
THÈSE DE DOCTORAT
DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

présentée par JULIEN MAIRAL

pour obtenir le grade de
DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Domaine : MATHÉMATIQUES APPLIQUÉES

Sujet de la thèse :
Représentations parcimonieuses en apprentissage statistique,

traitement d’image et vision par ordinateur
—

Sparse coding for machine learning, image processing and
computer vision

Thèse présentée et soutenue à Cachan le 30 novembre 2010 devant le
jury composé de :

Francis BACH Directeur de recherche, INRIA Paris-Rocquencourt Directeur de thèse
Stéphane MALLAT Professeur, Ecole Polytechnique, New-York University Rapporteur
Eric MOULINES Professeur, Télécom-ParisTech Examinateur
Bruno OLSHAUSEN Professeur, University of California, Berkeley Rapporteur
Jean PONCE Professeur, Ecole Normale Supérieure, Paris Directeur de thèse
Guillermo SAPIRO Professeur, University of Minnesota Examinateur
Jean-Philippe VERT Directeur de recherche, Ecoles des Mines-ParisTech Examinateur

Thèse préparée au sein de l’équipe Willow du laboratore d’informatique
de l’École Normale Supérieure, Paris. (INRIA/ENS/CNRS UMR 8548).

23 avenue d’Italie, 75214 Paris.

résumé

De nos jours, les sciences expérimentales doivent traiter une quantité de données
importante et grandissante. Afin de comprendre les phénomènes naturels ainsi que les
lois qui les régissent, les scientifiques ont construit des outils améliorant leurs possibilités
d’observer le monde, comme des microscopes ou téléscopes. Augmenter la précision de
ces outils, ou bien mesurer des quantités “invisibles” par la technologie actuelle sont
toujours des préoccupations importantes aujourd’hui. Cette approche empirique soulève
toutefois la question de l’analyse et de l’interpétation des données recueillies, de par leur
volume et leur complexité. Il s’agit ainsi d’un problème récurrent en neuro-sciences où
l’on effectue diverses mesures de l’activité cérébrale, en bio-informatique, où l’on mesure
l’expression de gènes, ou bien en radioastronomie avec l’observation du rayonnement
fossile de l’univers.

D’autres domaines, en dehors du champ des sciences purement expérimentales, doi-
vent faire face à des problématiques similaires. Ainsi, en robotique, vision artificielle, ou
imagerie médicale, les scientifiques souhaitent “comprendre” automatiquement des flux
video contenant des millions de pixels ; en sociologie et sciences humaines obtenir des
statistiques de population sur de larges bases de données peut être une tâche difficile
pour les mêmes raisons. Par ailleurs, le développement d’outils efficaces de traitement de
données peut aussi affecter la vie de tous les jours. Nous produisons ainsi pour des raisons
de divertissement une grande quantité de signaux, ne serait-ce que par nos appareils
photo numériques ou bien nos téléphones portables.

Trouver la meilleure façon de représenter ces signaux numériques est par conséquent
une question importante et toujours d’actualité, bien qu’elle ait fait l’objet d’un nombre
considérable de publications. Nous étudions dans cette thèse une représentation particu-
lière, intitulée codage parcimonieux, fondée sur une méthode d’apprentissage statistique
qui s’est révélée empiriquement être très efficace pour certains types de signaux comme
les images naturelles. Notre but est de développer de nouveaux outils algorithmiques ex-
ploitant cette méthode de codage, ainsi que de nouveaux domaines d’application. Nous
adopterons une approche multi-disciplinaire que nous allons détailler par la suite.

Plus concrètement, le codage parcimonieux consiste à représenter des signaux comme
combinaisons linéaires de quelques éléments d’un dictionnaire. Ceci peut être vu comme
une extension du cadre classique des ondelettes, dont le but est de construire de tels
dictionnaires (souvent des bases orthonormales) adaptés aux signaux naturels. De nom-
breux types d’ondelettes ont ainsi été proposés dans le passé, qui varient essentiellement
par leur complexité et leurs propriétés géométriques, mais définir manuellement de tels
dictionnaires demeure une tâche difficile. La ligne de recherche que nous poursuivons
dans cette thèse diffère du cadre des ondelettes dans le sens où le dictionnaire n’est
plus fixe et pré-défini par son utilisateur, mais appris à partir de données d’entraîne-
ment. Cette approche admet donc des similarités avec l’analyse en composantes princi-
pales (ACP), qui “apprend” des “directions principales” orthonormales représentant des
données, la principale différence étant l’absence de contrainte d’orthogonalité entre les
éléments du dictionnaire. Il en résulte un problème non convexe de factorisation de ma-

iii

trice, qui en pratique nécessite l’utilisation d’outils d’optimisation convexe de fonctions
non régulières. Le principal succès des méthodes d’apprentissage de dictionnaire a été la
modélisation d’imagettes dans les images naturelles, et la performance des algorithmes
de débruitage les utilisant, ce qui a été une motivation importante pour le sujet de nos
recherches.

Nous traitons plusieurs questions ouvertes dans cette thèse : Comment apprendre ef-
ficacement un dictionnaire ? Comment enrichir le codage parcimonieux en structurant le
dictionnaire ? Peut-on améliorer les méthodes de traitement d’image utilisant le codage
parcimonieux ? Comment doit-on apprendre le dictionnaire pour une tâche autre que la
reconstruction de signaux, quelles en sont les applications en vision par ordinateur ? Nous
essayons de répondre à ces questions par une approche multidisciplinaire, en empruntant
des outils d’apprentissage statistique, d’optimisation convexe et stochastique, de traite-
ment des signaux et des images, de vision par ordinateur, mais aussi d’optimisation sur
des graphes.

L’apprentissage de dictionnaire est souvent considéré comme un processus très coû-
teux en terme de temps de calcul. La première contribution de cette thèse est un nou-
vel algorithme d’apprentissage en ligne, fondé sur des méthodes d’approximation sto-
chastique, qui permet d’obtenir un point stationnaire du problème d’optimisation non
convexe initial. Notre méthode permet de traiter de grandes bases de données contenant
des millions d’exemples d’apprentissage, et s’étend à une large panoplie de problèmes
de factorisation de matrices, tels que la factorisation de matrices positives ou l’ana-
lyse en composantes principales parcimonieuses. Dans le cadre de ce travail, nous avons
aussi développé un logiciel utilisable gratuitement, dont la performance dépasse de façon
significative les méthodes concurrentes en termes de vitesse.

Nous nous intéressons ensuite au problème de la structuration du dictionnaire, et à la
résolution efficace des problèmes d’optimisation correspondants. A cet effet, nous exploi-
tons des travaux récents qui fournissent un cadre naturel à notre problématique, intitulé
codage parcimonieux structuré. Nous étudions en particulier le cas où les dictionnaires
sont munis d’une structure hiérarchique, et le cas général où leurs éléments sont struc-
turés en groupes qui se recouvrent. La principale difficulté soulevée par cette nouvelle
formulation est le problème d’optimisation correspondant à la décomposition d’un signal
étant donné un dictionnaire structuré fixe. La solution que nous proposons combine des
outils d’optimisation convexe et d’optimisation sur des graphes et peut en fait être uti-
lisée pour résoudre une grande variété de problèmes d’apprentissage. Plus précisément,
nous montrons que l’opérateur proximal associé à la régularisation structurée que nous
considérons, est relié à un problème de flot sur un graphe particulier, et peut être calculé
efficacement et à grande échelle grâce à un algorithme que nous avons développé. Nous
espérons que cette avancée permettra d’ouvrir de nouveaux champs d’application aux
méthodes parcimonieuses structurées. Un logiciel implémentant les outils proposés sera
disponible gratuitement.

La troisième question traitée dans cette thèse concerne l’amélioration des techniques
de traitement d’image utilisant l’apprentissage de dictionnaire. Pour ce faire, nous propo-
sons en sus du codage parcimonieux, d’exploiter explicitement les similarités à l’intérieur

iv

des images, ce qui est le fondement de l’approche de moyennage non-local pour la restau-
ration. A cette fin, nous utilisons le codage parcimonieux simultané, en décomposant de
façon jointe des groupes de signaux similaires sur des sous-ensembles d’un dictionnaire
appris. Nous montrons que cette approche permet d’obtenir des résultats qui dépassent
l’état de l’art pour les tâches de débruitage et dématriçage dans les images, et qu’elle
permet de traiter des données brutes d’appareils photos numériques en proposant une
qualité meilleure que celle offerte par les logiciels commerciaux.

Nous concluons cette thèse en utilisant l’apprentissage de dictionnaire pour des tâches
autres que purement reconstructives. A cet effet, nous présentons une méthode d’appren-
tissage supervisée, fondée sur un algorithme d’optimisation stochastique, pour des tâches
de classification ou de régression, adaptée à des signaux qui admettent des représenta-
tions parcimonieuses. Nous illustrons aussi ce concept en modélisant des imagettes de
façon discriminative, et montrons que ceci permet de modéliser les contours dans les
images. En particulier, nous présentons un détecteur de contour, qui peut aussi être
utilisé pour apprendre l’apparence locale des contours d’objets spécifiques.

v

abstract

Many fields from experimental sciences now deal with a large and growing amount of
data. To understand natural phenomena and eventually their underlying laws, scientists
have built physical devices that have enhanced their observation capabilities, such as
various types of microscopes or telescopes. Improving upon physical devices, to obtain a
better precision or to measure quantities that are invisible with current technologies, is of
course still an active scientific topic. On the other hand, scientists have also developed
tools to record and process their observations with computers, to analyze and better
understand them. This is for instance a common approach to neuroscience with diverse
types of measurements of the neural activity, in bioinformatics with gene expressions, or
in radio astronomy with measurements of the cosmic microwave background. However,
this approach also raises new challenging questions, such as how one should process the
resulting large amount of data.

The same need for scalable and efficient data processing tools arises in other fields
than pure experimental sciences, such as robotics, computer vision, and biomedical imag-
ing, where one wishes to “understand” continuous video streams containing millions of
pixels; but also sociology, where obtaining population statistics from large databases
can be difficult. Moreover, developing new data processing tools could also affect the
everyday life, where devices such as CCD sensors from digital cameras or cell phones are
intensively used for entertainment purposes.

The question of how to represent these digital signals is therefore still acute and of
high importance, despite the fact that it has been the topic of a tremendous amount of
work in the past. We study in this thesis a particular signal representation called sparse
coding, based on a machine learning technique, and which has proven to be effective
for many modalities such as natural images. Our goal is to provide new algorithmic
tools and applications to this coding method, by addressing the problem from various
perspectives, which we will detail in the sequel.

Concretely, sparse coding consists of representing signals as linear combinations of a
few elements from a dictionary. It can be viewed as an extension of the classical wavelet
framework, whose goal is to design such dictionaries (often orthonormal basis) that are
adapted to natural signals. Numerous types of wavelets have indeed been proposed in the
past, which essentially vary in terms of complexity and geometric properties. Designing
by hand such dictionaries remains, however, a difficult task. The line of research we follow
in this thesis differs from wavelets in the sense that the dictionary is not fixed and pre-
defined, but learned from training data. It shares a similar goal as principal component
analysis (PCA), which also “learns” how to represent data by computing orthonormal
“principal directions”. From an optimization point of view, dictionary learning results
in a nonconvex matrix factorization problem, but often deals with nonsmooth convex
optimization tools. An important success of dictionary learning has been its ability to
model natural image patches and the performance of image denoising algorithms that it

vii

has yielded, which has been an important motivation for our research.
We address in this thesis several open questions: How to efficiently optimize the

dictionary? How can sparse coding be enriched by structuring the dictionary? How can
one improve sparse coding for image processing tasks? Can we learn the dictionary for
a different task than signal reconstruction, and what are the possible applications to
computer vision? We try to answer these questions with a multidisciplinarity point of
view, using tools from statistical machine learning, convex and stochastic optimization,
image and signal processing, computer vision, but also optimization on graphs.

Dictionary learning is often considered as a computationally demanding process. The
first contribution of this thesis is a new online learning algorithm, based on stochastic
approximations, which is proven to converge to a stationary point of the nonconvex
optimization problem. It gracefully scales up to large data sets with millions of training
samples, and naturally extends to various matrix factorization formulations, making it
suitable for a wide range of learning problems, such as non-negative matrix factorization
and sparse principal component analysis. Along with this work, we have developed a
freely available software package, which significantly outperforms other approaches in
terms of speed.

We then address the questions of how to structure the dictionary, and how to solve the
corresponding challenging optimization problems. To that effect, we exploit recent works
on structured sparsity, which provide a natural framework to answer our question. We
study the case where dictionaries are embedded in a hierarchy and the general case where
dictionary elements are structured into overlapping groups. The main difficulty raised by
this new formulation is how to decompose a signal given a fixed structured dictionary.
The solution we propose combines ideas from convex optimization and network flow
optimization. It in fact extends beyond the dictionary learning framework and can be
used for solving a new class of regularized machine learning problems. More precisely,
we show that the proximal operator associated with the structured regularization we
consider is related to a quadratic min-cost flow problem, and can be solved efficiently
at large scale with an algorithm we propose. We therefore make a bridge between
the literature of sparse methods, and network flow optimization. We hope that this
contribution will open up a new range of applications for structured sparse models. A
software package implemented these methods has been developed and will be made freely
available.

The third question we address also consists of enriching the basic dictionary learning
framework, but in a specific way for image processing applications. Explicitly exploiting
the self-similarities of natural images has led to the successful “non-local means” ap-
proach to image restoration. We propose simultaneous sparse coding as a framework for
combining this approach with dictionary learning in a natural manner. This is achieved
by jointly decomposing groups of similar signals on subsets of the learned dictionary.
We show that this approach achieves state-of-the-art results for image denoising and de-
mosaicking, and competes with commercial software for restoring raw data from digital
cameras.

We concludes this thesis by considering dictionary learning as a way to learn features

viii

for a different task. We show that it can be used in a supervised way for different
classification or regression tasks, for data that admit sparse representation, and show
how to use a stochastic gradient descent algorithm for addressing the new learning
problem. We also show that this idea can be used in computer vision for modelling
the local appearance of natural image patches in a discriminative way, and that it is
especially well adapted for modelling edges in natural images. In particular, we address
with this approach the problem of edge detection, category-based edge detection and
show that it leads to state-of-the-art results for other tasks such as digit recognition of
inverse half-toning.

ix

acknowledgments

Foremost, I would like to thank my advisors Francis Bach and Jean Ponce, who have
shared their expertise with me during three years and have been of invaluable help. In
particular, I would like to say how lucky I was to meet Jean Ponce at the end of 2006,
even before that the Willow project-team existed. He has indeed managed to build,
in an amazingly short period of time, one of the leading team in computer vision and
machine learning in the world. This would not have been possible without the support
of INRIA, which I would like to thank for having funded my thesis and having provided
to the Willow group a great research environment.

I would like to thank Stéphane Mallat and Bruno Olshausen for accepting to review
my thesis, and sharing interesting comments and discussions with me. I am also grateful
to Eric Moulines, Guillermo Sapiro and Jean-Philippe Vert for accepting to be part of
the jury.

I would also like to express my gratitude to many people who have directly or indi-
rectly contributed to the work in this thesis: Michael Elad and again Guillermo Sapiro
with whom I had the chance to work before starting my PhD; Bin Yu for accepting
me as a post-doctoral researcher at UC Berkeley next year; all the members (or for-
mer members) of the Willow project-team who have been both great friends and col-
legues, in alphabetical order, Jean-Yves Audibert, Sylvain Arlot, Louise Benoit, Y-Lan
Boureau, Neva Cherniavsky, Timothée Cour, Florent Couzinié-Devy, Vincent Delaitre,
Olivier Duchenne, Cécile Espiègle, Loïc Février, Yasutaka Furukawa, Jan Van Gemert,
Edouard Grave, Warith Harchaoui, Toby Hocking, Ugo Jardonnet, Rodolphe Jenatton,
Armand Joulin, Hui Kong, Akash Kushal, Ivan Laptev, Augustin Lefèvre, Jose Lezama,
Guillaume Obozinski, Bryan Russell, Josef Sivic, Mathieu Solnon, Muneeb Ullah, Oliver
Whyte, Andrew Zisserman, our “almost members” of Willow, Fredo Durand and Alyosha
Efros; with a special thank to Rodolphe Jenatton, who has been my closest collaborator
during the last year of my PhD. It was also a pleasure to interact with regular visitors
to Willow, among them Martial Hébert, Svetlana Lazebnik, Yann Lecun, Léon Bottou,
and Cordélia Schmid.

There are also other students or researchers with whom I had the chance to interact
and that I would like to thank here: Alexandre Gramfort, Zaid Harchaoui, Laurent Ja-
cob, Neus Sabater and Mikhail Zaslavskiy; and also all the people I met in Guillermo
Sapiro’s group: Iman Aganj, Pablo Arias, Xue Bai,Leah Bahr, Gloria Haro, Frederico
Lecumberry, Stacey Levine, Hstau Liao, Mona Mahmoudi, Sharareh Noorbaloochi, Ig-
nacio Ramirez, Diego Rother, Pablo Sprechmann.

Finally, I would like to thank Marine for all her support during these three years.

xi

contents

Contents xii

List of Figures xiv

List of Tables xvi

1 Introduction and Related Work 1

1.1 Contributions of the Thesis . 3
1.2 Notation . 4
1.3 Sparse Methods and Sparsity-Inducing Norms 5
1.4 Optimization for Sparse Regularized Problems 13
1.5 Dictionary Learning and Matrix Factorization 33
1.6 Dictionary Learning for Image Processing 37

2 Online Learning for Matrix Factorization and Sparse Coding 51

2.1 Introduction . 51
2.2 Problem Statement . 53
2.3 Proposed Approach . 55
2.4 Convergence Analysis . 61
2.5 Extensions to Matrix Factorization . 63
2.6 Experimental Validation . 68
2.7 Conclusion . 80

3 Network Flow Algorithms for Structured Sparsity 83

3.1 Introduction . 84
3.2 Related Work and Problem Statement . 85
3.3 Proposed Approach . 92
3.4 Computation of the Dual Norm . 99
3.5 Applications and Experiments . 100
3.6 Conclusions . 111

4 Non-Local Sparse Models for Image Restoration 113

4.1 Introduction . 113
4.2 Related Work . 115
4.3 Proposed Formulation . 117
4.4 Experimental Validation . 121
4.5 Conclusion . 128

5 Modeling the Local Appearance of Image Patches 133

5.1 Introduction . 133
5.2 Learning Discriminative Dictionaries . 135

xii

Contents

5.3 Modeling Texture and Local Appearance of Objects 138
5.4 Combining Geometry and Local Appearance of Edges 144
5.5 Conclusion . 150

6 Task-Driven Dictionary Learning 151
6.1 Introduction . 151
6.2 Related Work: Data-Driven Dictionary Learning 153
6.3 Proposed Formulation . 154
6.4 Optimization . 160
6.5 Experimental Validation . 164
6.6 Conclusion . 173

7 Conclusion 177

A Theorems and Useful Lemmas 179

B Proofs 181
B.1 Proofs of Lemmas . 181
B.2 Proofs of Propositions . 187

C Efficient Projection Algorithms 197
C.1 A Linear-time Projection Algorithm on the Elastic-Net Constraint 197
C.2 A Homotopy Method for Solving the Fused Lasso Signal Approximation . 198

D Software 201
D.1 SPAMS, a SParse Modeling Software . 201
D.2 Efficient Sparse Solvers with Proximal Methods 205

Bibliography 215

xiii

list of figures

1.1 Regularization path of the Lasso. 7
1.2 Scaling, soft-thresholding and hard-thresholding operators. 8
1.3 Tikhonov and ℓ1-regularization in one dimension. 9
1.4 Physical illustration of the sparsifying effect of the ℓ1-norm. 10
1.5 ℓ2- and ℓ1-balls in two and three dimensions. 12
1.6 Gradients and subgradients for smooth and non-smooth functions. 14
1.7 Small scale benchmark for sparse solvers. 26
1.8 Medium scale benchmark for sparse solvers. 27
1.9 Open balls in 2-D corresponding to several ℓq norms and pseudo-norms. . . . 29
1.10 Illustration of the DC-programming approach 30
1.11 Example of a directed graph G = (V,E, s, t). 31
1.12 Example of a cut in a graph. 32
1.13 Example of learned dictionaries. 38
1.14 Examples of inpainting result. 42
1.15 Example of color video denoising. 43
1.16 Example of video inpainting. 44
1.17 Dataset of 12 standard images. 45

2.1 Speed benchmark of dictionary learning algorithms. 71
2.2 Speed benchmark for non-negative sparse coding algorithms. 73
2.3 Results obtained by PCA, NMF, dictionary learning, SPCA for data set D. . 75
2.4 Results obtained by PCA, NMF, dictionary learning, SPCA for data set E. . 76
2.5 Results obtained by PCA, NMF, dictionary learning, SPCA for data set F. . 77
2.6 Illustration of our method for sparse canonical correlation analysis. 79
2.7 Large-scale inpainting experiment. 80

3.1 Example of a tree-structured set of groups. 87
3.2 Graph representation of simple proximal problems. 94
3.3 Cut computed by our algorithm. 98
3.4 Quantities result for the noisiest setting. 103
3.5 Learned dictionary with tree structure of depth 4. 104
3.6 Learned dictionary with a tree structure of depth 5. 105
3.7 Speed benchmark for solving structured sparse decomposition problems. . . . 107
3.8 Background subtraction experiment. 109
3.9 Mean square error versus dictionary size. 110
3.10 Hierarchy obtained by pruning a larger tree of 76 elements. 110

4.1 Sparsity vs. joint sparsity. 118
4.2 Image denoising with synthetic noise: visual results. 124
4.3 Image denoising with synthetic noise: visual results. 125
4.4 Image demosaicking, visual result. 126

xiv

List of Figures

4.5 Denoising raw images, visual results. 129
4.6 Denoising raw images, visual results. 130
4.7 Denoising raw images, visual results. 131

5.1 The logistic loss function. 136
5.2 Multiscale classifier using discriminative sparse coding. 137
5.3 Texture segmentation task, visual results. 141
5.4 Learning discriminative patches. 142
5.5 Learning discriminative patches. 143
5.6 Examples of learned discriminative dictionaries. 144
5.7 Precision-recall curve for a pixelwise segmentation task. 145
5.8 Precision-recall curve for our edge detection task. 146
5.9 Examples of filtered edges. 148

6.1 Error rates on MNIST when using n labeled data, for various values of µ. . . 167
6.2 Inverse halftoning experiment, visual results. 169
6.3 Inverse halftoning experiment on web data. 170

xv

list of tables

1.1 Comparison between ℓ0 and ℓ1-regularizations for image denoising 47
1.2 Comparison between ℓ0 and ℓ1-regularizations for patch denoising 48

3.1 Quantitative results of the reconstruction task on natural image patches. . . 102

4.1 Denoising benchmark. 123
4.2 Denoising benchmark. 123
4.3 Demosaicking benchmark. 127

5.1 Error rates for the segmentation/classification task for the Brodatz dataset. . 139
5.2 Average multiclass recognition rates on the Pascal 2005 Dataset 149
5.3 Confusion matrix for the Pascal 2005 dataset. 149
5.4 Classification results at equal error rate. 150

6.1 Digit Recognition performance on MNIST and USPS 166
6.2 Inverse halftoning benchmark. 171
6.3 Compressed sensing experiment. 175

xvi

list of algorithms

1 Online dictionary learning. 56
2 Dictionary update. 57
3 Block coordinate ascent in the dual . 89
4 Fast implementation of Algorithm 3 when ‖.‖ is the ℓ2-norm. 91
5 Fast implementation of Algorithm 3 when ‖.‖ is the ℓ∞-norm. 92
6 Computation of the proximal operator for overlapping groups. 96
7 Computation of the dual norm . 100
8 Stochastic gradient descent algorithm for task-driven dictionary learning. 162
9 Efficient projection on the elastic-net constraint. 199

xvii

1

Introduction and Related Work

Finding “good” signal representations has been the topic of a large amount of research
since early works in signal and image processing. Estimation problems arising in these
fields, such as denoising, reconstruction from incomplete data, or more generally restora-
tion, are indeed often difficult to solve without an arbitrary a priori model of the data
source.

Various smoothness assumptions were first used, leading for instance to Laplacian
filtering (Kovasznay and Joseph, 1955), anisotropic filtering (Perona and Malik, 1990)
or total variation (Rudin and Osher, 1994) in image processing, to cite only a few of
them. More recent works have focused on representing data vectors as linear combina-
tions of few elements from a pre-defined dictionary, which is often an orthonormal basis
set, introducing the concept of sparsity. Finding low-dimensional representations of a
given signal in a well chosen basis set is intuitively useful for restoration:1 Suppose that
we have at our disposal a dictionary which is good at reconstructing a class of signals
(i.e., the signals admit sparse representations over the dictionary), and bad at recon-
structing noise. Then, one hopes that a sparse approximation of a noisy signal with the
dictionary significantly reduces the amount of noise without losing signal information.2

Experiments have shown that such a model with sparse decompositions (sparse coding)
is very effective in many applications (Chen et al., 1998).

However, the question of designing good dictionaries adapted to different modalities
(e.g., natural images) remains open, and has in fact been an active topic of research.
The discrete cosine transform (Ahmed et al., 1974), wavelets (see Mallat, 1999, and
references therein), curvelets (Candes and Donoho, 2002, 2004), contourlets (Do and
Vetterli, 2003a,b), wedgelets (Donoho, 1998), bandlets (Mallat and Pennec, 2005a,b;
Mallat and Peyré, 2008), and steerable wavelets (Freeman and Adelson, 1991; Simoncelli
et al., 1992) are all attempts to fulfill the above sparse coding model for natural signals.

1The terminology “basis” is slightly abusive here since the elements of the dictionary are not neces-
sarily linearly independent and the set can be overcomplete—that is, have more elements than the signal
dimension.

2Formally, let x be a clean signal in R
n which lives in a linear subspace Γ of dimension L≪ n, and

let us consider a noisy version y = x + w, where w is a white and Gaussian noise vector of standard
deviation σ. A projection of the noisy vector y onto the linear subspace Γ is equal to x + w′, with
E[‖w′‖22] = Lσ2 ≪ E[‖w‖22] = nσ2, and the amount of noise is reduced. The main difficulty is in fact to
find the right subspace Γ, which is usually unknown.

1

1. Introduction and Related Work

Indeed, they have led to effective algorithms for many image processing applications,
such as compression (Mallat, 1999; Chang et al., 2000), denoising (Starck et al., 2002;
Portilla et al., 2003; Matalon et al., 2005; Eslami and Radha, 2006), inpainting (Elad
et al., 2005), and more. Note that the terminology of “models” we have used so far is a
bit loose. The ones we have mentioned and will use in this thesis are not “true” models in
the generative sense.3 They in fact define classes of regularized signals which hopefully
contain the ones one wants to represent, but also contain (in fact mostly) irrelevant ones.

Originally introduced by Olshausen and Field (1996, 1997) to model the receptive
fields of simple cells in the mammalian primary visual cortex, the idea of learning the
dictionary instead of using a predefined one has recently led to state-of-the-art results in
numerous low-level signal processing tasks such as image denoising (Elad and Aharon,
2006; Mairal et al., 2008b,d, 2009c), texture synthesis (Peyré, 2009), and audio process-
ing (Zibulevsky and Pearlmutter, 2001; Grosse et al., 2007; Févotte et al., 2009), as well
as higher-level tasks such as image classification (Raina et al., 2007; Mairal et al., 2008a,
2009b; Bradley and Bagnell, 2009; Yang et al., 2009; Boureau et al., 2010), showing
that sparse learned models are well adapted to a large class of natural signals. Unlike
decompositions based on principal component analysis and its variants, these models
do not impose that the basis vectors be orthogonal, allowing more flexibility to adapt
the representation to the data, and they have been shown to significantly improve sig-
nal reconstruction (Elad and Aharon, 2006). Although some of the learned dictionary
elements may sometimes “look like” wavelets (or Gabor filters), they are tuned to the
input images or signals, leading to much better results in practice.

It is interesting to see that some of the concepts presented here have also emerged
in statistics and machine learning from a slightly different viewpoint. In this literature,
What we have called “dictionary” in the previous paragraphs is usually fixed, and is
defined as a set of “predictors” or “variables”. Statistical estimators and solutions of
machine learning problems are often defined as linear combinations of such “predictors”
and in fact, due to their simplicity, these linear models are the most widely used ones for
prediction tasks (Hastie et al., 2009). In supervised learning, an empirical risk (usually
a convex loss) is minimized, so that the linear model fits some training data, and one
hopes that the learned model generalizes well on new data points. However, due to pos-
sibly small numbers of training samples and/or a large number of predictors, overfitting
can occur, meaning that the learned parameters do fit well the training data, but have
a bad generalization performance. This issue can be solved by making a priori assump-
tions on the solution, naturally leading to the concept of regularization. When smooth
solutions are preferred, one can for instance use the Tikhonov regularization (Tikhonov
and Arsenin, 1977), also used in ridge regression (Hoerl and Kennard, 1970). When one
knows in advance that the solution is sparse—that is, only a few predictors are relevant,
a sparsity-inducing regularization such as the ℓ1-norm is well adapted, leading for in-
stance to the Lasso (Tibshirani, 1996), or equivalently to the basis pursuit formulation

3In a generative setting, one usually models the underlying probability distribution of input data,
from which it is possible to draw new samples. To the best of our knowledge, no such good model exists
for natural images.

2

1.1. Contributions of the Thesis

from the signal processing literature (Chen et al., 1998). Note that the ℓ1-norm was also
used by Markowitz (1952) for the problem of portfolio selection, and has in fact been
revisited several times.

More generally, it is possible to encode additional knowledge in the regularization
than just sparsity. A recent topic of research indeed consists of building structured
sparsity-inducing norms, which encourage the solutions of sparse regularized problems
to have specific patterns of non-zero coefficients. One may want such patterns to be struc-
tured in non-overlapping groups (Turlach et al., 2005; Yuan and Lin, 2006; Obozinski
et al., 2009), in a tree (Zhao et al., 2009; Bach, 2009), or in overlapping groups (Jenatton
et al., 2009; Jacob et al., 2009; Huang et al., 2009; Baraniuk et al., 2010).

The work presented in this thesis follows these lines of research. It provides efficient
algorithmic tools for dictionary learning and structured sparse decomposition problems.
It also extends the dictionary learning formulation to a supervised setting, and presents
applications in image processing and computer vision that achieves state-of-the-art re-
sults for different tasks. We present in more details these contributions in Section 1.1,
before introducing in Section 1.2 the notation used throughout the thesis. We also
present in Section 1.3 sparsity-inducing norms, and in Section 1.4 the optimization tools
for sparse methods which we have used. We briefly review the literature of dictionary
learning in Section 1.5, as well as its successful applications in image processing in Sec-
tion 1.6.

1.1 Contributions of the Thesis

This thesis brings several contributions to the fields of sparse methods in machine learn-
ing, signal and image processing, and computer vision. We now review them, following
the organization of the manuscript:

• Chapter 2 presents a fast dictionary learning algorithm based on stochastic ap-
proximations, which, to the best of our knowledge, significantly outperforms all
approaches in terms of speed. This procedure allows learning dictionaries with
millions of training samples, and can be extended to various matrix factorization
problems, such as non-negative matrix factorization and sparse principal compo-
nent analysis. An efficient C++ implementation of this algorithm is available in
the software SPAMS, and is presented in more details in Appendix D.4

• Chapter 3 introduces new algorithmic tools for solving structured sparse decom-
position problems. We show that the proximal operator associated with the norms
we consider is related to finding a flow with minimum cost on a particular graph,
which makes a bridge between the literature of sparse methods and network flow
optimization. We propose an efficient an scalable procedure for solving it, which
opens up a new range of applications for structured sparse models. We illustrate
our approach for learning hierarchically structured dictionaries of natural image

4The software can be freely downloaded at http://www.di.ens.fr/willow/SPAMS/.

3

http://www.di.ens.fr/willow/SPAMS/

1. Introduction and Related Work

patches that show improved performance over classical unstructured ones in noisy
settings, and background subtraction in videos.

• We show in Chapter 4 how to exploit both image self-similarities and sparse repre-
sentations for image restoration using simultaneous sparse coding. The proposed
approach achieves state-of-the-art results for image denoising and image demo-
saicking, as well as competitive results for denoising raw data from CCD sensors
of digital cameras.

• In Chapter 5, we introduce discriminative sparse representations, which are well
suited for modelling the appearance of image patches, especially edges in images.
We use these representations for classifying patches from different textures, from
different objects, and learning a class-specific edge detector.

• In Chapter 6, we present a more general formulation than in Chapter 5 for learning
dictionaries adapted to classification or regression tasks and an efficient optimiza-
tion procedure for solving it. This approach leads to (or close to) state-of-the-art
results for several problems such as digit recognition and non-linear inverse image
mapping tasks such as inverse halftoning.

1.2 Notation

We denote vectors by bold lower case letters, and matrices by bold upper case ones.
For a vector x in R

m and and integer j in J1;mK , {1, . . . ,m}, the j-th entry of x is
denoted by xj . For a matrix X in R

m×n, and a pair of integers (i, j) ∈ J1;mK × J1;nK,
the entry at row i and column j of X is denoted by Xij . When Λ ⊆ J1;mK is a finite set
of indices, the vector xΛ of size |Λ| contains the entries of x corresponding to the indices
in Λ. Similarly, when X is a matrix of size m × n and Λ ⊆ J1;nK, XΛ is the matrix of
size m× |Λ| containing the columns of X corresponding to the indices in Λ.

We define for q ≥ 1 the ℓq-norm of a vector x in R
m as:

‖x‖q ,
(m∑

i=1

|xj |q
)1/q

, and ‖x‖∞ , max
j=1,...,m

|xj | = lim
q→∞ ‖x‖q.

We also define the ℓ0 pseudo-norm as the sparsity measure which counts the number of
nonzero elements in a vector:5

‖x‖0 , #{j s.t. xj 6= 0} = lim
q→0+

(m∑

j=1

|xj |q
)

.

We denote the Frobenius norm of a matrix X in R
m×n by

‖X‖F ,
(m∑

i=1

n∑

j=1

X2
ij

)1/2
.

5Note that it would be more proper to write ‖x‖00 instead of ‖x‖0 to be consistent with the traditional
notation ‖x‖q. However, for the sake of tradition, we will keep this notation unchanged.

4

1.3. Sparse Methods and Sparsity-Inducing Norms

We usually denote a sequence of scalars and real-valued functions with lower indices,
for instance ut, for t ≥ 0, and sequences of vectors and matrices using upper indices, for
instance xt or Xt, t ≥ 0. For a sequence of vectors (or matrices) xt and scalars ut, we
write xt = O(ut) when there exists a constant K > 0 so that for all t, ‖xt‖2 ≤ Kut.
Note that for finite-dimensional vector spaces, the choice of norm is essentially irrelevant
(all norms are equivalent).

We denote by Bε(x) the open ball of radius ε centered in x. Given two matrices X
in R

m1×n1 and Y in R
m2×n2 , X⊗Y denotes the Kronecker product between X and Y,

defined as the matrix in R
m1m2×n1n2 , with blocks of sizes m2 × n2 equal to XijY. For

more details and properties of the Kronecker product, see Golub and Van Loan (1996),
and Magnus and Neudecker (1999). When necessary, other specific notations will also
be introduced in the remaining chapters.

1.3 Sparse Methods and Sparsity-Inducing Norms

Sparse regularized problems in machine learning and signal processing often consist
of fitting some model parameters α in R

p to training data, while making the a priori
assumption that α should be sparse. This is usually achieved by minimizing some smooth
convex function f : R

p → R,6 which is typically an empirical risk in machine learning or
a data fitting term in signal processing, and a sparsity-inducing regularization Ω:

min
α∈A

[
g(α) , f(α) + λΩ(α)

]
, (1.1)

where A ⊆ R
p is a convex set, α is a vector in A, and λ is a non-negative parameter

controlling the trade-off between data fitting and regularization. To encourage sparsity
in α, a natural choice would be to take Ω to be the ℓ0 pseudo-norm that counts the
number of non-zero coefficients in α. However, solving Eq. (1.1) in this setting is often
intractable, such that one has either to look for an approximate solution using a greedy
algorithm, or one should resort to a convex relaxation instead. A typical example of
such a convex formulation is for instance the ℓ1-decomposition problem, also known as
the Lasso (Tibshirani, 1996) or basis pursuit (Chen et al., 1998):

min
α∈Rp

[1
2
‖x−Dα‖22 + λ‖α‖1

]

, (1.2)

where x in R
m is a signal and D = [d1, . . . ,dp] in R

m×p is a dictionary whose columns
are the dictionary elements. As shown below, when the value of λ is large enough, α
is known to be sparse, and only a few dictionary elements are involved. The problem
of efficiently solving Eq. (1.2) has received a lot of attention lately. Indeed, the corre-
sponding literature is abundant, vast, but also redundant and confusing. We will present
later in this manuscript optimization methods which have experimentally proven to be
efficient for the applications we are interested in.

Before that, let us develop a bit more the discussion on sparse regularization prob-
lems, by answering our first important question

6We often assume f to be differentiable with a Lischitz continuous gradient.

5

1. Introduction and Related Work

1.3.1 Does The ℓ1-norm Induce Sparsity?

Let us consider the general formulation of Eq. (1.1) and let us take Ω to be the ℓ1-norm.
Our first remark will be a bit contradictory with the terminology of “sparsity-inducing
norm” often used to characterize the ℓ1-norm, but we will clarify this in the sequel.
Indeed, depending on the choice of f , the ℓ1 regularization in Eq. (1.1) does not always
lead to sparse solutions. Let us consider for instance the problem of minimizing on R

+

the function g(α)− 2
√
α+ λ|α|, where α is a scalar. The solution is α⋆(λ) = 1

λ2 , which
is never zero for any value of λ. To enjoy sparsity-inducing properties of the ℓ1-norm,
we need to be a bit more careful in the choice of the function f we want to regularize.
For instance, when f is differentiable at zero, then the solution is exactly zero when λ is
large enough (we will characterize in Section 1.4 why this is true). The Lasso formulation
presented in Eq. (1.2) enjoys this property, and so will be all the functions that we will
consider in this thesis. We will now assume that f satisfies this condition.

Let us now suppose that the solution of Eq. (1.1), which we denote by α⋆(λ), is
unique. We know that α⋆(λ) is equal to 0 when λ is large enough, but one can also
wonder whether λ can help us in controlling the sparsity of α⋆(λ). In other words, if
given λ the solution α⋆(λ) has a sparsity s , ‖α⋆(λ)‖0, can we increase (or decrease)
the value of s by reducing (respectively increasing) the value of λ? We have observed
in this thetis that it is empirically often true, even though there are no clear analytical
arguments relating the ℓ1-norm of a solution to the corresponding sparsity that it yields.
On the other hand, it is very easy to generate counter-examples, where this “expected”
behavior is not exactly satisfied for every value of λ, especially when using randomly
generated data, for which no good dictionary exists. Let us illustrate this with an
example: We consider a random dictionary D in R

5×5 whose entries are i.i.d. samples
from a normal distribution N (0, 1). We generate a vector x in R

5 the same way. We
present in Figure 1.1 the regularization path of the corresponding Lasso formulation—
that is, all the solutions α⋆(λ) for every value of λ for two different couples (D,x)
obtained in this manner. We observe on the first one a “typical” behavior: When λ is
large enough, the solution is 0. When λ progressively decreases, variables enter the set
of active variables, one at a time, until the solution is not sparse anymore. In this case,
the sparsity of the solution is a decreasing function of λ. The second case is a counter-
example, where variable number 4 gets active in the path before getting inactive again,
making the sparsity of the solution non decreasing with λ. Note that these regularization
paths that we have plotted are piecewise linear. This is in fact a property of the Lasso,
which we will formally detail later.

We have presented results on the choice of the ℓ1-norm which are both positive and
negative, showing that it can induce sparsity under some conditions, and claiming that
controlling the ℓ1-norm of a solution makes it possible to control its sparsity in many
practical situations. Let us now give some intuition about the reasons why.

6

1.3. Sparse Methods and Sparsity-Inducing Norms

0 1 2 3
−0.5

0

0.5

1

1.5

λ

c
o
e
ff
ic

ie
n
t
v
a
lu

e
s

α
1

α
2

α
3

α
4

α
5

(a) “Typical Scenario”

0 1 2 3 4
−0.5

0

0.5

1

1.5

λ
c
o
e
ff
ic

ie
n
t
v
a
lu

e
s

α
1

α
2

α
3

α
4

α
5

(b) Counter-example

Figure 1.1: Values of the solutions α⋆(λ). Each curve corresponds to one entry in α⋆ as
a solution of the regularization parameter λ.

1.3.2 Why Does the ℓ1-Norm Induce Sparsity?

As already mentioned, there is no general analytical link relating the ℓ1-norm of a solution
with the sparsity in general. However, there are several intuitive reasons why an ℓ1-norm
regularizer encourages sparse solutions in general.

Analytical Analysis in 1-D — Soft-Thresholding

Let us consider the one-dimensional case, with the following optimization problem

min
α∈R

[
g(α) ,

1
2

(x− α)2 + λ|α|],

where x is a scalar. The function g is piecewise quadratic with a kink (non-differentiable
point) at 0. Optimality conditions of this problem are the following

• If |α| > 0, g is differentiable at α and g′(α) = x− α+ λ sign(α) = 0.

• If α = 0, the right and left derivatives of g at 0 are both positive, leading to the
conditions −α+ λ ≥ 0 and −α− λ ≥ 0.

It is easy to see from these conditions that the solution α⋆ is necessary obtained with
the soft-thresholding operator introduced by Donoho and Johnstone (1995):

α⋆(x, λ) = sign(x)(|x| − λ)+,

7

1. Introduction and Related Work

where (.)+ , max(., 0). The ℓ1-norm in this problem has first a thresholding effect (the
solution is 0 when |x| is smaller than λ), but also a shrinkage effect (when |x| > λ,
|α⋆(x, λ)| = |x| − λ). In comparison, when using the ℓ0-pseudo-norm instead of the
ℓ1-norm, the solution α⋆(x, λ) also admits a closed form which is the hard-thresholding
operator α⋆(x, λ) = 1|x|≥

√
2λx, and when using the squared ℓ2-norm, the solution is

obtained by a scaling α⋆(x, λ) = x
1+2λ . These different effects are shown in Figure 1.2.

x

α⋆

(a) scaling operator

x

α⋆

λ

−λ

(b) soft-thresholding operator

x

α⋆

√
2λ

−
√

2λ

(c) hard-thresholding operator

Figure 1.2: From left to right: scaling, soft-thresholding, hard-thresholding operators.
The value of α⋆(x, λ) is reported as a function of the input x for a fixed λ. The black
dotted curve is the function α⋆(x, 0) (no regularization), whereas the red plain curve
corresponds to the value of α⋆(x, λ).

We have seen that in 1-D, the ℓ1-norm amounts to using a sparsity-inducing operator
on the input data—that is for a fixed x, α⋆(x, λ) = 0 for λ large enough. We now give
a physical illustration of this effect.

“Physical Explanation” in 1-D

Let us first compare the squared ℓ2-regularization with the ℓ1-norm. In Figure 1.3,
we have plotted the corresponding Ω functions and their derivatives (where they are de-
fined). A physical interpretation of these functions is to see them as “potential energies”,
which are minimum when α is equal to zero, and see their derivatives as the intensity
of the “force” that tends to make α smaller. In the case of the squared ℓ2-norm, the
intensity of this force vanishes when α gets closer to 0, preventing the regularization to
induce sparsity if the minimum of f is different than 0. In the case of the ℓ1-norm, the
intensity is constant when α gets closer to 0, and is proportional to the parameter λ,
making it possible to drive α down to 0.

This can further be illustrated with a more concrete example, which we show in
Figure 1.4. We start by considering in Figure 1.4a two springs with zero mass and
negligible length that are fixed to a wall (the fixation points are represented by red
circles). These correspond to initial conditions. The height of the blue points is denoted
by x. On Figure 1.4b, we attach to the left spring another one, whose other extremity

8

1.3. Sparse Methods and Sparsity-Inducing Norms

Ω(α) = α2

Ω′(α) = 2α

(a) ℓ2 squared regularization

Ω(α) = |α|

Ω′(α) = −1

Ω′(α) = 1

(b) ℓ1 norm

Figure 1.3: Comparison of the Tikhonov (ℓ2 squared) and ℓ1 regularization in one di-
mension. Blue curves represents the regularizers as functions of α, and red curves the
derivatives.

is fixed to the ground. Due to the action of the new spring, the height of the blue point
decreases to a new value α. The two springs have respective energies E1 = k1

2 (x − α)2

and E2 = k2

2 α
2, where k1 and k2 are the elasticity coefficients of the springs, and the

system stabilizes when the total energy k1

2 (x − α)2 + k2

2 α
2 is minimum. The second

spring therefore acts as a Tykhonov regularizer on the energy of the first spring, and
it can be controlled by its elasticity coefficient k2. On the right spring, we fix instead
an object of mass m. Due to its action, the height of the corresponding blue point also
decreases to a new position α. The potential energy of this object is E2 = mgα, where g
is the magnitude of the Earth’s gravitational field, and the system stabilizes when the
total energy k1

2 (x − α)2 + mg|α| is minimum, with the constraint α ≥ 0. The object
therefore acts as an ℓ1 regularization, which can be controlled by its mass m. Figure 1.4b
illustrates the situation when the amount of regularization is small—that is, the second
spring on the left is weak, and the object on the right is light. Both systems stabilizes
with α > 0. Figure 1.4c illustrates the situation when one increases the amount of
regularization. On the left side, despite the fact that the spring is strong (k2 is large),
the blue point does not touch the ground. On the right, when the object is massive
enough the object touches the ground and α = 0. In fact, as shown in the previous
section, the solution α is obtained by soft-thresholding.

“Geometrical Explanation” in 2-D and 3-D

We now present a more classical (but still informal) explanation of the sparsity-inducing
property of the ℓ1-norm based on the geometry of the ℓ1-ball. We consider the Lasso
formulation of Eq. (1.2). We know from classical convex optimization arguments (Boyd
and Vandenberghe, 2004) that there exists a parameter T > 0 such that Equation (1.2)

9

1. Introduction and Related Work

E1 = 0 E1 = 0

x

(a) Initial position.

E1 = k1

2 (x− α)2

E2 = k2

2 α
2 α

α

E1 = k1

2 (x− α)2

E2 = mg|α|, α ≥ 0

(b) Small regularization, smallest energy state

E1 = k1

2 (x− α)2

E2 = k2

2 α
2 α

α = 0

E1 = k1

2 (x− α)2

E2 = mg|α|, α ≥ 0

(c) High regularization, smallest energy state

Figure 1.4: Simple physical illustration of the sparsifying effect of the ℓ1-norm compared
to the Tikhonov regularization. The system stabilizes for the value of α that minimizes
the energy E1 + E2. See comments in the text.

10

1.3. Sparse Methods and Sparsity-Inducing Norms

has the same solution as the following equivalent constrained optimization problem:7

min
α∈Rp

1
2
‖x−Dα‖22 s.t. ‖α‖1 ≤ T.

We present in Figures 1.5a and 1.5c the ℓ1-balls of radius T in 2 and 3 dimensions, and
the level sets of the function α 7→ 1

2‖x−Dα‖22. At optimality, the level set corresponding
to the optimum value α⋆ are necessarily tangent to the ℓ1-ball of radius T . This tangency
point is represented by a small red circle in the figures. In Figure 1.5b, we represent a
similar situation when using the squared ℓ2-norm instead of the ℓ1. Whereas the ℓ1-ball
is anisotropic and encourages a solution to be on one of the axis x or y (corresponding
to sparse solutions), the isotropy of the ℓ2-ball does not. In the case of the ℓ1-norm,
illustrated on Figure 1.5a, it becomes more “likely” that the solution ends up on a
corner of the ball, even though it is easy to build counter-examples, where the solution
ends up on a face. This sparsifying phenomenon is also true in 3-D, as illustrated in
Figure 1.5c, and in fact it is even stronger in higher dimensions.

Now that we have given some intuitive explanations of the sparsity-inducing prop-
erty of the ℓ1-norm, we give a more structured sparse regularization, which we will use
intensively in this thesis.

1.3.3 Beyond the ℓ1-norm: Group Sparsity

A popular extension of the Lasso is the group Lasso (Yuan and Lin, 2006; Turlach et al.,
2005; Obozinski et al., 2009; Bach, 2008). It supposes that variables are structured
into predefined groups g ∈ G, where G is a partition of J1; pK. In this context, the
sparsity-inducing regularization takes the form:

Ω(α) =
∑

g∈G
‖αg‖,

where ‖.‖ is some norm (in practice, often the ℓ2 or ℓ∞-norms). In this case, Ω is still
a norm, and can be interpreted as the ℓ1-norm (a sum) of norms of groups, therefore
inducing sparsity at the group level.

The goal of using such a regularization is to encode a priori knowledge of the sparsity
patterns that the coefficients α should have. When such a priori knowledge is given and
one knows beforehand that the patterns should be structured in groups, using such
a norm can improve the prediction performance and/or interpretability of the learned
models (Roth and Fischer, 2008; Yuan and Lin, 2006; Huang et al., 2009; Obozinski
et al., 2009). Applications of such norms include for instance multi-task learning, where
one is looking for predictors that are shared among different tasks (Obozinski et al.,
2009; Quattoni et al., 2009), and multiple kernel learning (Bach, 2008), where groups of
variables corresponding to different kernels are selected.

7 The original formulation of the Lasso proposed by Tibshirani (1996) is actually this constrained
formulation.

11

1. Introduction and Related Work

x

y

(a) 2-D case, ℓ1-norm

x

y

(b) 2-D case, ℓ2-norm

x

z

y

(c) 3-D case, ℓ1-norm

Figure 1.5: In red, balls for the ℓ1-norm in Figures (a) and (c), and ℓ2-norm for Figure (b).
In blue, some level sets of a quadratic function are plotted. At optimality, the level sets
are tangent to the red balls. Corners and edges of the ℓ1-ball correspond to sparse
solutions.

12

1.4. Optimization for Sparse Regularized Problems

We present a concrete application of this group Lasso regularization to image process-
ing in Chapter 4. Another generalization of the group Lasso to the case of overlapping
groups have been proposed by Zhao et al. (2009); Jenatton et al. (2009); Jacob et al.
(2009); Baraniuk et al. (2010). These will be discussed in Chapter 3.

1.4 Optimization for Sparse Regularized Problems

Sections 1.4.1, 1.4.2 and the benchmark presented in Section 1.4.5 are based on
material from the book chapter:

F. Bach, R. Jenatton, J. Mairal and G. Obozinski. Convex Optimization with Sparsity-
Inducing Norms. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for
Machine Learning, 2011, to appear.

We present here optimization tools and algorithms for solving sparse regularized machine
learning and signal processing problems. This section is relatively independent from the
rest of the manuscript. It is therefore not mandatory to read it in details before the
remaining chapters, but it can be referred to whenever necessary. Section 1.4.1 introduces
classical material for non-smooth optimization. Sections 1.4.2 to 1.4.6 give some keys
for solving sparse decomposition problems. In particular, we present in Section 1.4.5 a
benchmark comparing a large class of methods for solving the Lasso in different scenarii.
Section 1.4.8 briefly presents network flow optimization and its connection with sparse
methods.

1.4.1 Duality and Non-Smooth Convex Optimization

We describe in this section important tools to study non-smooth convex optimization
problems related to sparse methods. Most of them can be found in classical books
on convex optimization (Boyd and Vandenberghe, 2004; Bertsekas, 1999; Borwein and
Lewis, 2006; Nocedal and Wright, 1999), but for self-containedness reasons, we present
here a few of them. We consider again the general formulation of Eq. (1.1), which we
recall below

min
α∈Rp

[

g(α) , f(α) + λΩ(α)
]

,

but we restrict Ω to be a norm (and therefore a convex function).

Subgradients
Given a convex function g : R

p → R and a vector α in R
p, let us define the subdifferential

of g at α as

∂g(α) , {κ ∈ R
p | g(α) + κ⊤(α′ −α) ≤ g(α′) for all vectors α′ ∈ R

p}.

13

1. Introduction and Related Work

The elements of ∂g(α) are called the subgradients of g at α. This definition admits a
clear geometric interpretation: Any subgradient κ in ∂g(α) defines an affine function
α′ 7→ g(α)+κ⊤(α′−α) which is tangent to the graph of the function g at α. Moreover,
there is a bĳection (one-to-one correspondence) between such “tangent affine functions”
and the subgradients. We illustrate this property in Figure 1.6.

α

(a) Smooth case

α

(b) Non-smooth case

Figure 1.6: Gradients and subgradients for smooth and non-smooth functions. Red
curves represent the graph of a function. Blue lines represent subgradients of this func-
tion at a point α. On the left, the function is smooth and the unique subgradient
corresponds to the tangent line. On the right, the function is not differentiable and the
subgradients are not unique.

Let us now illustrate how subdifferential can be useful for studying nonsmooth op-
timization problems with the following classical proposition (see Borwein and Lewis,
2006):

Proposition 1 (Subgradients at optimality)
For any convex function g : R

p → R, a point α in R
p is a global minimum of g if and

only if vector 0 belongs to ∂g(α).

Note that the concept of subdifferential is mainly useful for nonsmooth functions. If g
is differentiable in α, the set ∂g(α) is indeed the singleton {∇g(α)}, and the condition
0 ∈ ∂g(α) amounts to the classical first-order optimality condition ∇g(α) = 0.

Dual Norm and Optimality Conditions
The next tool we introduce is the dual norm, which is important to study sparsity-
inducing regularizations (Jenatton et al., 2009; Bach, 2009; Negahban et al., 2009). It
notably comes up in the analysis of estimation bounds (Negahban et al., 2009), and in
the designs of active-set strategies (Jenatton et al., 2009). The dual norm Ω∗ of Ω is
defined for any vector κ in R

p by

Ω∗(κ) , max
α∈Rp
κ⊤α s.t. Ω(α) ≤ 1.

14

1.4. Optimization for Sparse Regularized Problems

It is easy to show that in the case of an ℓq-norm, q ∈ [1; +∞] the dual norm is the
ℓq′-norm, with q′ in [1; +∞] such that 1

q + 1
q′ = 1. In particular, the ℓ1- and ℓ∞-norms

are dual to each other, and the ℓ2-norm is self-dual.
The dual norm plays a direct role in obtaining optimality conditions for sparse reg-

ularized problems. By applying Proposition 1 to Eq. (1.1), we obtain, for instance, that
a vector α in R

p is optimal for Eq. (1.1) if and only if

− 1
λ
∇f(α) ∈ ∂Ω(α) =

{

{κ ∈ R
p; Ω∗(κ) ≤ 1} if α = 0,

{κ ∈ R
p; Ω∗(κ) ≤ 1 and κ⊤α = Ω(α)} otherwise.

(1.3)

We have presented a useful duality tool for norms. More generally, there exists a related
concept for convex functions, which we now introduce.

Fenchel Conjugate and Duality Gaps
Let us denote by f∗ the Fenchel conjugate of a convex function f (Borwein and Lewis,
2006), defined by

f∗(κ) , sup
α∈Rp

[κ⊤α− f(α)].

The Fenchel conjugate is related to the dual norm. Let us define the indicator func-
tion 1Ω such that 1Ω(α) is equal to 0 if Ω(α) ≤ 1 and +∞ otherwise. Then, 1Ω is
a convex function and its conjugate is exactly the dual norm Ω∗. For many objective
function, the Fenchel conjugate admits closed forms, and can therefore be computed
efficiently (Borwein and Lewis, 2006). In this case, it is useful for monitoring the con-
vergence of optimization algorithms with duality gaps, as illustrated by the following
proposition:

Proposition 2 (Duality for Problem (1.1))
If f∗ and Ω∗ are respectively the Fenchel conjugate of f and the dual-norm of Ω,

max
κ∈Rp;Ω∗(κ)≤λ

−f∗(κ) ≤ min
α∈Rp

f(α) + λΩ(α)

Moreover, if the domain of f is non-empty, strong duality holds and the inequality be-
comes an equality.

Therefore, if α⋆ is a solution of Eq. (1.1), and α,κ in R
p such that Ω∗(κ) ≤ λ, the

following inequality holds

f(α) + λΩ(α) ≥ f(α⋆) + λΩ(α⋆) ≥ −f∗(κ). (1.4)

The difference between the left and right term of Eq. (1.4) is called a duality gap. It
represents the difference between the value of the primal objective function f(α)+λΩ(α)
and a dual objective function −f∗(κ), where κ is a dual variable. Duality gaps are
important in convex optimization. By upperbounding the difference between the current
value of an objective function and the optimal value, they define proper stopping criterion
for iterative optimization algorithms. Finding a good dual variable κ when minimizing

15

1. Introduction and Related Work

a primal objective function is easy in many cases. Given a primal variable α, we often
choose the dual variable κ = λ

max(Ω∗(∇f(α)),λ)∇f(α), which guarantees the duality gap to
be zero at optimality. When α = α⋆, the conditions presented in Eq. (1.3) are satisfied.
It follows that κ = ∇f(α) with Ω∗(κ) ≤ λ, and κ⊤α = λΩ(α). Since f is differentiable,
it is also easy to show that f∗(κ) = κ⊤α − f(α). Therefore, −f∗(κ) = f(α) + λΩ(α)
and the duality gap is zero.

Note that in many of the formulations we are going to introduce, the function f has
a particular form f(α) = f̃(Dα), where f̃ is an auxiliary function, and D a dictionary
matrix. In this case, one may be interested in the Fenchel conjugate f̃∗ instead of f∗.
Fenchel conjugacy naturally extends to this case (see for more details Borwein and
Lewis, 2006, Theorem 3.3.5). We present more concrete examples in Appendix D.2 with
a toolbox implementing several solvers for sparse methods, where the convergence of the
different optimization methods are monitored with such duality gaps.

1.4.2 Least Angle Regression - Homotopy

We present in this section a dedicated active-set method for solving the Lasso prob-
lem (Tibshirani, 1996), also known as basis pursuit (Chen et al., 1998), which is pre-
sented in Eq. (1.2). Under mild assumptions, (which we will detail later) the solution of
Eq. (1.2) is unique, and we denote it by α⋆(λ). Let us also recall the definition of the
regularization path, which is the function λ 7→ α⋆(λ) that associates with a regularization
parameter λ the corresponding solution α⋆(λ). We will show that this function is piece-
wise linear, an interesting property that leads both to an efficient algorithm presented
in this section, and to a better understanding of the Lasso formulation. This behavior
was illustrated in Figure 1.1, where the entries of α⋆(λ) for particular instances of the
Lasso are represented as functions of λ.

The regularization path can therefore be characterized by a set of contiguous linear
segments. It is now appealing to build an algorithm that finds a solution of Eq. (1.2)
for a particular value of λ, for which finding this solution is trivial, and then follows
the piecewise-linear path, computing the directions of the current linear parts, and the
points where the direction changes (kinks). This piecewise linearity property was first
discovered and exploited by Markowitz (1952) in the context of portfolio selection, re-
visited by Osborne et al. (2000a) describing an homotopy algorithm, and popularized
by Efron et al. (2004) with the LARS algorithm. Even though the basic version of LARS
is a bit different from the procedure we have just described, it is closely related, and
indeed a simple modification makes it possible to obtain the full regularization path of
Eq. (1.2).

Let us now construct the solution path. Applying the optimality conditions presented
in Eq. (1.3) to the Lasso formulation for a fixed value of λ yields

∀j ∈ J1; pK,

{

|dj⊤(x−Dα⋆)| ≤ λ if α⋆j = 0
dj⊤(x−Dα⋆) = λ sign(α⋆j) if α⋆j 6= 0,

(1.5)

16

1.4. Optimization for Sparse Regularized Problems

where dj denotes the j-th column of D, and α⋆j the j-th entry of α⋆. We define the
set of variables Λ , {j ∈ J1; pK; |dj⊤(x−Dα⋆)| = λ}, and the vector ε , sign

(
D⊤(x−

Dα⋆)
)
. We assume the matrix D⊤ΛDΛ to be invertible (which is a necessary and sufficient

condition to guarantee the uniqueness of α⋆), and it follows from Eq. (1.5) that

α⋆Λ(λ) = (D⊤ΛDΛ)−1(D⊤Λx− λεΛ).

This is an important point: if one knows in advance the set Λ and the signs εΛ, then
the solution α⋆(λ) admits a simple closed-form, showing that the difficulty of the Lasso
is essentially to find the pair (Λ, εΛ).

Moreover, when Λ and εΛ are fixed, the function λ 7→ (D⊤ΛDΛ)−1(D⊤Λx − λεΛ) is
affine in λ. With this observation in hand, we can now present the main steps of the path-
following algorithm. It basically starts from a trivial solution of the regularization path,
follows the path by exploiting this formula, updating Λ and εΛ whenever needed so that
optimality conditions (1.5) remain satisfied. This procedure requires some assumptions—
namely that (A) the regularization path is unique (which is equivalent to assuming
D⊤ΛDΛ always invertible), and (B) that updating Λ along the path consists of adding
or removing from this set a single variable at the same time. Concretely, we proceed as
follows

1. Set λ to ‖D⊤x‖∞ for which it is easy to show from Eq. (1.5) that α⋆(λ) = 0
(trivial solution). This gives us a starting point on the regularization path.

2. Set Λ , {j ∈ J1; pK; |dj⊤x| = λ}, assuming |Λ| = 1 (assumption [B]).

3. Follow the regularization path by decreasing the value of λ, with the formula
α⋆Λ(λ) = (D⊤ΛDΛ)−1(D⊤Λx − λεΛ) keeping α⋆

ΛC
= 0, until one of the following

events occurs

• There exists j in ΛC such that |dj⊤(x−Dα⋆)| = λ. Then, add j to the set Λ.

• There exists j in Λ such that a non-zero coefficient α⋆j hits zero. Then, remove
j from Λ.

We suppose that only one of such events can occur at the same time (assump-
tion [B]). It is also easy to show that the value of λ corresponding to the next
event can be obtained in closed form, using the fact that for a fixed pair (Λ, ε),
the quantities α⋆j and dj⊤(x−Dα⋆) for all j in J1; pK are also affine in λ.

4. Go back to 3

Let us now briefly discuss assumptions (A) and (B). When the matrix D⊤ΛDΛ is not
invertible, the regularization path is non-unique, and the algorithm fails. This can easily
be fixed by addressing instead a slightly modified formulation. It is indeed possible to
consider the elastic-net formulation of Zou and Hastie (2005)—that is, with Ω(α) =
λ‖α‖1 + γ

2‖α‖22, by replacing the matrix D⊤ΛDΛ by D⊤ΛDΛ + γIp, which is positive
definite and therefore always invertible. Using a small value for γ solves the problem of

17

1. Introduction and Related Work

non-invertibility of D⊤ΛDΛ in practice. The second assumption (B) can be unsatisfied in
practice because of the precision machine. To the best of our knowledge, the algorithm
will fail in such cases, but we consider this scenario unlikely.

Now that we are able to follow the regularization path, it is important to notice that
we are also able to solve constrained versions of Eq. (1.2), namely

min
α∈Rp

‖x−Dα‖22 s.t. ‖α‖1 ≤ T, (1.6)

and
min
α∈Rp

‖α‖1 s.t. ‖x−Dα‖22 ≤ ε, (1.7)

These formulations are sometimes said to be “equivalent” to Eq. (1.2) in the sense that
for every value of T , there exists a value λ such that Eq. (1.2) that admits the same
solution as Eq. (1.6), and vice versa. This is also true for Eq. (1.7) for every value of ε.
They are, however, not equivalent in practice since the relation between ε, λ and T is
unknown.

The complexity of the above procedure depends on the number of kinks of the reg-
ularization path (which correspond to the number of iterations of the algorithm). It is
of course possible to stop the algorithm before its end, if one is not interested in the full
path. Even though it is possible to build examples where the number of kinks is large,
we often observe in practice that the event where one variable gets out of the active set
is rare. The complexity also depends on the implementation. By maintaining the values
of dj⊤(x −Dα⋆) and a Cholesky decomposition of (D⊤ΛDΛ)−1, it is possible to obtain
an implementation in O(psm+ ps2 + s3) operations, where s is the number of iterations
of the algorithm, with a memory cost in O(p2). The product psm corresponds to the
computation of D⊤ΛDΛ, ps2 to the updates of the correlations dj⊤(x −Dα⋆) along the
path, and s3 to the Cholesky decomposition of (D⊤ΛDΛ)−1.

One can observe from this analysis that the path-following LARS algorithm can be
efficient for solving small-scale problems, when the solution one is looking for is sparse
(s is small), with a smaller cost than a single p×p matrix inversion, which is 0(p3). This
algorithm is also efficient with highly correlated features, as long as the matrix D⊤ΛDΛ

remains invertible. A fast Cholesky-based implementation of this algorithm is available
in the toolbox SPAMS, which we present in Section D.1.

1.4.3 Proximal Methods

Proximal methods play an important role in non-smooth optimization. They generalize
first-order gradient descent algorithms to handle non-smooth components. This section
briefly introduce these methods in a slightly restricted but useful framework (for a more
detailed review and general framework, see Combettes and Pesquet 2010).

In the context of this thesis, we apply these methods to convex optimization prob-
lems of the same form as Eq. (1.1), with f convex and differentiable with a Lipschitz
continuous gradient, and Ω a non-smooth convex function. Whereas it is often possi-
ble to address this kind of optimization problems using subgradient descent algorithms,

18

1.4. Optimization for Sparse Regularized Problems

proximal methods are preferred because of both theoretically and practically faster con-
vergence rates, which we will detail in the sequel.

The most basic variant of these methods is an iterative procedure which, at step k,
updates the current estimate αk by solving a proximal problem, defined as follows

αk+1 ← arg min
α∈Rp

[

f(αk) +∇f(αk)⊤(α−αk) + λΩ(α) +
L

2
‖α−αk‖22

]

, (1.8)

where f(αk) + ∇f(αk)⊤(α − αk) is a linear approximation of f around the current
estimate αk, the quadratic term L

2 ‖α−αk‖22 keeps the update of α in a neighborhood
of αk, where the linear approximation is correct, and L > 0 is a parameter. It is
possible to show that when L is well chosen (actually larger or equal to the inverse of
the Lipschitz constant of ∇f), this optimization scheme converges to the solution of the
original problem. This provides a simple scheme for solving Eq. (1.1), supposing that
one knows how to efficiently solve Eq. (1.8). Finding automatically a good value for L is
also easy, using practical line-search strategies (see Nesterov, 2007; Beck and Teboulle,
2009).

Note that Eq. (1.8) can equivalently be rewritten as

αk+1 ← arg min
α∈Rp

[1
2

∥
∥
∥α−

(
αk − 1

L
∇f(αk)

)
∥
∥
∥

2

2
+
λ

L
Ω(α),

meaning that the new estimate αk+1 should be close to the quantity αk − 1
L∇f(αk)

(equivalent to a classical gradient step), while taking into account the non-smooth com-
ponent λΩ(α). When λ = 0, we obtain that αk+1 = αk − 1

L∇f(αk).
More generally, we define the proximal operator (sometimes called proximity opera-

tor) associated with our regularization term λΩ as the function that maps a vector u
in R

p to the (unique by strong convexity) solution of

min
v∈Rp

[1
2
‖u− v‖22 + λΩ(v)

]

. (1.9)

This operator was initially introduced by Moreau (1962) to generalize the projection
operator onto a convex set. Since it is called many times within proximal algorithms, it
has to be solved efficiently. What makes this appealing for sparse methods is that this
operator can often be obtained in closed-form. For instance:

• When Ω is the ℓ1-norm—that is, Ω(u) = ‖u‖1, the proximal operator is the well-
known elementwise soft-thresholding operator introduced in the previous sections:

∀j ∈ J1; pK vj ← sign(uj)(|uj | − λ)+ =

{

0 if |uj | ≤ λ
sign(uj)(|uj | − λ) otherwise.

• When Ω is a Group-Lasso penalty with ℓ2-norms—that is, Ω(u) =
∑

g∈G ‖ug‖2,
with G being a partition of J1; pK, the proximal problem is separable in every group,

19

1. Introduction and Related Work

and the solution is a generalization of the soft-thresholding operator to groups of
variables:

∀g ∈ G vg ←






0 if ‖ug‖2 ≤ λ
‖ug‖2−λ
‖ug‖2 ug if ‖ug‖2 > λ.

• When Ω is a Group-Lasso penalty with ℓ∞-norms—that is, Ω(u) =
∑

g∈G ‖ug‖∞,
the solution is also a group-thresholding operator:

∀g ∈ G vg ← ug −Π‖.‖1≤λ[ug],

where Π‖.‖1≤λ denotes the orthogonal projection onto the ℓ1-ball of radius λ. Note
that when ‖ug‖1 ≤ λ, we have a group-thresholding effect, with vg = 0.

More generally, when dealing with norms, these closed-forms can be derived from a
simple relation between the proximal operator and the projection operator onto the ball
of the dual norm:

Lemma 1 (Relation between proximal and projection operator for norms)
Let u be a vector in R

p and let v⋆ be the solution of the proximal operator

min
v∈Rp

[1
2
‖u− v‖22 + λΩ(u)

]

, (1.10)

where Ω is any norm. Then,

v⋆ = u−ΠΩ∗(.)≤λ[u], (1.11)

Where ΠΩ∗(.)≤λ is the orthogonal projector onto the ball of radius λ of the dual norm Ω∗.

The proof can be obtained by using simple calculus rules for computing proximal
operators described by Combettes and Pesquet (2010), or by simply writing the Fenchel
dual of the proximal problem, which is described in Proposition 2. This directly gives
the solution.

This proximal scheme for solving sparse decomposition problems has been the fo-
cus of a lot of attention lately and has been revisited several times. It indeed admits
variants (essentially concerning line-search strategies for automatically choosing the pa-
rameter L). We give here a few names under which it is known, to help the reader find
his/her way in the literature. Combettes and Pesquet (2010) present a detailed review of
proximal methods and call this a forward-backward splitting algorithm, Nesterov (2007)
call it gradient method, and Beck and Teboulle (2009) iterative shrinkage-thresholding
algorithm (ISTA). Refinements have been proposed by Wright et al. (2009b) under the
name SpaRSA, and by Hale et al. (2007) under the name fixed-point continuation method
(FPC). Nesterov (2007) and Beck and Teboulle (2009) have shown that the value of the
objective function decreases as O(1

k), and under strong convexity assumptions on f , Nes-
terov (2007) has further shown that it enjoys a linear convergence rate of O(ρk), with
0 ≤ ρ < 1. Interestingly, building on early works by Nesterov (1983), accelerated vari-
ants of proximal methods have been proposed by Nesterov (2007) and Beck and Teboulle

20

1.4. Optimization for Sparse Regularized Problems

(2009) with guaranteed convergence rate of O(1
k2), which can be proven to be optimal

among first-order methods. In order to enjoy these fast rates, the proximal operator
must be computed both efficiently and exactly. This is the topic of Chapter 3 for two
particular sparsity-inducing norms.

We have implemented in the software presented in Section D.2 the forward-backward
(or ISTA) and the accelerated FISTA algorithms of Beck and Teboulle (2009). We show
in Section 1.4.5 how these methods compare to other approaches.

1.4.4 Coordinate and Block Coordinate Descent Algorithms

We present here a coordinate descent algorithm for solving the Lasso formulation of
Eq. (1.2). It was originally introduced by Fu (1998), rediscovered by Daubechies et al.
(2004), and recently popularized by Wu and Lange (2008) and Friedman et al. (2007).
We first present the basic algorithm, and then show how it extends to the group Lasso
in some specific settings.

Coordinate descent is a procedure that iteratively fixes every entry but one of the
current estimate α, and optimizes with respect to the selected entry. It cycles among
the coordinates, solving each time simple sub-problems that admit closed form solutions.
For instance, supposing the columns of D have unit ℓ2-norm, updating the entry αj can
be done as follows

αj ← arg min
αj∈R

[1
2
‖x−

∑

i6=j
αid

i −αjdj‖22 + λ|αj |
]

← arg min
αj∈R

[1
2
(
dj⊤(x−

∑

i6=j
αid

i)−αj
)2 + λ|αj |

]

← sign(cj)(|cj | − λ)+ with cj , dj⊤(x−
∑

i6=j
αid

i).

This is the simple soft-thresholding operation introduced earlier. This coordinate de-
scent procedure is appealing since it is simple. Supposing that the matrix D⊤D is
pre-computed, fast implementations maintain the values of the quantity D⊤(x −Dα).
Then, updating a coordinate cost O(1) operations if its value does not change, and O(p)
otherwise. Such an implementation is available in the software SPAMS presented in
Appendix D.

The convergence properties of such an algorithm are relatively weak. Coordinate
descent algorithms for minimizing non-differentiable functions are not convergent in
general (see Tseng, 2001, for sufficient conditions in such non-differentiable settings). It is
however possible to rewrite equivalently the Lasso as a smooth differentiable optimization
problem under separable constraints:

min
α+,α−∈Rp

[1
2
‖x−Dα+ + Dα−‖22 + λα⊤+1p + λα⊤−1p

]

s.t. α+ ≥ 0,α− ≥ 0.

We have here split the vector α into two vectors α+ and α− in R
p with nonnegativity

constraints. It is easy to show that this problem is equivalent to the Lasso, and that the

21

1. Introduction and Related Work

coordinate-descent scheme we have introduced is also equivalent to a coordinate-descent
algorithm for this new formulation. In such a setting, and under additional conditions
that are satisfied here, we know that all the limit points of the sequence of estimates of the
solution are stationary points of the Lasso (see Bertsekas, 1999, proposition 2.7.1). To
the best of our knowledge, no convergence rate is available, but we show in Section 1.4.5
that the method can be competitive in certain situations.

This algorithm extends in a straightforward way to the group Lasso, when the dictio-
nary elements corresponding to a same group are orthogonal to each other. Whereas this
might seem a strong limitation, it turns out to be the case in some practical situation,
such as simultaneous sparse coding (Tropp et al., 2006; Tropp, 2006) and multi-task
formulations (Obozinski et al., 2009). In this case, the natural extension of the algo-
rithm is a block-coordinate descent scheme, where one iteratively updates the entries
of α corresponding to a group, while fixing the other ones. This can be written for a
group g in G:

αg ← arg min
αg∈R|g|

[1
2
‖x−

∑

h 6=g
Dhαh −Dgαg‖22 + λΩ(αg)

]

← arg min
αg∈R|g|

[1
2
‖D⊤g (x−

∑

h 6=g
Dhαh)−αg‖22 + λΩ(αg)

]

,

and the solution is given by computing a proximal operator associated with the norm Ω.
We gave such closed forms in the previous section in the case of the ℓ2- and ℓ∞-norms.
Note that a variant of coordinate descent algorithms have been proposed by Tseng (2001)
when there is no closed form for updating a variable.

1.4.5 The Lasso: Which Algorithm to Choose and When?

We present in this section a large benchmark evaluating the performance of various
optimization methods for solving the Lasso. As already mentioned before, the literature
on the topic is vast, and there is no clear consensus about which method does perform
the best. The purpose of this section is to experimentally clarify this open question.
To do so, we have designed a benchmark that takes into account several criteria which
significantly influence the convergence speed of all algorithms. More specifically, our
benchmark obeys the following rules:

• Efficiency of implementations: We use the languages C or C++ and efficient
BLAS and LAPACK libraries for basic linear algebra operations, with the hope that
the running times of our software correctly reflects the true number of operations
required by every algorithm.

• Exhaustivity: We have chosen to compare what we believe are the main ap-
proaches used in the literature, namely the LARS algorithm, coordinate-descent
(CD), reweighted-ℓ2 scheme (Re-ℓ2), a simple proximal method (ISTA), and its
accelerated version (FISTA). We also include in the comparison generic tools such

22

1.4. Optimization for Sparse Regularized Problems

as a subgradient descent algorithm (SG), and a commercial software (Mosek) for
cone programming (CP) and quadratic programming (QP) problems. The reader
should refer to (Bach et al., 2011) for all methods that have not been presented
here.

• Influence of scale: We measure the performance of algorithms for several prob-
lems sizes. We design a small-scale experiment with n = 200, p = 200, and a
medium/large scale one with n = 2000, p = 10000. With this collection of settings,
we compare the influence of the parameters n and p for all algorithms.

• Influence of correlation: When the dictionary is orthogonal, the Lasso admits a
closed-form solution and is easy to solve. When the columns are highly correlated,
the optimization problem can become ill-conditioned and difficult. To evaluate the
robustness of the different methods to this criterion, we generate dictionaries with
three levels of correlation between the columns.

• Influence of the regularization: We measure the performance for three different
levels of regularization, corresponding to different sparsities of the solutions.

• Influence of the required precision: We report the value of the objective
function versus the time of computation. When a low precision is required, a
method that quickly provide a rough solution might be preferred.

We therefore compare 8 methods for 18 different conditions (2 scales × 3 levels of cor-
relation × 3 levels of regularization).

We generated dictionary matrices as follows. For the scenario with low correlation,
all entries of D are independently drawn from a Gaussian distribution N (0, 1/

√
n),

which is often a setting used for evaluating optimization algorithms in the literature.
For the scenario with medium correlation, we draw the rows of the matrix D from a
multivariate Gaussian distribution in a way such that the average absolute value of the
correlation between two different columns is four times the one of the scenario with low
correlation. We proceed the same way for the scenario with high correlation, increasing
again the amount of correlation. Test data vectors y = Dα+ n where α are randomly
generated, with three levels of sparsity to be used with the three different levels of
regularization. The variable n is a noise vector whose entries are i.i.d. samples from a
Gaussian distribution N (0, 0.1‖Dα‖2/

√
n).

In the low regularization setting, the sparsity of the vectors α is s = 0.5 min(n, p), in
the medium regularization one s = 0.1 min(n, p), and in the high regularization one s =
0.01 min(n, p), corresponding to fairly sparse vectors. For the subgradient method (SG),
we take the step size to be equal to a/(k+ b), where k is the iteration number, and (a, b)
are the best8 parameters selected in a logarithmic grid (a, b) ∈ {10−3, 1O−2, . . . , 10} ×
{102, 103, 104} ; we proceeded this way not to disadvantage SG by an arbitrary choice
of stepsize.

8“The best step size” is understood here as being the step size leading to the smallest objective
function after 500 iterations.

23

1. Introduction and Related Work

We report the value of the objective functions for every combination of criterion, as
a function of computation time in Figures 1.7 and 1.8. All reported results are obtained
by averaging 5 runs of each experiment on a single-core of a 3.07GHz CPU with 8Go
of memory. Interestingly, we observe that the hierarchy between the different methods
significantly changes with the scenario. We can now summarize our conclusions for every
class of method:

• LARS: For the small-scale problem, LARS outperforms every other method for
almost every scenario and precision regime. It is therefore definitely the right
choice for small-scale settings. With a computational complexity of O(ps2 + pns)
and memory complexity of O(ps),9 its scalability is, however, a bit limited. When
the matrix D⊤D is pre-computed, its complexity goes down to O(ps2 + ps), but it
is not the case for our benchmark.

One of its main advantages is that unlike first-order methods, the LARS complexity
does not depend on the correlation in the dictionary, but only on the sparsity s
of the solution. In our large-scale settings, LARS has proven to be competitive
either when the solution is very sparse (high regularization), or when there is
high correlation in the dictionary (in that case, other methods do not perform as
well). One important advantage of the LARS is that it gives an exact solution and
computes the whole regularization path.

• Proximal methods (ISTA, FISTA): Our first conclusion is that FISTA has
always been better than ISTA except for high regularization or low correlation,
where both methods have a similar performance. These methods are almost always
outperformed by LARS in the small-scale setting, except for low precision and low
correlation.

They suffer from correlated features since their convergence rate is proportional
to the Lipschitz constant of the gradient of f , which itself grows with the amount
of correlation. They are well adapted to large-scale settings, with low or medium
correlation.

• Coordinate descent (CD): To the best of our knowledge, no theoretical conver-
gence rate is available for this method. The empirical convergence rate we have
observed has been relatively surprising. In every experiment, we observe a “warm-
up” phase where updating one coordinate requires computing one column of the
matrix D⊤D (which we store into memory). During this phase, the convergence is
very slow. When all columns of D⊤D are computed, the convergence rate becomes
often empirically linear.

Its performance in the small-scale setting is relatively good (even though always
behind LARS), but less efficient in the large-scale one. For a reason we can not
explain, it does not suffer much from correlated features. Like LARS, this method
could also benefit from an off line pre-computation of D⊤D.

9Note that we did not take into account the memory complexity in our benchmark.

24

1.4. Optimization for Sparse Regularized Problems

• Reweighted-ℓ2: This method has proven to be relatively disappointing in all our
experiments and has never taken the lead against other dedicated methods.

• Generic Methods (SG, QP, CP): As expected, generic methods have proven
not to be adapted for solving the Lasso and are always outperformed by dedicated
ones such as LARS.

1.4.6 Greedy Methods

We have presented so far the problem of sparse decomposition with a convex optimization
point of view, considering the formulation of Eq. (1.1) where Ω is a sparsity-inducing
norm, often used as a proxy for the ℓ0 pseudo-norm. We present here algorithms that
directly address the following ℓ0-decomposition problem

min
α∈Rp

1
2
‖x−Dα‖22 s.t. ‖α‖0 ≤ s, (1.12)

where s is the desired sparsity of the solution. Approaches providing an approximate
solution to this problem are greedy procedures, and usually do not provide the global
optimum since the problem is NP-hard. However, they have some optimality guarantees
in a few cases as shown by Tropp (2004). Empirically, they have shown to provide
local optima yielding good results in many image processing applications, as shown in
Chapter 4. They are known as forward selection techniques in statistics (Weisberg,
1980), and matching pursuit algorithms in signal processing (Mallat and Zhang, 1993).

We present here two variants called matching pursuit and orthogonal matching pur-
suit. Both approaches start with a null vector α, and iteratively update one entry in α
until the sparsity of α reaches the threshold s.

• Matching pursuit (MP) selects at each step the dictionary element dı̂ that is
the most correlated with the residual according to the formula

ı̂← arg min
i∈J1;pK

|di⊤r|,

where r denotes the residual x −Dα. Then, the residual is projected on the line
generated by dı̂:

αı̂ ← αı̂ + dı̂⊤r

r← r− (dı̂⊤r)dı̂.

Matching Pursuit can in fact be interpreted as a non-cyclic coordinate descent
algorithm. It is guaranteed to decrease the objective function at each iteration,
but is not guaranteed to converge in a finite number of steps.

• Orthogonal matching pursuit (OMP) improves upon Matching Pursuit by en-
suring that the residual of the decomposition is always orthogonal to all previously

25

1. Introduction and Related Work

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g

(r
e

la
ti
v
e

 d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

)

SG
Fista

Ista
Re−L2

CD
Lars

CP
QP

(a) corr: low, regul: low

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g

(r
e

la
ti
v
e

 d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

)

SG
Fista

Ista
Re−L2

CD
Lars

CP
QP

(b) corr: low, regul: medium

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g

(r
e

la
ti
v
e

 d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

)

SG
Fista

Ista
Re−L2

CD
Lars

CP
QP

(c) corr: low, regul: high

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g

(r
e

la
ti
v
e

 d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

)

SG
Fista

Ista
Re−L2

CD
Lars

CP
QP

(d) corr: medium, regul: low

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g

(r
e

la
ti
v
e

 d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

)

SG
Fista

Ista
Re−L2

CD
Lars

CP
QP

(e) corr: medium, regul: medium

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g

(r
e

la
ti
v
e

 d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

)

SG
Fista

Ista
Re−L2

CD
Lars

CP
QP

(f) corr: medium, regul: high

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g

(r
e

la
ti
v
e

 d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

)

SG
Fista

Ista
Re−L2

CD
Lars

CP
QP

(g) corr: high, regul: low

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g

(r
e

la
ti
v
e

 d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

)

SG
Fista

Ista
Re−L2

CD
Lars

CP
QP

(h) corr: high, regul: high

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g

(r
e

la
ti
v
e

 d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

)

SG
Fista

Ista
Re−L2

CD
Lars

CP
QP

(i) corr: high, regul: high

Figure 1.7: Benchmark for solving the Lasso for the small-scale experiment (n = 200, p =
200), for the three levels of correlation and three levels of regularization, and 8 optimiza-
tion methods (see main text for details). The curves represent the relative value of the
objective function as a function of the computational time in second on a log10 / log10

scale.

26

1.4. Optimization for Sparse Regularized Problems

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g
(r

e
la

ti
v
e
 d

is
ta

n
c
e
 t
o
 o

p
ti
m

u
m

)

SG

Fista
Ista

Re−L2

CD
Lars

CP

(a) corr: low, regul: low

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g
(r

e
la

ti
v
e
 d

is
ta

n
c
e
 t
o
 o

p
ti
m

u
m

)

SG

Fista
Ista

Re−L2

CD
Lars

CP

(b) corr: low, regul: medium

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g

(r
e

la
ti
v
e

 d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

)

SG

Fista
Ista

Re−L2

CD
Lars

CP

(c) corr: low, regul: high

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g
(r

e
la

ti
v
e
 d

is
ta

n
c
e
 t
o
 o

p
ti
m

u
m

)

SG

Fista
Ista

Re−L2

CD
Lars

CP

(d) corr: medium, regul: low

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g
(r

e
la

ti
v
e
 d

is
ta

n
c
e
 t
o
 o

p
ti
m

u
m

)

SG

Fista
Ista

Re−L2

CD
Lars

CP

(e) corr: medium, regul: medium

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g
(r

e
la

ti
v
e
 d

is
ta

n
c
e
 t
o
 o

p
ti
m

u
m

)

SG

Fista

Ista

Re−L2

CD

Lars

CP

(f) corr: medium, regul: high

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g
(r

e
la

ti
v
e
 d

is
ta

n
c
e
 t
o
 o

p
ti
m

u
m

)

SG

Fista
Ista

Re−L2

CD
Lars

CP

(g) corr: high, regul: low

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g
(r

e
la

ti
v
e
 d

is
ta

n
c
e
 t
o
 o

p
ti
m

u
m

)

SG

Fista
Ista

Re−L2

CD
Lars

CP

(h) corr: high, regul: high

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g
(r

e
la

ti
v
e
 d

is
ta

n
c
e
 t
o
 o

p
ti
m

u
m

)

SG

Fista
Ista

Re−L2

CD
Lars

CP

(i) corr: high, regul: high

Figure 1.8: Benchmark for solving the Lasso for the medium-scale experiment n =
2000, p = 10000, for the three levels of correlation and three levels of regularization,
and 8 optimization methods (see main text for details). The curves represent the relative
value of the objective function as a function of the computational time in second on a
log10 / log10 scale.

27

1. Introduction and Related Work

selected dictionary elements. It sequentially adds a different dictionary element to
a set of active variables, which we denote by Λ, trying to solve Eq. (1.12) for every
sparsity value s′ ≤ s, and stops when the desired sparsity is reached. In some
sense, it builds a regularization path, and therefore shares similarities with LARS,
even though the two algorithms address different optimization problems. These
similarities are even stronger in terms of implementation. Similar tricks as those
described in Section 1.4.2 for the LARS algorithm can be used, and in fact both
algorithms have the same complexity, and have many steps in common. At each
iteration, an active set Λ containing the indices of the selected dictionary elements
is obtained. A good criterion for choosing the next dictionary element is to select
the one that helps most reducing the objective function

ı̂← arg min
i∈ΛC

min
β∈R|Λ|+1

1
2
‖x−DΛ∪{i}β‖22.

This might seem computationally expensive since it requires solving |ΛC | least-
squares problems, but the solution can in fact be obtained efficiently using some
tricks, based on Cholesky decomposition and basic linear algebra, which we will
not detail here for simplicity reasons. More details can be found in Cotter et al.
(1999) or in the software SPAMS presented in Section D.1.

After this step, the active set is updated Λ ← Λ ∪ {ı̂}, and the corresponding
residual r and coefficients α are

α← (D⊤ΛDΛ)−1D⊤Λx,

r← (Ip −DΛ(D⊤ΛDΛ)−1D⊤Λ)x,

where r is the residual of the orthogonal projection of x onto the linear subspace
spanned by the columns of DΛ. It is worth noticing that one does not need to
compute these two quantities in practice, but only updating the Cholesky de-
composition of (D⊤ΛDΛ)−1 and computing directly D⊤r, via simple linear algebra
relations.

OMP naturally extends to the case of group sparsity, addressing the problem

min
α∈Rp

1
2
‖x−Dα‖22 s.t. #{‖αg‖ 6= 0; g ∈ G} ≤ s,

where G is a set of groups, and the number of active groups should be smaller than s.
The optimization scheme in this setting is the same as OMP, except that one has to
select groups instead of individual variables. The active set Λ is now a subset of G, and
the criterion for choosing the next group ĝ can be

ĝ ← arg min
g∈ΛC

‖D⊤(x−Dα)‖2.

This modified version of OMP was first proposed by Tropp et al. (2006) in the context
of simultaneous sparse coding with a slightly different criterion, and revisited by Lozano
et al. (2009). This version also admits an efficient Cholesky-based implementation, which
we have used in Chapter 4 for image processing.

28

1.4. Optimization for Sparse Regularized Problems

1.4.7 Difference of Convex (DC) Programming - Reweighted-ℓ1
Schemes

This section addresses the problem of solving

min
α∈Rp

[

g(α) , f(α) + λΩ(α)
]

,

where Ω is a non-convex regularization function which is separable in every component
of α—that is, there exists a function ψ : R

+ → R
+ such that for all α in R

p, Ω(α) =
∑p
i=1 ψ(|αi|), with ψ differentiable and concave.

It is possible for instance to choose Ω(α) = ‖α‖qq ,
∑p
i=1 |αi|q, where ‖.‖q is an ℓq-

pseudo-norm with 0 < q < 1. Another classical choice is also Ω(α) =
∑p
i=1 log(|αi|+ ε)

(see Candès et al., 2008).
The main motivation for using such approaches is to exploit a regularization function

that induces more sparsity than the ℓ1-norm, and which might be addressed with other
tools than greedy methods. The unit balls corresponding to the ℓq pseudo-norms and
norms for several values of q are illustrated in Figure 1.9. When q decreases, the ℓq-ball
get “closer” to the ℓ0-ball, and better induces sparsity.

(a) ℓ0-ball, 2-D (b) ℓ0.5-ball, 2-D (c) ℓ1-ball, 2-D (d) ℓ2-ball, 2-D

Figure 1.9: Open balls in 2-D corresponding to several ℓq norms and pseudo-norms.

Even though the corresponding optimization problem is not convex and still not
smooth, a local optimum can be obtained using a DC-programming type of approach (see
Gasso et al., 2009; Candès et al., 2008, and references therein). The idea behind such a
scheme is relatively simple. It consists of iteratively minimizing convex surrogates g̃k of
the cost function g that are tangent to the graph of g around the current estimate αk.
In other words, at iteration k, g̃k(αk) = g(αk) and g̃k(α) ≥ g(α) for all α. To obtain
such surrogates, the key is to exploit the concavity of the functions ψ on R

+, which are
always below their tangents. This is illustrated in Figure 1.10. It is then easy to show
that such an iterative scheme can be written

αk+1 ← arg min
α∈Rp

[

f(α) + λ
p
∑

i=1

ψ′(|αki |)|αi|
]

,

which is a reweighted-ℓ1 decomposition problem. Note that with this scheme, the first
step is usually a simple Lasso, with no weights. The effect of the new weights ψ′(|αki |) is

29

1. Introduction and Related Work

to push to zero the smallest non-zero coefficients returned by the Lasso, and in practice
two or three iterations are enough to obtain the desired sparsifying effect.

αk

(a) red: f(α).

αk

(b) red: ψ(α) = log(|α|+ ε).
blue: convex surrogate ψ′(αk)|α|+ C.

αk

(c) red: g(α) = f(α) + ψ(α).
blue: convex surrogate g̃k(α) = f(α) + ψ′(αk)|α|+ C.

Figure 1.10: Illustration of the DC-programming approach. The non-convex part of the
function g is upperbounded by a convex weighted ℓ1-norm. The graphs of g and its
surrogate g̃k are tangent.

1.4.8 Network Flow Optimization

We present in this section some elements of network flow optimization (see Bertsekas,
1991; Ahuja et al., 1993, and references therein for more details), and its connections
with sparse methods, which we further exploit in Chapter 3.

30

1.4. Optimization for Sparse Regularized Problems

Let us consider a directed graph G = (V,E, s, t), where V is a set of vertices, E ⊆
V ×V an arc set, s is a vertex called source, and t is a vertex called sink, such that there
is no arc directed to s, and no arc outcoming from t.

We define a non-negative capacity function c : E → R
+ on the arcs. A flow f : E →

R
+ is a non-negative function on arcs that satisfies capacity constraints on all arcs (the

value of the flow on an arc is less than or equal to the arc capacity) and conservation
constraints on all vertices (the sum of incoming flows at a vertex is equal to the sum of
outgoing flows) except for the source and the sink.10

To simplify the notations, we can arbitrarily order the vertices and identify V \{s, t}
with a set J1; pK, where p , |V | − 2, so that an arc in E can be identified by two
indices (i, j). Denoting respectively cij and fij the capacity and the flow on an arc (i, j)
in E, we can write the capacity constraints as

∀(i, j) ∈ E, fij ≤ cij ,

and the conservation constraints

∀i ∈ V,
∑

j;(i,j)∈E
fij

︸ ︷︷ ︸

outgoing flow from i

=
∑

j;(j,i)∈E
fji

︸ ︷︷ ︸

incoming flow to i

The value of the flow is the amount of flow outgoing from s,
∑

i∈V ;(s,i)∈E fsi which is
equal to the flow incoming to t,

∑

i∈V ;(i,t)∈E fit. This is illustrated in Figure 1.11

s

1

fs1

2

fs2

4

f24f14

3

f13

5

f15 f25

t

f3t f4t f5t

Figure 1.11: Example of a directed graph G = (V,E, s, t), with flows fij , (i, j) ∈ E. The
flow should respect the capacity constraint fij ≤ cij for all (i, j) in E.

10Note that we only consider here the case of real-valued functions, since this is the one we need in
this thesis. Network flow problems with integer-valued functions can also be considered, and in fact
many results that are true in the continuous settings are also true in the discrete one.

31

1. Introduction and Related Work

A classical problem in network flow optimization is the max-flow problem (Ford and
Fulkerson, 1956), which consists of finding a flow of maximum value in the graph.

We can also define an (s, t)-cut in the graph, which is a partition (S, T) of V with s
in S and t in T . It is possible to define the capacity of the cut

∑

(i,j)∈E;i∈S;j∈T cij ,
and the problem min-cut consists of finding a cut in the graph with minimum capacity.
With these tools in hand, we can now move to the first interesting result due to Ford
and Fulkerson (1956):

Proposition 3 (Max-flow / min-cut theorem)
The maximum value of a flow in a graph is equal to the minimum capacity cut.

This proposition is not yet related to sparse methods. It just presents a duality
relation between the max-flow and min-cut problems. We will intensively use it in
Chapter 3. For solving the max-flow problem, a popular algorithm called “push-relabel”
is due to Goldberg and Tarjan (1986). We have implemented it in the software presented
in Section D.2, using refinements presented by Cherkassky and Goldberg (1997). An
example of a cut in a graph is presented in Figure 1.12 as long as a few properties of
min (s, t)-cuts, namely:

• There is no flow going from T to S (see Bertsekas, 1991).

• The cut goes through all arcs going from S to t, and all arcs going from s to T ,
and such arcs are saturated (the value of the flow on the arc equals the capacity).

s

1

fs1

S 2

fs2

T

4

f14f24

3

f13

5

f25

t

f3t f4t f5t

Figure 1.12: Example of a cut in a graph. Arcs in bold are saturated (the value of the
flow equals the capacity) and the flow on dotted arcs is zero.

We will also consider in this thesis the class of min-cost flow problems, which we now
present. In addition to the capacity function, let us define cost functions Cij : R → R,
one for every arc (i, j) in E. The min-cost flow problem consists of finding a flow f

32

1.5. Dictionary Learning and Matrix Factorization

that minimizes the total cost on the graph
∑

(i,j)∈E Cij(fij). The costs Cij are often
linear in the flow fij , and in fact the terminology “min-cost flow problem” often refers
to this particular setting in the literature. The more interesting case because of its
connection with sparse methods is that of quadratic cost functions. In particular, we
show in Chapter 3 that the problem of projecting a vector onto the simplex, which can
be written as follows

min
α∈Rp

1
2
‖u−α‖22 s.t.

p
∑

i=1

αi = 1, α ≥ 0,

is a particular cost of a quadratic min-cost flow problem, also known as continuous
quadratic knapsack problem. This has been addressed with linear-time algorithms by
Brucker (1984), revisited later by Maculan and de Paula (1989), and rediscovered re-
cently in the machine learning community by Duchi et al. (2008). We further explore
these connections between network flow algorithms and sparse methods in Chapter 3.

1.5 Dictionary Learning and Matrix Factorization

We have presented in the previous section several tools to solve sparse decomposition
problems when the dictionary is fixed. We now move to the dictionary learning frame-
work.

The problem of learning a basis set, first introduced by Olshausen and Field (1996,
1997), can be formulated as a matrix factorization problem. More specifically, given a
training set of n signals X = [x1, . . . ,xn] in R

m×n, one looks for a dictionary matrix D
in R

m×p such that each signal xi admits a sparse decomposition in D. This can be
written in a general form

min
D∈D,A∈A

1
n

n∑

i=1

[1
2
‖xi −Dαi‖22 + λΩ(αi)

]

,

where D and A are convex sets, A = [α1, . . . ,αn] is in A ⊆ R
p×n and Ω is a sparsity-

inducing regularization term. The number of samples n is usually large, whereas the
signal dimension m is relatively small, for example, m = 100 for 10× 10 image patches,
and n ≥ 100 000 for typical image processing applications. In general, we also have p≪ n
(e.g., p = 200 for n = 100 000), but each signal only uses a few elements of D in its
representation, say 10 for instance. Note that, in this setting, overcomplete dictionaries
with p > m are allowed.

This problem can equivalently be rewritten as a matrix factorization problem:

min
D∈D,A∈A

[1
2
‖X−DA‖2F + λΩ′(A)

]

,

where Ω′(A) , 1
n

∑n
i=1 Ω(αi). A classical choice consists for instance in choosing Ω to

be the ℓ1-norm, A to be unconstrained (A = R
p×n), and D to be the set of matrices

whose columns have bounded ℓ2-norms:

D , {D ∈ R
m×p s.t. ∀j ∈ J1; pK, ‖dj‖22 ≤ 1}.

33

1. Introduction and Related Work

Since the term DA is invariant by multiplying D by a diagonal matrix on the right
and A by its inverse on the left, preventing D from being arbitrarily large (which would
make A arbitrarily small) has indeed proven to be necessary in practice.

We now present other matrix factorization formulations that are related to dictionary
learning.

1.5.1 Classical Matrix Factorization Methods

We start by principal component analysis (PCA), then move to vector quantization and
non-negative matrix factorization.

Principal Component Analysis

Principal component analysis is a widely used tool for data analysis. It looks for a set
of orthogonal directions that maximize the explained variance of data vectors. This is
equivalent to the matrix factorization problem

min
D∈Rm×p,A∈Rp×n

1
2
‖X−DA‖2F s.t. D⊤D = Im and AA⊤ is diagonal.

The solution can be obtained by a singular value decomposition (SVD), and the columns
on D are the desired principal components.

Vector Quantization - Hard Assignment

Vector quantization (or clustering) can also be seen as a matrix factorization problem.
Given n data vectors X = [x1, . . . ,xn], one can look for p clusters, defined by their
centroids [d1, . . . ,dp] and a binary assignment for each data vector, which can be rep-
resented by binary vectors αi in {0, 1}p such that

∑p
j=1α

i
j = 1—that is, one single

entry of αi is equal to 1, and the rest is zero. Since the assignments have binary values,
one often uses the terminology “clustering with hard assignment”, as opposed to “soft
assignment”, which is the topic of the next section.

With these notations in hand, we rewrite the clustering problem as

min
D∈Rm×p,A∈{0,1}p×n

1
2
‖X−DA‖2F s.t.

p
∑

j=1

αij = 1, for all i ∈ J1; pK,

which is the same optimization problem addressed by the algorithm K-means (see Hastie
et al., 2009, and references therein). It can be seen as a specific sparse matrix factor-
ization, where the columns of A are forced to have a sparsity of one. And in fact,
the algorithm K-SVD introduced by Aharon et al. (2006) for learning dictionaries, is
presented by their authors as a generalization of K-means, emphasizing the tight links
between clustering and dictionary learning.

34

1.5. Dictionary Learning and Matrix Factorization

Vector Quantization - Soft Assignment

One possible view of vector quantization with soft assignment is to model data vectors
as non-negative linear combinations of centroids that sum to one. More precisely, the
corresponding optimization problem is

min
D∈Rm×p,A∈Rp×n

1
2
‖X−DA‖2F s.t.

p
∑

j=1

αij = 1, for all i ∈ J1; pK, and A ≥ 0,

which is even closer to dictionary learning than vector quantization with hard assign-
ment. Interestingly, these connections have been recently further exploited in computer
vision by Yang et al. (2009); Boureau et al. (2010) in the so-called bags-of-features models,
using dictionary learning instead of classical vector quantization techniques for building
visual codebooks that are used for image classification tasks.

Non-negative Matrix Factorization

We now mention the non-negative matrix factorization technique proposed by Lee and
Seung (2001). In its simplest form, it consists of solving

min
D∈Rm×p,A∈Rp×n

1
2
‖X−DA‖2F s.t. D ≥ 0 and A ≥ 0,

With this formulation, the matrices D and A are forced to have non negative entries,
which can lead to sparse solutions. When applied to images, such as faces, Lee and Seung
(2001) have shown that the learned features are more “localized” than the ones learned
with a classical singular value decomposition. Whereas the importance of NMF in com-
puter vision remain unclear, it has led to interesting results for audio analysis (Févotte
et al., 2009), but with a different loss function than the square loss that is more adapted
to audio modalities. Variants of NMF with sparsity constraints (Hoyer, 2002, 2004) have
also been proposed, with strong connections with dictionary learning.

1.5.2 Dictionary Learning Algorithms

We now move to one of the main topics of this thesis, which is dictionary learning.
Like all the matrix factorization formulations presented in the previous section, the
corresponding optimization problems are non-convex, and we classify them into two
categories. Those relying on ℓ1-regularization, and those exploiting directly the ℓ0-
pseudo-norm.

Matrix Factorization with ℓ1-regularization

We start by considering the ℓ1-regularized dictionary learning problem, defined as

min
D∈D,A∈Rm×p

1
n

n∑

i=1

[1
2
‖xi −Dαi‖22 + λ‖αi‖1

]

,

35

1. Introduction and Related Work

which was first considered by Olshausen and Field (1996), along with other non-convex
smooth regularizers that induce approximately sparse vectors (vectors that are not sparse
but that have many small coefficients).

Even though the optimization problem is not jointly convex in (D,A), it is convex
with respect to each variable D or A when the other one is fixed. A natural way
of optimizing the cost function is therefore to alternate the minimization between D
and A, fixing one and optimizing with respect to the other. Optimizing with respect
to A can be done with any technique we have presented so far in this thesis, even though
we might prefer LARS for the classical setting where the xi’s are relatively small and
the solution very sparse. As shown in our benchmark presented in Section 1.4.5, LARS
is indeed particularly efficient in this case. Optimizing with respect to D can be done
with a gradient descent approach as done by Olshausen and Field (1996), or a Newton
method in a dual formulation, as proposed by Lee and Seung (2001). We propose in
Chapter 2 other approaches to address this problem, which have proven to be more
efficient.

Matrix Factorization with ℓ0-regularization

The ℓ0 dictionary learning formulation can be written as follows

min
D∈D,A∈Rm×p

1
n

n∑

i=1

1
2
‖xi −Dαi‖22 s.t. ‖αi‖0 ≤ s, ∀i ∈ J1;nK. (1.13)

The approach proposed by Engan et al. (1999) and called MOD (method of optimal
directions) is also an alternate minimization approach.

• During the sparse coding step D is fixed, and the vectors αi are obtained using a
greedy approach, such as the ones presented in Section 1.4.6.

• During the dictionary learning step, A is fixed and D is updated with the formula

D← ΠD[XA(AA⊤)−1],

where XA(AA⊤)−1 is the solution of the minimization of Eq. (1.13) with respect
to D when the coefficients A are fixed and the constraints D are dropped. ΠD is
the projection operator on D, that in practice normalizes the columns of a given
matrix. Since the cost function of Eq. (1.13) is invariant by replacing D by DΓ and
A by Γ−1A where Γ is a positive definite diagonal matrix, it is possible to show
that such an update minimizes Eq. (1.13) with respect to D, when in addition one
authorizes the rows of A to be rescaled.

The K-SVD is another approach proposed by Aharon et al. (2006). It is also an
alternate minimization approach between two steps. The sparse coding step is the same
as for MOD, but the dictionary update step updates both D and the values of the
non-zero coefficients of A. The dictionary learning step consists of one pass of a block-
coordinate approach, where sequentially for all j in J1; pK, one column dj is updated

36

1.6. Dictionary Learning for Image Processing

(keeping the other fixed) simultaneously with the non-zero entries of the j-th row of A.
Such an update can equivalently be rewritten as a one-rank approximation of a matrix,
which can be obtained with a one-rank singular value decomposition (SVD), giving its
name to the algorithm.

1.6 Dictionary Learning for Image Processing

Some of the results presented in this section are reported from the following works,
which have been undertaken before the beginning of this PhD:

J. Mairal, M. Elad and G. Sapiro. Sparse representation for color image restoration.
IEEE Transactions on Image Processing. 17(1):53–69. 2008.

J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representations for image
and video restoration. SIAM Multiscale Modelling and Simulation, 7(1):214–241, April
2008.

J. Mairal, G. Sapiro, and M. Elad. Multiscale sparse image representation with learned
dictionaries. Proceedings of the IEEE International Conference on Image Processing,
2007.

We show in this section several applications of the dictionary learning problem, whose
successes have motivated our research.

1.6.1 Dictionary Learning for Natural Image Patches

Before moving to concrete applications, we show the result of learning dictionaries on
a database of natural images patches, as originally proposed by Olshausen and Field
(1996). To do so, we use the algorithm which will be presented in Chapter 2 on a
database of 10 millions patches of size 12× 12 pixels, randomly extracted from natural
images. We process both grayscale image patches, and RGB color image patches that
are concatenated as a single vector as done by Mairal et al. (2008b). For grayscale
patches, the mean value of each patch is removed and the patches are normalized to
have unit ℓ2-norm. For the color patches, the mean color of the patch is removed and
the patches are also normalized. We show in Figure 1.13 visual results obtained when
learning p = 256 dictionary elements, using the ℓ1-regularized version of dictionary
learning, with a parameter λ = 0.1. As already reported in the literature (see Olshausen
and Field, 1996; Elad and Aharon, 2006), we observe intriguing results: some of the
dictionary elements looking like oriented edges (somewhat similar to Gabor filters), some
others look like low-pass filters. As for the color patches, we observe an interesting
phenomenon, namely that most of the dictionary elements look gray, and might therefore
be “devoted”, to reconstructing geometrical structures in images. As for the colored

37

1. Introduction and Related Work

dictionary elements, they typically have low frequencies and seem, to some extent, to
present two opposite colors, with groups of “green-magenta” or “yellow-blue” dictionary
elements. A similar observation was also made earlier by Hoyer and Hyvärinen (2000)
with a different technique called independent component analysis (ICA), which is used
to model data vectors as linear mixtures of independent latent variables. When applied
to natural image patches, this technique visually leads to similar results as dictionary
learning.

Figure 1.13: Example of a learned dictionaries on 12 × 12 patches of natural images
with p = 256 dictionary elements. Left: dictionary learned on grayscale image patches.
Right: dictionary learned on RGB color image patches. The dictionary is learned using
the algorithm of Chapter 2 on a database of 10 millions patches. Since patches may have
negative values, they are arbitrarily translated and rescaled for display.

We now move to restoration tasks exploiting this image patch representation, which
have been quite successful.

1.6.2 Image Denoising

We present in this section a successful denoising method first introduced by Elad and
Aharon (2006). Let us consider first the classical problem of restoring a noisy image y
in R

n which has been corrupted by a white Gaussian noise of standard deviation σ.
Classical techniques often formulate the image denoising problem as an energy min-

imization one, trying to find an estimate x̂ that minimizes

min
x∈Rn

1
2
‖y− x‖22 + ψ(x),

38

1.6. Dictionary Learning for Image Processing

where the first quadratic term is called a data fitting term, ensuring that the estimate is
close enough to the noisy measurement y, and ψ(x) is a regularization function ensuring
that the estimate x respects a particular image model.11

Finding a good image model is a notably difficult task. Early works have assumed
the image to be smooth using filtering techniques (Kovasznay and Joseph, 1955; Per-
ona and Malik, 1990), to have a small total variation (Rudin and Osher, 1994), or have
used Markov Random Fields (MRF) to model regularity between adjacent pixels (Zhu
and Mumford, 1997). We now use the assumption that the clean signal can be ap-
proximated by a sparse linear combination of elements from a dictionary. Like many
recent works (Buades et al., 2005; Roth and Black, 2005) the approach we present is
patch-based.

Under this assumption, denoising a patch yi in R
m with a dictionary D in R

m×p

(with p elements), amounts to solving the following sparse decomposition problem

min
α∈Rp

Ω(α) s.t. ‖yi −Dα‖22 ≤ ε, (1.14)

where Dα is an estimate of the clean signal, and Ω is a sparsity-inducing regularization
function. It can be the ℓ1-norm, leading to the well-known Lasso (Tibshirani, 1996)
and basis pursuit (Chen et al., 1998) problems, or the ℓ0-pseudo-norm. Following Elad
and Aharon (2006); Mairal et al. (2008b, 2009c), ε can be chosen according to the
(supposed known) standard deviation σ of the noise. One indeed expects the residual
yi−Dα to behave as a Gaussian vector, and thus ‖yi−Dα‖22/σ2 to follow a chi-squared
distribution χ2

m concentrated around m. The strategy proposed by Mairal et al. (2008b)
is to put a threshold the cumulative distribution function Fm of the χ2

m distribution and
choose ε as ε = σ2F−1

m (τ), where F−1
m is the inverse of Fm. Selecting the value τ = 0.9

leads in practice to acceptable values of ε (Mairal et al., 2008b, 2009c).
Various types of wavelets (Mallat, 1999) have been used as dictionaries for natural

images. Building on ideas proposed by Olshausen and Field (1997) to model neuronal
responses in the V1 area of the brain, Elad and Aharon (2006) have proposed instead
to learn a dictionary D adapted to the image at hand, and demonstrated that learned
dictionaries lead to better empirical performance than off-the-shelf ones. Since images
may be very large, efficiency concerns naturally lead to sparsely decomposing image
patches rather than the full image. For an image of size n, a dictionary in R

m×p adapted
to the n overlapping patches of size m (typically m = 8 × 8 ≪ n) associated with the
image pixels, is learned by addressing the following optimization problem

min
D∈D,A∈Rp×n

n∑

i=1

Ω(αi) s.t. ‖yi −Dαi‖22 ≤ ε, (1.15)

where D is the set of matrices in R
m×p with unit ℓ2-norm columns, A = [α1, . . . ,αn]

is a matrix in R
p×n, yi is the i-th patch of the noisy image y, αi is the corresponding

11In a probabilistic model, the optimization problem would be written minx∈Rn
1

2σ
‖y−x‖22− log p(x),

where p is a prior distribution for x. Therefore ψ can be related to a log-prior.

39

1. Introduction and Related Work

code, and Dαi is the estimate of the denoised patch. Note that this procedure implic-
itly assumes that the patches are independent from each other, which is questionable
since they overlap. However, this approximation makes the corresponding optimization
tractable. Adding some consistency in the reconstruction of adjacent patches, instead of
processing them independently is in fact an interesting open topic, which, to the best of
our knowledge, has never been addressed effectively.

Once the dictionary D and codes αi have been learned, every pixel admits m esti-
mates (one per patch containing it), and its value can be computed by averaging these:

x =
1
m

n∑

i=1

RiDαi, (1.16)

where Ri in R
n×m is the binary matrix which places patch number i at its proper posi-

tion in the image. This approach learns the dictionary on the set of overlapping noisy
patches, thereby adapting the dictionary to the image itself, which is a key element in ob-
taining better results. Such an aggregation procedure averaging estimators obtained by
applying a non-translation-invariant operation on different shifted versions of patches, is
related to the classical translation-invariant denoising proposed by Coifman and Donoho
(1995), which basically proceeds in the same way with wavelet denoising. Even though
aggregating estimators by straight averaging might look suboptimal, we are not aware
of any other technique, in the context of dictionary learning, leading to better results
for reconstructing the final image from the estimated patches.

How to choose between the ℓ1- or ℓ0-regularizations is not a priori clear. Following
Elad and Aharon (2006), we have experimentally observed that, given a fixed dictio-
nary D, the reconstructed image is in general of better quality when using the ℓ0-
pseudo-norm rather than its convex ℓ1 counterpart. However, we have also observed
that dictionaries learned with the ℓ1-norm are usually better for denoising, even when
the final reconstruction is done with the ℓ0-pseudo-norm. We investigate this question
more thoroughly in Section 1.6.5.

1.6.3 Dictionary Learning with Missing Data — Inpainting

It is possible to model the presence of missing data in the dictionary learning formula-
tion (see Mairal et al., 2008b). For a patch i in J1;nK, we introduce a binary mask Mi

as a diagonal matrix in R
m×m whose value on the j-th entry of the diagonal is 1 if

the pixel yij is known and 0 otherwise, where yij is the j-th pixel of the i-th patch of
an image y in R

n. The general dictionary learning formulation with missing data then
becomes

min
D∈D,A∈Rp×n

1
n

n∑

i=1

1
2
‖Mi(yi −Dαi)‖22 + λΩ(αi).

In practice, the presence of the binary mask does not drastically change the optimization
procedure, and one still can alternates between the optimization of D and A. When
the image y is only corrupted by missing pixels and not by other additive noise, one can

40

1.6. Dictionary Learning for Image Processing

also enforce hard reconstruction constraints, and address

min
D∈D,A∈A

Ω(αi) s.t. Mi(yi −Dαi) = 0.

