail.

References:

