A Generic Quasi-Newton Algorithm for Faster Gradient-Based Optimization

Hongzhou Lin1, Julien Mairal1, Zaid Harchaoui2

1Inria, Grenoble \quad 2UofW

Les Houches, OSL 2017
An alternate title: Acceleration by Smoothing
Collaborators

Hongzhou Lin
Zaid Harchaoui
Dima Drusvyatskiy
Courtney Paquette

Publications and pre-prints

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

\[
\min_{x \in \mathbb{R}^d} \left \{ f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right \},
\]

where each \(f_i \) is smooth and convex and \(\psi \) is a convex regularization penalty but not necessarily differentiable.

Motivation

<table>
<thead>
<tr>
<th></th>
<th>Composite</th>
<th>Finite sum</th>
<th>Exploit “curvature”</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-order methods</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quasi-Newton</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Nesterov, 2013, Wright et al., 2009, Beck and Teboulle, 2009],...
Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\},$$

where each f_i is smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

<table>
<thead>
<tr>
<th></th>
<th>Composite</th>
<th>Finite sum</th>
<th>Exploit “curvature”</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-order methods</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Quasi-Newton</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Schmidt et al., 2017, Xiao and Zhang, 2014, Defazio et al., 2014a,b, Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]
Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

\[
\min_{x \in \mathbb{R}^d} \left\{ f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\},
\]

where each \(f_i \) is smooth and convex and \(\psi \) is a convex regularization penalty but not necessarily differentiable.

Motivation

<table>
<thead>
<tr>
<th></th>
<th>Composite</th>
<th>Finite sum</th>
<th>Exploit “curvature”</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-order methods</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Quasi-Newton</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Focus of this work

Minimizing large finite sums
Consider the minimization of a large sum of convex functions

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\},$$

where each f_i is smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

<table>
<thead>
<tr>
<th></th>
<th>Composite</th>
<th>Finite sum</th>
<th>Exploit “curvature”</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-order methods</td>
<td>✔</td>
<td>✔</td>
<td>X</td>
</tr>
<tr>
<td>Quasi-Newton</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Byrd et al., 2015, Lee et al., 2012, Scheinberg and Tang, 2016, Yu et al., 2008, Ghadimi et al., 2015],…
Focus of this work

Minimizing large finite sums
Consider the minimization of a large sum of convex functions

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\},$$

where each f_i is smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

<table>
<thead>
<tr>
<th></th>
<th>Composite</th>
<th>Finite sum</th>
<th>Exploit “curvature”</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-order methods</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Quasi-Newton</td>
<td>—</td>
<td>✗</td>
<td>✔</td>
</tr>
</tbody>
</table>

[Byrd et al., 2016, Gower et al., 2016]
Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

\[
\min_{x \in \mathbb{R}^d} \left\{ f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\},
\]

where each \(f_i \) is \textbf{smooth and convex} and \(\psi \) is a convex regularization penalty but not necessarily differentiable.

Motivation

Our goal is to

- \textbf{accelerate first-order methods} with Quasi-Newton heuristics;
- design algorithms that can adapt to composite and finite-sum structures and that can also exploit curvature information.

[Byrd et al., 2016, Gower et al., 2016]
QuickeNing: main idea

Idea: Smooth the function and then apply Quasi-Newton.

- The strategy appears in early work about variable metric bundle methods. [Chen and Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996, Fuentes, Malick, and Lemaréchal, 2012, Burke and Qian, 2000] ...
QuickeNing: main idea

Idea: Smooth the function and then apply Quasi-Newton.

- The strategy appears in early work about variable metric bundle methods. [Chen and Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996, Fuentes, Malick, and Lemaréchal, 2012, Burke and Qian, 2000] ...

The Moreau-Yosida smoothing

Given $f : \mathbb{R}^d \to \mathbb{R}$ a convex function, the Moreau-Yosida smoothing of f is the function $F : \mathbb{R}^d \to \mathbb{R}$ defined as

$$F(x) = \min_{w \in \mathbb{R}^d} \left\{ f(w) + \frac{\kappa}{2} \| w - x \|^2 \right\} .$$

The proximal operator $p(x)$ is the unique minimizer of the problem.
The Moreau-Yosida regularization

\[F(x) = \min_{w \in \mathbb{R}^d} \left\{ f(w) + \frac{\kappa}{2} \| w - x \|^2 \right\}. \]

Basic properties [see Lemaréchal and Sagastizábal, 1997]

- Minimizing \(f \) and \(F \) is equivalent in the sense that
 \[\min_{x \in \mathbb{R}^d} F(x) = \min_{x \in \mathbb{R}^d} f(x), \]
 and the solution set of the two problems coincide with each other.

- \(F \) is continuously differentiable even when \(f \) is not and
 \[\nabla F(x) = \kappa(x - p(x)). \]

 In addition, \(\nabla F \) is Lipschitz continuous with parameter \(L_F = \kappa \).

- If \(f \) is \(\mu \)-strongly convex then \(F \) is also strongly convex with parameter \(\mu_F = \frac{\mu \kappa}{\mu + \kappa} \).
The Moreau-Yosida regularization

\[F(x) = \min_{w \in \mathbb{R}^d} \left\{ f(w) + \frac{\kappa}{2} \| w - x \|^2 \right\}. \]

Basic properties [see Lemaréchal and Sagastizábal, 1997]

- Minimizing \(f \) and \(F \) is equivalent in the sense that

\[\min_{x \in \mathbb{R}^d} F(x) = \min_{x \in \mathbb{R}^d} f(x), \]

and the solution set of the two problems coincide with each other.

- \(F \) is continuously differentiable even when \(f \) is not and

\[\nabla F(x) = \kappa(x - p(x)). \]

In addition, \(\nabla F \) is Lipschitz continuous with parameter \(L_F = \kappa \).

\(F \) enjoys nice properties: smoothness, (strong) convexity and we can control its condition number \(1 + \kappa/\mu \).
A fresh look at Catalyst
A fresh look at the proximal point algorithm

A naive approach consists of minimizing the smoothed objective F instead of f with a method designed for smooth optimization.

Consider indeed

$$x_{k+1} = x_k - \frac{1}{\kappa} \nabla F(x_k).$$

By rewriting the gradient $\nabla F(x_k)$ as $\kappa (x_k - p(x_k))$, we obtain

$$x_{k+1} = p(x_k) = \arg \min_{w \in \mathbb{R}^p} \left\{ f(w) + \frac{\kappa}{2} \| w - x_k \|^2 \right\}.$$

This is exactly the **proximal point algorithm** [Rockafellar, 1976].
A fresh look at the accelerated proximal point algorithm

Consider now

\[x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k), \]

where \(\beta_{k+1} \) is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of \(\nabla F \), which gives:

\[x_{k+1} = p(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k) \]

This is the \textit{accelerated proximal point algorithm} of Güler [1992].
A fresh look at the accelerated proximal point algorithm

Consider now

\[x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k), \]

where \(\beta_{k+1} \) is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of \(\nabla F \), which gives:

\[x_{k+1} = p(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k) \]

This is the \text{accelerated proximal point algorithm} of Güler [1992].

Remarks

- \(F \) may be \text{better conditioned} than \(f \) when \(1 + \kappa/\mu \leq L/\mu \);
- Computing \(p(y_k) \) has a cost!
A fresh look at Catalyst [Lin, Mairal, and Harchaoui, 2015]

Catalyst is a particular accelerated proximal point algorithm with inexact gradients [Güler, 1992].

\[x_{k+1} \approx p(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k) \]

The quantity \(x_{k+1} \) is obtained by using an optimization method \(\mathcal{M} \) for approximately solving:

\[
\begin{align*}
 x_{k+1} & \approx \arg \min_{w \in \mathbb{R}^p} \left\{ f(w) + \frac{\kappa}{2} \| w - y_k \|^2 \right\},
\end{align*}
\]

Catalyst provides Nesterov’s acceleration to \(\mathcal{M} \) with...

- **restart strategies** for solving the sub-problems;
- **global complexity analysis** resulting in theoretical acceleration.
- **parameter choices** (as a consequence of the complexity analysis);

see also [Frostig et al., 2015] and [Paquette, Lin, Drusvyatskiy, Mairal, and Harchaoui, 2017]
Quasi-Newton methods work with the parameter and gradient differences between successive iterations:

\[s_k \triangleq x_{k+1} - x_k, \quad y_k \triangleq \nabla f(x_{k+1}) - \nabla f(x_k). \]
Quasi-Newton and L-BFGS
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- **Quasi-Newton** methods work with the parameter and gradient differences between successive iterations:

\[s_k \triangleq x_{k+1} - x_k, \quad y_k \triangleq \nabla f(x_{k+1}) - \nabla f(x_k). \]

- They start with an initial approximation \(B_0 \triangleq \sigma I \), and choose \(B_{k+1} \) to **interpolate the gradient difference**:

\[B_{k+1}s_k = y_k. \]
Quasi-Newton and L-BFGS

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- **Quasi-Newton** methods work with the parameter and gradient differences between successive iterations:

\[s_k \triangleq x_{k+1} - x_k, \quad y_k \triangleq \nabla f(x_{k+1}) - \nabla f(x_k). \]

- They start with an initial approximation \(B_0 \triangleq \sigma I \), and choose \(B_{k+1} \) to **interpolate the gradient difference**:

\[B_{k+1} s_k = y_k. \]

- Since \(B_{k+1} \) is not unique, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method chooses the symmetric matrix whose difference with \(B_k \) is minimal:

\[
B_{k+1} = B_k - \frac{B_k s_k s_k B_k}{s_k B_k s_k} + \frac{y_k y_k^\top}{y_k^\top s_k}.
\]
Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
Quasi-Newton and L-BFGS
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- They perform updates of the form

$$x_{k+1} \leftarrow x_k - \eta_k B_k^{-1} \nabla f(x_k).$$
Quasi-Newton and L-BFGS

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- They perform updates of the form

$$x_{k+1} \leftarrow x_k - \eta_k B_k^{-1} \nabla f(x_k).$$

- The BFGS method has a superlinear convergence rate.
Quasi-Newton and L-BFGS
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- They perform updates of the form
 \[x_{k+1} \leftarrow x_k - \eta_k B_k^{-1} \nabla f(x_k). \]
- The BFGS method has a superlinear convergence rate.
- But, it still uses a dense $p \times p$ matrix B_k.
Quasi-Newton and L-BFGS
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- They perform updates of the form

$$x_{k+1} \leftarrow x_k - \eta_k B_k^{-1} \nabla f(x_k).$$

- The BFGS method has a superlinear convergence rate.
- But, it still uses a dense $p \times p$ matrix B_k.
- Instead of storing B_k, the limited-memory BFGS (L-BFGS) method stores the previous l differences s_k and y_k.
Quasi-Newton and L-BFGS
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep \(B_{k+1} \) positive-definite.
- They perform updates of the form

\[
x_{k+1} \leftarrow x_k - \eta_k B_k^{-1} \nabla f(x_k).
\]

- The BFGS method has a superlinear convergence rate.
- But, it still uses a dense \(p \times p \) matrix \(B_k \).
- Instead of storing \(B_k \), the limited-memory BFGS (L-BFGS) method stores the previous \(l \) differences \(s_k \) and \(y_k \).
- We can solve a linear system involving these updates when \(B_0 \) is diagonal in \(O(dl) \) [Nocedal, 1980].
Limited-Memory BFGS (L-BFGS)

Remarks

- using the right initialization B_0 is crucial.
- the calibration of the line-search is also an art.
Limited-Memory BFGS (L-BFGS)

Remarks

- using the right initialization B_0 is crucial.
- the calibration of the line-search is also an art.

Pros

- a big practical success of smooth optimization.
Limited-Memory BFGS (L-BFGS)

Remarks
- using the right initialization B_0 is crucial.
- the calibration of the line-search is also an art.

Pros
- a big practical success of smooth optimization.

Cons
- worst-case convergence rates for strongly-convex functions are linear, but no better than the gradient descent method.
- proximal variants typically requires solving many times
 $\min_{x \in \mathbb{R}^d} \frac{1}{2}(x - z)B_k(z - z) + \psi(x)$.
- no guarantee of approximating the Hessian.
Main recipe

- L-BFGS applied to the smoothed objective F with inexact gradients [see Friedlander and Schmidt, 2012].
- Inexact gradients are obtained by solving sub-problems using a first-order optimization method \mathcal{M};
- Ideally, \mathcal{M} is able to adapt to the problem structure (finite sum, composite regularization).
- Replace L-BFGS steps by proximal point steps if no sufficient decrease is estimated \Rightarrow no line search on F;
Obtaining inexact gradients

Algorithm Procedure ApproxGradient

input Current point x in \mathbb{R}^d; smoothing parameter $\kappa > 0$.

1. Compute the approximate mapping using an optimization method \mathcal{M}:

 $$ z \approx \arg\min_{w \in \mathbb{R}^d} \left\{ h(w) \triangleq f(w) + \frac{\kappa}{2} \|w - x\|^2 \right\}, $$

2. Estimate the gradient $\nabla F(x)$

 $$ g = \kappa (x - z). $$

output approximate gradient estimate g, objective value $F_a \triangleq h(z)$, proximal mapping mapping z.

Julien Mairal

QuickeNing
Algorithm QuickeNing

input x_0 in \mathbb{R}^p; number of iterations K; $\kappa > 0$; minimization algorithm \mathcal{M}.

1. Initialization: $(g_0, F_0, z_0) = \text{ApproxGradient}(x_0, \mathcal{M})$; $B_0 = \kappa I$.
2. for $k = 0, \ldots, K - 1$ do
3. Perform the Quasi-Newton step
4. \[x_{\text{test}} = x_k - B_k^{-1}g_k \]
5. \[(g_{\text{test}}, F_{\text{test}}, z_{\text{test}}) = \text{ApproxGradient}(x_{\text{test}}, \mathcal{M}). \]
6. if $F_{\text{test}} \leq F_k - \frac{1}{2\kappa} \|g_k\|^2$, then
7. $(x_{k+1}, g_{k+1}, F_{k+1}, z_{k+1}) = (x_{\text{test}}, g_{\text{test}}, F_{\text{test}}, z_{\text{test}})$.
8. else
9. Update the current iterate with the last proximal mapping:
10. \[x_{k+1} = z_k = x_k - \frac{1}{\kappa}g_k \]
11. \[(g_{k+1}, F_{k+1}, z_{k+1}) = \text{ApproxGradient}(x_{k+1}, \mathcal{M}). \]
12. end if
13. update $B_{k+1} = \text{L-BFGS}(B_k, x_{k+1} - x_k, g_{k+1} - g_k)$.
14. end for

output last proximal mapping z_K (solution).
Algorithm QuickeNing

input x_0 in \mathbb{R}^p; number of iterations K; $\kappa > 0$; minimization algorithm \mathcal{M}.

1: Initialization: $(g_0, F_0, z_0) = \text{ApproxGradient}(x_0, \mathcal{M})$; $B_0 = \kappa I$.
2: for $k = 0, \ldots, K - 1$ do
3: Perform the Quasi-Newton step

 $$x_{\text{test}} = x_k - B_k^{-1}g_k$$

 $$(g_{\text{test}}, F_{\text{test}}, z_{\text{test}}) = \text{ApproxGradient}(x_{\text{test}}, \mathcal{M}).$$

4: if $F_{\text{test}} \leq F_{k-1} - \frac{2}{\kappa} \|g_k\|^2$ then
5: $(x_{k+1}, g_{k+1}, F_{k+1}, z_{k+1}) = (x_{\text{test}}, g_{\text{test}}, F_{\text{test}}, z_{\text{test}})$.
6: else
7: Update the current iterate with the last proximal mapping:

 $$x_{k+1} = x_k - \frac{1}{\kappa}g_k$$

 $$(g_{k+1}, F_{k+1}, z_{k+1}) = \text{ApproxGradient}(x_{k+1}, \mathcal{M}).$$
8: end if
9: update $B_{k+1} = \text{L-BFGS}(B_k, x_{k+1} - x_k, g_{k+1} - g_k)$.
10: end for

output last proximal mapping z_K (solution).

The main characters:

- the sequence $(x_k)_{k \geq 0}$ that minimizes F;
- the sequence $(z_k)_{k \geq 0}$ produced by \mathcal{M} that minimizes f;
- the gradient approximations $g_k \approx \nabla F(x_k)$;
- the function value approximations $F_k \approx \nabla F(x_k)$;
- an L-BFGS update with inexact gradients;
- an approximate sufficient descent condition.
Requirements on \mathcal{M} and restarts

Method \mathcal{M}

- Say a sub-problem consists of minimizing h; we want \mathcal{M} to produce a sequence of iterates $(w_t)_{t \geq 0}$ with linear convergence rate

$$h(w_t) - h^* \leq C_\mathcal{M}(1 - \tau_\mathcal{M})^t(h(w_0) - h^*).$$

Restarts

- When f is smooth, we initialize $w_0 = x$ when solving

$$\min_{w \in \mathbb{R}^d} \left\{ f(w) + \frac{\kappa}{2} \|w - x\|^2 \right\}.$$

- When $f = f_0 + \psi$ is composite, we use the initialization

$$w_0 = \arg \min_{w \in \mathbb{R}^d} \left\{ f_0(x) + \langle \nabla f_0(x), w - x \rangle + \frac{L + \kappa}{2} \|w - x\|^2 + \psi(w) \right\}.$$
When do we stop the method \mathcal{M}?

Three strategies

(a) use a **pre-defined sequence** $(\epsilon_k)_{k \geq 0}$ and stop the optimization method \mathcal{M} when the approximate proximal mapping is ϵ_k-accurate.

(b) define a **stopping criterion** that depends on quantities that are available at iteration k.

(c) use a **pre-defined budget** $T_{\mathcal{M}}$ of iterations of the method \mathcal{M} for solving each sub-problem.
When do we stop the method \mathcal{M}?

Three strategies

(a) use a **pre-defined sequence** $(\epsilon_k)_{k \geq 0}$ and stop the optimization method \mathcal{M} when the approximate proximal mapping is ϵ_k-accurate.

(b) define a **stopping criterion** that depends on quantities that are available at iteration k.

(c) use a **pre-defined budget** $T_\mathcal{M}$ of iterations of the method \mathcal{M} for solving each sub-problem.

Remarks

- (a) is the **less practical** strategy.
- (b) is **simpler to use and conservative** (compatible with theory).
- (c) requires $T_\mathcal{M}$ to be large enough in theory. The **aggressive** strategy $T_\mathcal{M} = n$ for an incremental method is **extremely simple to use and effective in practice**.
When do we stop the method \mathcal{M}?

