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Early thoughts about parsimony

(a) Dorothy Wrinch
1894–1980

(b) Harold Jeffreys
1891–1989

The existence of simple laws is, then, apparently, to be

regarded as a quality of nature; and accordingly we may infer

that it is justifiable to prefer a simple law to a more complex

one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921]. Philosophical Magazine Series.

Julien Mairal, Inria Complexity analysis of the Lasso regularization path 2/23



Historical overview of parsimony

14th century: Ockham’s razor;

1921: Wrinch and Jeffreys’ simplicity principle;

1952: Markowitz’s portfolio selection;

60 and 70’s: best subset selection in statistics;

70’s: use of the ℓ1-norm for signal recovery in geophysics;

90’s: wavelet thresholding in signal processing;

1996: Olshausen and Field’s dictionary learning;

1996–1999: Lasso (statistics) and basis pursuit (signal processing);

2006: compressed sensing (signal processing) and Lasso consistency
(statistics);
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What this work is about

another paper about the Lasso/Basis Pursuit [Tibshirani, 1996,
Chen et al., 1999]:

min
w∈Rp

1

2
‖y − Xw‖22 + λ‖w‖1; (1)

the first complexity analysis of the homotopy method [Ritter, 1962,
Osborne et al., 2000, Efron et al., 2004] for solving (1);

A story similar to

the simplex algorithm for linear programs [Klee and Minty, 1972];

the SVM regularization path [Gärtner, Jaggi, and Maria, 2010].
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Regularizing with the ℓ1-norm

w1

w2ℓ1-ball

‖w‖1 ≤ T

The projection onto a convex set is “biased” towards singularities.
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Regularizing with the ℓ2-norm

w1

w2ℓ2-ball

‖w‖2 ≤ T

The ℓ2-norm is isotropic.
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The Lasso Regularization Path and the Homotopy

Under uniqueness assumption of the Lasso solution, the regularization
path is piecewise linear:
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Our Main Results

Theorem - worst case analysis

In the worst-case, the regularization path of the Lasso has exactly

(3p + 1)/2 linear segments.

Proposition - approximate analysis

There exists an ε-approximate path with O(1/
√
ε) linear segments.
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Brief Introduction to the Homotopy Algorithm

Optimality conditions of the Lasso

w⋆ in R
p is a solution of Eq. (1) if and only if for all j in {1, . . . , p},

xj⊤(y − Xw⋆) = λ sign(w⋆
j ) if w⋆

j 6= 0,

|xj⊤ (y − Xw⋆)
︸ ︷︷ ︸

residual

| ≤ λ otherwise.
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Brief Introduction to the Homotopy Algorithm

Optimality conditions of the Lasso

w⋆ in R
p is a solution of Eq. (1) if and only if for all j in {1, . . . , p},

xj⊤(y − Xw⋆) = λ sign(w⋆
j ) if w⋆

j 6= 0,

|xj⊤ (y − Xw⋆)
︸ ︷︷ ︸

residual

| ≤ λ otherwise.

Uniqueness of the solution

Define J
△

= {j ∈ {1, . . . , p} : |xj⊤(y − Xw⋆)| = λ}.
If the matrix X⊤

J XJ is invertible, the solution is unique and

w⋆
J = (X⊤

J XJ)
−1(X⊤

J y − ληJ) = a+ λb,

where η
△

= sign(X⊤(y − Xw⋆)).
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Brief Introduction to the Homotopy Algorithm

Piecewise linearity

Under uniqueness assumptions of the Lasso solution, the regularization
path λ 7→ w⋆(λ) is continuous and piecewise linear.
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Brief Introduction to the Homotopy Algorithm

Piecewise linearity

Under uniqueness assumptions of the Lasso solution, the regularization
path λ 7→ w⋆(λ) is continuous and piecewise linear.

Recipe of the homotopy method - main ideas

1 finds a trivial solution w⋆(λ∞) = 0 with λ∞ = ‖X⊤y‖∞;

2 compute the direction of the current linear segment of the path;

3 follow the direction of the path by decreasing λ;

4 stop at the next “kink” and go back to 2.
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Brief Introduction to the Homotopy Algorithm

Piecewise linearity

Under uniqueness assumptions of the Lasso solution, the regularization
path λ 7→ w⋆(λ) is continuous and piecewise linear.

Recipe of the homotopy method - main ideas

1 finds a trivial solution w⋆(λ∞) = 0 with λ∞ = ‖X⊤y‖∞;

2 compute the direction of the current linear segment of the path;

3 follow the direction of the path by decreasing λ;

4 stop at the next “kink” and go back to 2.

Caveats

kinks can be very close to each other;

the direction of the path can involve ill-conditioned matrices;

worst-case exponential complexity (main result of this work).
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Worst case analysis

Theorem - worst case analysis

In the worst-case, the regularization path of the Lasso has exactly

(3p + 1)/2 linear segments.
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Worst case analysis

Consider a Lasso problem (y ∈ R
n, X ∈ R

n×p).
Define the vector ỹ in R

n+1 and the matrix X̃ in R
(n+1)×(p+1) as follows:

ỹ
△

=

[
y

yn+1

]

, X̃
△

=

[
X 2αy
0 αyn+1

]

,

where yn+1 6= 0 and 0 < α < λ1/(2y
⊤y + y2n+1).

Adverserial strategy

If the regularization path of the Lasso (y,X) has k linear segments, the
path of (ỹ, X̃) has 3k − 1 linear segments.
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Worst case analysis

ỹ
△

=

[
y

yn+1

]

, X̃
△

=

[
X 2αy
0 αyn+1

]

,

Let us denote by {η1, . . . ,ηk} the sequence of k sparsity patterns in
{−1, 0, 1}p encountered along the path of the Lasso (y,X).

The new sequence of sparsity patterns for (ỹ, X̃) is

{
first k patterns

︷ ︸︸ ︷
[
η
1 = 0
0

]

,

[
η
2

0

]

, . . . ,

[
η
k

0

]

,

middle k patterns
︷ ︸︸ ︷
[
η
k

1

]

,

[
η
k−1

1

]

, . . . ,

[
η
1=0
1

]

,

[
−η

2

1

]

,

[
−η

3

1

]

, . . . ,

[
−η

k

1

]

︸ ︷︷ ︸

last k−1 patterns

}

.
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Worst case analysis

We are now in shape to build a pathological path with (3p + 1)/2
linear segments. Note that this lower-bound complexity is tight.
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Approximate Complexity
Refinement of Giesen, Jaggi, and Laue [2010] for the Lasso

Strong Duality

w⋆

w κ

κ
⋆

f (w), primal

g(κ), dual

b

b

b

b

Strong duality means that maxκ g(κ) = minw f (w)

Julien Mairal, Inria Complexity analysis of the Lasso regularization path 15/23



Approximate Complexity

Duality Gaps

w̃

w

κ̃

κ

f (w), primal

g(κ), dual

b

b

b

b
δ(w̃, κ̃)

Strong duality means that maxκ g(κ) = minw f (w)

The duality gap guarantees us that 0 ≤ f (w̃)− f (w⋆) ≤ δ(w̃, κ̃).
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Approximate Complexity

min
w

{

fλ(w)
△

=
1

2
‖y − Xw‖22 + λ‖w‖1

}

, (primal)

max
κ

{

gλ(κ)
△

= −1

2
κ
⊤
κ− κ

⊤y s.t. ‖X⊤
κ‖∞ ≤ λ

}

. (dual)

ε-approximate solution

w satisfies APPROXλ(ε) when there exists a dual variable κ s.t.

δλ(w,κ) = fλ(w)− gλ(κ) ≤ εfλ(w).

ε-approximate path

A path P : λ 7→ w(λ) is an approximate path if it always contains
ε-approximate solutions.

(see Giesen et al. [2010] for generic results on approximate paths)
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Approximate Complexity

Main relation

APPROXλ(0) =⇒ APPROXλ(1−√
ε)(ε)

Key: find an appropriate dual variable κ(w) + simple calculation;

Proposition - approximate analysis

there exists an ε-approximate path with at most
⌈
log(λ∞/λ1)√

ε

⌉

segments.

Approximate homotopy - main ideas

Maintain approximate optimality conditions along the path;

Make steps in λ greater than or equal to λ(1− θ
√
ε);

When the kinks are too close to each other, make a large step and
switch to first-order method;
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A Few Messages to Conclude

Despite its exponential complexity, the homotopy algorithm

remains extremely powerful in practice;

numerical stability is still an issue of the homotopy algorithm;

when one does not care about precision, the worst-case complexity
of the path can be significantly reduced.
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Worst case analysis - Backup Slide

ỹ
△

=

[
y

yn+1

]

, X̃
△

=

[
X 2αy
0 αyn+1

]

,

Some intuition about the adverserial strategy:

1 the patterns of the new path must be [ηi⊤, 0]⊤ or [±η
i⊤, 1]⊤;

2 the factor α ensures the (p + 1)-th variable to enter late the path;

3 after the k first kinks, we have y ≈ Xw⋆(λ) and thus

X̃

[
w⋆(λ)

0

]

+

[
0

yn+1

]

≈ ỹ ≈ X̃

[
−w⋆(λ)
1/α

]

.

Julien Mairal, Inria Complexity analysis of the Lasso regularization path 22/23



Worst case analysis - Backup Slide 2

min
w̃∈Rp ,w̃∈R

1

2

∥
∥
∥
∥
ỹ − X̃

[
w̃

w̃

]∥
∥
∥
∥

2

2

+ λ

∥
∥
∥
∥

[
w̃

w̃

]∥
∥
∥
∥
1

=,

min
w̃∈Rp ,w̃∈R

1

2
‖(1− 2αw̃)y − Xw̃‖22 +

1

2
(yn+1 − αyn+1w̃)2 + λ‖w̃‖1 + λ|w̃ |.

is equivalent to

min
w̃′∈Rp

1

2
‖y − Xw̃′‖22 +

λ

|1− 2αw̃⋆|‖w̃
′‖1,

and then

w̃⋆ =

{

(1− 2αw̃⋆)w⋆
(

λ
|1−2αw̃⋆|

)

if w̃⋆ 6= 1
2α

0 otherwise
.
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