Three strategies in details for μ-strongly convex f

(a) use a **pre-defined sequence** $(\epsilon_k)_{k \geq 0}$ and stop the optimization method \mathcal{M} when the approximate proximal mapping is ϵ_k-accurate.

$$
\epsilon_k = \frac{1}{2} C (1 - \rho)^{k+1} \quad \text{with} \quad C \geq f(x_0) - f^* \quad \text{and} \quad \rho = \frac{\mu}{4(\mu + \kappa)}.
$$

(b) For minimizing $h(w) = f(w) + (\kappa/2)\|w - x\|^2$, stop when

$$
h(w_t) - h^* \leq \frac{\kappa}{36} \|w_t - x\|^2.
$$

(c) use a **pre-defined budget** $T_{\mathcal{M}}$ of iterations of the method \mathcal{M} for solving each sub-problem with

$$
T_{\mathcal{M}} = \frac{1}{\tau_{\mathcal{M}}} \log \left(19 C_{\mathcal{M}} \frac{L + \kappa}{\kappa} \right). \quad \text{(be more aggressive in practice)}
$$
Remarks and global complexity

Composite objectives and sparsity
Consider a composite problem with a sparse solution (e.g., $\psi = \ell_1$). The method produces two sequences $(x_k)_{k \geq 0}$ and $(z_k)_{k \geq 0}$;

- $F(x_k) \to F^*$, minimizes the \textit{smoothed objective} \Rightarrow no sparsity;
- $f(z_k) \to f^*$, minimizes the \textit{true objective} \Rightarrow the iterates may be sparse if \mathcal{M} handles composite optimization problems;

Global complexity
The number of iterations of \mathcal{M} to guarantee $f(z_k) - f^* \leq \varepsilon$ is at most

- $\tilde{O}(\frac{\mu + \kappa}{\tau \mathcal{M} \mu} \log(1/\varepsilon))$ for μ-strongly convex problems.
- $\tilde{O}(\frac{\kappa R^2}{\tau \mathcal{M} \varepsilon})$ for convex problems.
Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have $\tau_M = (\mu + \kappa)/(L + \kappa)$ and the complexity for $\mu > 0$ becomes

$$\tilde{O}\left(\frac{L + \kappa}{\mu} \log(1/\varepsilon)\right).$$

Example for SVRG for minimizing the sum of n functions

$\tau_M = \min(1/n, (\mu + \kappa)/(L + \kappa))$ and the complexity for $\mu > 0$ is

$$\tilde{O}\left(\max\left(\frac{\mu + \kappa}{\mu} n, \frac{L + \kappa}{\mu}\right) \log(1/\varepsilon)\right).$$
Global Complexity and choice of \(\kappa \)

Example for gradient descent

With the right step-size, we have \(\tau_M = (\mu + \kappa)/(L + \kappa) \) and the complexity for \(\mu > 0 \) becomes

\[
\tilde{O} \left(\frac{L + \kappa}{\mu} \log\left(\frac{1}{\varepsilon}\right) \right).
\]

Example for SVRG for minimizing the sum of \(n \) functions

\(\tau_M = \min(1/n, (\mu + \kappa)/(L + \kappa)) \) and the complexity for \(\mu > 0 \) is

\[
\tilde{O} \left(\max \left(\frac{\mu + \kappa}{\mu} n, \frac{L + \kappa}{\mu} \right) \log\left(\frac{1}{\varepsilon}\right) \right).
\]

QuickeNing does not provide any theoretical acceleration, but it does not degrade significantly the worst-case performance of \(\mathcal{M} \) (unlike L-BFGS vs gradient descent).
Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have $\tau_M = (\mu + \kappa)/(L + \kappa)$ and the complexity for $\mu > 0$ becomes

$$\tilde{O}\left(\frac{L + \kappa}{\mu} \log(1/\varepsilon)\right).$$

Example for SVRG for minimizing the sum of n functions

$\tau_M = \min(1/n, (\mu + \kappa)/(L + \kappa))$ and the complexity for $\mu > 0$ is

$$\tilde{O}\left(\max\left(\frac{\mu + \kappa}{\mu} n, \frac{L + \kappa}{\mu}\right) \log(1/\varepsilon)\right).$$

Then, how to choose κ?

(i) assume that L-BFGS steps do as well as Nesterov

(ii) choose κ as in Catalyst.
Experiments: formulations

- ℓ_2-regularized Logistic Regression:
 \[
 \min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp \left(-b_i a_i^T x \right) \right) + \frac{\mu}{2} \|x\|^2,
 \]

- ℓ_1-regularized Linear Regression (LASSO):
 \[
 \min_{x \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^{n} (b_i - a_i^T x)^2 + \lambda \|x\|_1,
 \]

- $\ell_1 - \ell_2$-regularized Linear Regression (Elastic-Net):
 \[
 \min_{x \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^{n} (b_i - a_i^T x)^2 + \lambda \|x\|_1 + \frac{\mu}{2} \|x\|^2,
 \]
Experiments: Datasets

We consider four standard machine learning datasets with different characteristics in terms of size and dimension:

<table>
<thead>
<tr>
<th>name</th>
<th>covtype</th>
<th>alpha</th>
<th>real-sim</th>
<th>rcv1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>581 012</td>
<td>250 000</td>
<td>72 309</td>
<td>781 265</td>
</tr>
<tr>
<td>(d)</td>
<td>54</td>
<td>500</td>
<td>20 958</td>
<td>47 152</td>
</tr>
</tbody>
</table>

- we simulate the ill-conditioned regime \(\mu = 1/(100n)\);
- \(\lambda\) for the Lasso leads to about 10% non-zero coefficients.
Experiments: QuickeNing-SVRG

We consider the methods

- **SVRG**: the Prox-SVRG algorithm of Xiao and Zhang [2014].
- **Catalyst-SVRG**: Catalyst applied to SVRG;
- **L-BFGS** (for smooth objectives): Mark Schmidt’s implementation.
- **QuickeNing-SVRG1**: QuickeNing with aggressive strategy (c): one pass over the data in the inner loop.
- **QuickeNing-SVRG2**: strategy (b), compatible with theory.

We produce 12 figures (3 formulations, 4 datasets).
Experiments: QuickeNing-SVRG (log scale)

- covtype, logistic, $\mu = 1/100 \ n$
- covtype, lasso, $\lambda = 10 / n$
- rcv1, logistic, $\mu = 1/100 \ n$
- rcv1, lasso, $\lambda = 10 / n$

- QuickeNing-SVRG1 \geq SVRG, QuickeNing-SVRG2;
- QuickeNing-SVRG2 \geq SVRG;
- QuickeNing-SVRG1 \geq Catalyst-SVRG in 10/12 cases.
Experiments: QuickeNing-ISTA

We consider the methods

- **ISTA**: the proximal gradient descent method with line search.
- **FISTA**: the accelerated ISTA of Beck and Teboulle [2009].
- **L-BFGS** (for smooth objectives): Mark Schmidt’s implementation.
- **QuickeNing-ISTA1**: QuickeNing with aggressive strategy (c): one pass over the data in the inner loop.
- **QuickeNing-ISTA2**: strategy (b), compatible with theory.
Experiments: QuickeNing-ISTA (log scale)

L-BFGS (for smooth f) is slightly better than QuickeNing-ISTA1;
QuickeNing-ISTA \geq or \gg FISTA in 11/12 cases.
QuickeNing-ISTA1 \geq QuickeNing-ISTA2.
Experiments: Influence of κ

- κ_0 is the parameter (same as in Catalyst) used in all experiments;
- QuickeNing slows down when using $\kappa > \kappa_0$;
- here, for SVRG, QuickeNing is robust to small values of κ!
Experiments: Influence of l

- $l = 100$ in all previous experiments;
- $l = 5$ seems to be a reasonable choice in many cases, especially for sparse problems.
Conclusions and perspectives

- QuickeNing has been a safe heuristic so far.
- It may be the first L-BFGS algorithm for composite objectives with reasonable known complexity for solving the sub-problems.
- We also have a variant for dual approaches.
- the gap between theory and practice is significant.

Perspectives

- QuickeNing-BCD, QuickeNing-SAG,SAGA,SDCA...
- Other types of smoothing techniques?
Outer-loop convergence analysis

Lemma: approximate descent property

\[F(x_{k+1}) \leq f(z_k) \leq F(x_k) - \frac{1}{4\kappa} \|\nabla F(x_k)\|_2^2 + 2\varepsilon_k. \]

Then, \(\varepsilon_k \) should be smaller than \(\frac{1}{4\kappa} \|\nabla F(x_k)\|_2^2 \), and indeed
Outer-loop convergence analysis

Lemma: approximate descent property

\[F(x_{k+1}) \leq f(z_k) \leq F(x_k) - \frac{1}{4\kappa} \| \nabla F(x_k) \|_2^2 + 2\varepsilon_k. \]

Then, \(\varepsilon_k \) should be smaller than \(\frac{1}{4\kappa} \| \nabla F(x_k) \|_2^2 \), and indeed

Proposition: convergence with impractical \(\varepsilon_k \) and \(\mu > 0 \)

If \(\varepsilon_k \leq \frac{1}{16\kappa} \| \nabla F(x_k) \|_2^2 \), define \(\rho = \frac{\mu}{4(\mu+\kappa)} \), then

\[F(x_{k+1}) - F^* \leq f(z_k) - f^* \leq (1 - \rho)^{k+1} (f(x_0) - f^*). \]

Unfortunately, \(\| \nabla F(x_k) \| \) is unknown.
Outer-loop convergence analysis

Lemma: approximate descent property

\[F(x_{k+1}) \leq f(z_k) \leq F(x_k) - \frac{1}{4\kappa} \| \nabla F(x_k) \|_2^2 + 2\varepsilon_k. \]

Then, \(\varepsilon_k \) should be smaller than \(\frac{1}{4\kappa} \| \nabla F(x_k) \|_2^2 \), and indeed

Proposition: convergence with impractical \(\varepsilon_k \) and \(\mu > 0 \)

If \(\varepsilon_k \leq \frac{1}{16\kappa} \| \nabla F(x_k) \|_2^2 \), define \(\rho = \frac{\mu}{4(\mu + \kappa)} \), then

\[F(x_{k+1}) - F^* \leq f(z_k) - f^* \leq (1 - \rho)^{k+1} (f(x_0) - f^*). \]

Unfortunately, \(\| \nabla F(x_k) \| \) is unknown.

Lemma: convergence with adaptive \(\varepsilon_k \) and \(\mu > 0 \)

If \(\varepsilon_k \leq \frac{1}{36\kappa} \| g_k \|_2^2 \), then \(\varepsilon_k \leq \frac{1}{16} \| \nabla F(x_k) \|_2^2 \).

This is strategy (b). \(g_k \) is known and easy to compute.
Inner-loop complexity analysis

Restart for L-smooth functions

For minimizing h, initialize the method \mathcal{M} with $w_0 = x$. Then,

$$h(w_0) - h^* \leq \frac{L + \kappa}{2\kappa^2} \| \nabla F(x) \|^2. \tag{1}$$

Proof.

We have the optimality condition $\nabla f(w^*) + \kappa (w^* - x) = 0$. As a result,

$$h(w_0) - h^* = f(x) - \left(f(w^*) + \frac{\kappa}{2} \| w^* - x \|^2 \right)$$

$$\leq f(w^*) + \langle \nabla f(w^*), x - w^* \rangle + \frac{L}{2} \| x - w^* \|^2 - \left(f(w^*) + \frac{\kappa}{2} \| w^* - x \|^2 \right)$$

$$= \frac{L + \kappa}{2} \| w^* - x \|^2 = \frac{L + \kappa}{2\kappa^2} \| \nabla F(x) \|^2.$$
References I

References II

References V

References VI