Before showing any inpainting result, we shall comment on when these formulations are
supposed to work.

• First, the formulation exploits independently for each patch the available pixel
values. It can therefore only handle holes that are smaller than the patch size.
Handling large holes might be possible with a different formulation, for instance
with a diffusion process that would allow filling in holes (see Roth and Black, 2005,
for such a strategy).

• Second, one assumes that the noise pattern does not admit a sparse represen-
tation, which the dictionary could learn otherwise. The demosaicking task (see
Mairal et al., 2008b) is a typical example of inpainting small holes with such a
problematic pattern. In this case, different strategies can be used, such as learning
the dictionary offline on a database of clean signals, and then possibly refine it on
an estimate of the demosaicked image.

We now show inpainting results in Figure 1.14, one from Mairal et al. (2008b), and one
from Mairal et al. (2008d), where a multiscale variant of K-SVD is introduced.

1.6.4 Video Processing

The extension of dictionary learning techniques for dealing with videos has been proposed
by Protter and Elad (2009). Given a noisy video sequence, a first naive approach consists
of processing each frame independently. To exploit temporal consistency and improve
the performance of this approach, some key components can be added:

• One should process several frames at the same time, for instance T frames, and
consider video patches corresponding to 3-D blocks of size m = e × e × T in the
video, where e is the edge size of a patch. Typical sizes might be for instance
e = 10 pixels and T = 5 frames.

• After processing T frames, one can move to the next block of T frames (which
possibly overlaps with the previous one), and one should use the previously learned
dictionary as an initialization of the learning process that adapts the dictionary to
the current block.

We show examples in Figures 1.15 and 1.16 two video processing results from (Mairal
et al., 2008d), where this video extension has been adapted to the inpainting and color
video denoising tasks.

41

1. Introduction and Related Work

(a) Example A, Damaged (b) Example A, Restored

(c) Example B, Damaged (d) Example B, Restored

Figure 1.14: Top: Inpainting result from Mairal et al. (2008b), where the text is auto-
matically removed on the restored image. Images are under copyright c©IEEE. Bottom:
Inpainting result presented from Mairal et al. (2008d), where 80% of the pixels are ran-
domly removed from the original image. The algorithm is able to reconstruct the brick
texture on the right, without seeing the original image. Images under copyright c©SIAM.

42

1.6. Dictionary Learning for Image Processing

(a) Original (b) Damaged (c) Image Denoising (d) Video Denoising

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Figure 1.15: Color video denoising result from Mairal et al. (2008d). The third column
show the result when each frame is processed independently from the others. Last column
show the result of the video processing approach. Images under copyright c©SIAM.

43

1. Introduction and Related Work

(a) Original (b) Damaged (c) Image Inpainting (d) Video Inpainting

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Figure 1.16: Video inpainting result from Mairal et al. (2008d). The third column show
the result when each frame is processed independently from the others. Last column
show the result of the video processing approach. Images under copyright c©SIAM.

44

1.6. Dictionary Learning for Image Processing

1.6.5 ℓ0 vs ℓ1 for Image Denoising

In this section, we address the question of whether one should use the ℓ0 or the ℓ1-
regularization for restoring natural images. We use the following methodology for pro-
cessing one image, which follows from Elad and Aharon (2006), but allows using a
different regularization scheme for learning the dictionary than for reconstructing the
image:

1. Patch Extraction: Extract all overlapping patches from the image.

2. Dictionary Learning Step: Learn a dictionary on this set of patches using a
regularization scheme (A). We use the alternate minimization approach described
before, with 50 iterations between updates of the coefficients and updates of the
dictionary, after initializing the dictionary with randomly extracted patches from
the image.

3. Final Reconstruction Step: Reconstruct every patch of the image using a reg-
ularization scheme (B).

4. Averaging Step: Reconstruct the image using the averaging formula of Eq. (1.16).

For the quantitative evaluation, we have chosen a dataset of 12 standard images,
which we also use later in Chapter 4. These images are presented in Figure 1.17.

(a) house (b) peppers (c) Cameraman (d) lena (e) barbara (f) boat

(g) hill (h) couple (i) man (j) fingerprint (k) bridge (l) flintstones

Figure 1.17: Dataset of 12 standard images.

We compare the denoising performance of ℓ0 and ℓ1-regularization, during the train-
ing of the dictionary, and the final reconstruction of the image patches. We arbitrarily
choose image patches of size 8 × 8, following Elad and Aharon (2006) and a dictionary
size of p = 200 elements. We add synthetic noise to the 12 images, with standard de-
viations σ in {5, 10, 15, 20, 25, 50, 75, 100}. For each image, we follow the restoration

45

1. Introduction and Related Work

procedure described above. For learning the dictionary, we alternate 50 times between
the minimization of A and D using the regularization scheme (A). Then, we decompose
again every patch of the image using the regularization scheme (B), before reconstruct-
ing the final image with the averaging procedure. The regularization schemes (A) and
(B) for decomposing a patch y in R

m can be

min
α∈Rp

1
2
‖y−Dα‖22 + λ‖α‖1, (ℓ1-P)

min
α∈Rp

‖α‖1 s.t. ‖y−Dα‖22 ≤ ε, (ℓ1-R)

min
α∈Rp

1
2
‖y−Dα‖22 + λ‖α‖0, (ℓ0-P)

min
α∈Rp

‖α‖0 s.t. ‖y−Dα‖22 ≤ ε. (ℓ0-R)

For ε, we try the values ε = Cmσ2 with C taken on a grid {0.9, 0.94, 0.98, . . . , 1.2},
which we refine on an additive scale with step 0.01. For λ, we try the values λ = 10iσ,
with i taken on a grid {−6,−5, . . . , 1}, which we further refine by trying values of the
form λ = 10

i
4σ, and then λ = 10

i
16σ For each value of noise, we keep the parameters

providing the best results on average on the first 3 images, house, peppers and cameraman,
after 20 dictionary updates.

The average PSNR of the reconstructed images are presented on Table 1.1, for each
value of noise, and each combination where we train with one of of the regularization
schemes, and finally reconstruct the image with another one. The corresponding per-
formance of the reconstruction for each individual patches before the averaging step is
presented on Table 1.2.

Our conclusions from this experiment are the following:

• The averaging step is a key component of the denoising algorithm. The quality of
the results is much higher after the averaging step than before.

• For reconstructing individual patches (before the averaging step), the ℓ1-regulari-
zation is significantly better than ℓ0 one.

• For reconstructing full images (after the averaging step), it is always better to use
an ℓ0-regularization during the final reconstruction than ℓ1, but at the same time,
it is also better to use an ℓ1-regularization during the dictionary learning step.

• For large amount of noise, penalized formulations (ℓ0-P or ℓ1-P) should be pref-
ered to constrained formulations (ℓ0-R or ℓ1-R). For small standard deviations, one
should prefer the constrained formulations.

These conclusions are intriguing, and to the best of our knowledge have only been
mentioned before by us in (Mairal et al., 2009c). We do not have clear theoretical
explanations for them, but propose the following intuitive arguments.

46

1.6. Dictionary Learning for Image Processing

σ = 5 σ = 10
H

H
H

H
HH

(A)

(B)
ℓ0-P ℓ0-R ℓ1-P ℓ1-R ℓ0-P ℓ0-R ℓ1-P ℓ1-R

ℓ0-P 37.07 37.45 36.84 37.05 33.75 33.81 32.52 33.38
ℓ0-R 37.39 37.45 36.89 37.16 33.75 33.83 33.14 33.43
ℓ1-P 37.08 37.62 36.63 37.31 33.88 33.91 33.34 33.47
ℓ1-R 37.59 37.62 37.23 37.31 33.89 33.94 33.41 33.50

σ = 15 σ = 20
H

H
H

H
HH

(A)

(B)
ℓ0-P ℓ0-R ℓ1-P ℓ1-R ℓ0-P ℓ0-R ℓ1-P ℓ1-R

ℓ0-P 31.79 31.81 31.13 31.30 30.47 30.41 29.78 29.84
ℓ0-R 31.77 31.85 31.31 31.34 30.50 30.47 29.81 29.88
ℓ1-P 31.87 31.86 31.37 31.33 30.49 30.43 29.88 29.85
ℓ1-R 31.90 31.92 31.34 31.39 30.55 30.50 29.90 29.91

σ = 25 σ = 50
H

H
H

H
HH

(A)

(B)
ℓ0-P ℓ0-R ℓ1-P ℓ1-R ℓ0-P ℓ0-R ℓ1-P ℓ1-R

ℓ0-P 29.44 29.34 28.76 28.71 26.23 25.95 25.57 25.31
ℓ0-R 29.47 29.40 28.81 28.76 26.24 25.95 25.53 25.28
ℓ1-P 29.43 29.34 28.82 28.71 26.22 25.93 25.65 25.29
ℓ1-R 29.52 29.41 28.87 28.78 26.24 25.94 25.59 25.26

σ = 75 σ = 100
H

H
H

H
HH

(A)

(B)
ℓ0-P ℓ0-R ℓ1-P ℓ1-R ℓ0-P ℓ0-R ℓ1-P ℓ1-R

ℓ0-P 24.20 23.77 23.70 23.34 22.61 22.32 22.42 22.10
ℓ0-R 24.15 23.74 23.63 23.32 22.65 22.26 22.37 22.07
ℓ1-P 24.19 23.73 23.77 23.32 22.74 22.30 22.46 22.09
ℓ1-R 24.14 23.72 23.66 23.29 22.62 22.22 22.36 22.05

Table 1.1: Comparison between ℓ0 and ℓ1-regularizations for image denoising. Results
are presented in PSNR. For every value of the standard deviation σ, we present the
results for every combination of regularization schemes, where the ones (A) for learning
the dictionary are represented on rows, and the ones for reconstructing the image (B)
on columns. Best results are in bold.

47

1. Introduction and Related Work

σ = 5 σ = 10
H

H
H

H
HH

(A)

(B)
ℓ0-P ℓ0-R ℓ1-P ℓ1-R ℓ0-P ℓ0-R ℓ1-P ℓ1-R

ℓ0-P 34.28 34.61 36.00 36.01 30.66 30.74 31.49 32.14
ℓ0-R 35.01 34.82 35.95 36.08 30.90 30.96 32.03 32.17
ℓ1-P 34.28 34.50 35.55 36.26 30.52 30.63 32.16 32.22
ℓ1-R 34.66 34.63 36.31 36.26 30.78 30.77 32.26 32.26

σ = 15 σ = 20
H

H
H

H
HH

(A)

(B)
ℓ0-P ℓ0-R ℓ1-P ℓ1-R ℓ0-P ℓ0-R ℓ1-P ℓ1-R

ℓ0-P 28.62 28.73 29.93 29.94 27.18 27.27 28.58 28.38
ℓ0-R 28.93 28.84 30.00 29.98 27.48 27.35 28.63 28.44
ℓ1-P 28.41 28.39 30.06 29.97 26.97 27.07 28.63 28.41
ℓ1-R 28.78 28.65 30.14 30.03 27.29 27.21 28.72 28.46

σ = 25 σ = 50
H

H
H

H
HH

(A)

(B)
ℓ0-P ℓ0-R ℓ1-P ℓ1-R ℓ0-P ℓ0-R ℓ1-P ℓ1-R

ℓ0-P 26.28 26.27 27.52 27.18 23.07 22.71 24.06 23.42
ℓ0-R 26.39 26.25 27.54 27.22 22.94 22.58 23.97 23.44
ℓ1-P 26.08 26.08 27.60 27.18 23.03 22.65 24.21 23.39
ℓ1-R 26.33 26.17 27.57 27.24 22.79 22.48 24.07 23.43

σ = 75 σ = 100
H

H
H

H
HH

(A)

(B)
ℓ0-P ℓ0-R ℓ1-P ℓ1-R ℓ0-P ℓ0-R ℓ1-P ℓ1-R

ℓ0-P 20.83 20.23 21.92 21.33 17.94 18.79 20.48 20.01
ℓ0-R 20.72 20.21 21.80 21.31 19.06 18.69 20.38 19.95
ℓ1-P 20.88 20.37 22.09 21.31 19.24 18.78 20.56 20.00
ℓ1-R 20.65 20.14 21.84 21.28 19.02 18.63 20.35 19.93

Table 1.2: Comparison between ℓ0 and ℓ1-regularizations for denoising individual
patches. Results are presented in PSNR. For every value of the standard deviation σ,
we present the results for every combination of regularization schemes, where the ones
(A) for learning the dictionary are represented on rows, and the ones for reconstructing
the image (B) on columns. Best results are in bold.

48

1.6. Dictionary Learning for Image Processing

We believe that the reason of the good performance of ℓ1-regularization for learning
the dictionary might be: (i) a better stability of the sparsity patterns than the ones
obtained with ℓ0, and/or (ii) a better behavior in terms of optimization, where the
ℓ1-schemes guarantee to obtain a stationary point of the formulation, whereas ℓ0 does
not.

The stability argument that favors ℓ1 might explain why this regularization is better
than ℓ0 for individual patches. However, the reason why the hierarchy is reversed after
the averaging step remain alusive. It may be that the errors made with ℓ0 are greater
than with ℓ1 for individual patches, but are quite independent from a patch to another
one, even when the latter overlap. This would explain why these errors are greatly
reduced by the averaging step. As for the ℓ1-regularization, the errors are individually
smaller, but are highly correlated from one patch to another, and do not average well.
One could argue that the Lasso estimator is biased, and indeed it is classical to use the
Lasso for selecting the dictionary elements, and then perform an orthogonal projection
onto the span of these selected dictionary elements to obtain an unbiased estimator (see
Hastie et al., 2009, and references therein). This argument is true in part, and we have
indeed observed that the quality of images obtained with the ℓ1 reconstruction improve
with this modification, but it is not sufficient. Even with un unbiased estimator based on
ℓ1, significantly better results are obtained using greedy approaches. Note also that these
conclusions stand for the dictionary learning approach based on alternate minimization
which we have described before, but we have not observed significant differences when
trying other approaches such as the online learning procedure we present in Chapter 2,
or the K-SVD introduced by Aharon et al. (2006).

49

2

Online Learning for Matrix Factorization and
Sparse Coding

Chapter abstract: Sparse coding—that is, modelling data vectors as sparse linear combina-
tions of basis elements—is widely used in machine learning, neuroscience, signal processing, and
statistics. This work focuses on the large-scale matrix factorization problem that consists of
learning the basis set in order to adapt it to specific data. Variations of this problem include
dictionary learning in signal processing, non-negative matrix factorization and sparse principal
component analysis. In this work, we propose to address these tasks with a new online op-
timization algorithm, based on stochastic approximations, which scales up gracefully to large
data sets with millions of training samples, and extends naturally to various matrix factorization
formulations, making it suitable for a wide range of learning problems. A proof of convergence
is presented, along with experiments with natural images and genomic data demonstrating that
it leads to state-of-the-art performance in terms of speed and optimization for both small and
large data sets.

The reader is advised to read the Section 1.5 on dictionary learning before reading this
chapter. The material of this part is based on the two following publications:

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse cod-
ing. In Proceedings of the International Conference on Machine Learning (ICML), 2009.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization
and sparse coding. Journal of Machine Learning Research, 11:19–60, 2010.

2.1 Introduction

In machine learning, statistics and signal processing, slightly different matrix factoriza-
tion problems are formulated in order to obtain a few interpretable basis elements from
a set of data vectors. This includes dictionary learning, non-negative matrix factoriza-
tion and its variants (Lee and Seung, 2001; Hoyer, 2002, 2004; Lin, 2007), and sparse
principal component analysis (Zou et al., 2006; d’Aspremont et al., 2007, 2008; Witten
et al., 2009; Zass and Shashua, 2007). As shown in this chapter, these problems have

51

2. Online Learning for Matrix Factorization and Sparse Coding

strong similarities; even though we first focus on the problem of dictionary learning,
the algorithm we propose is able to address all of them. While learning the dictionary
has proven to be critical to achieve (or improve upon) state-of-the-art results in signal
and image processing, effectively solving the corresponding optimization problem is a
significant computational challenge, particularly in the context of large-scale data sets
that may include millions of training samples. Addressing this challenge and designing
a generic algorithm which is capable of efficiently handling various matrix factorization
problems, is the topic of this chapter.

Most recent algorithms for dictionary learning (Engan et al., 1999; Lewicki and Se-
jnowski, 2000; Aharon et al., 2006; Lee et al., 2007) are iterative batch procedures,
accessing the whole training set at each iteration in order to minimize a cost function
under some constraints, and cannot efficiently deal with very large training sets (Bot-
tou and Bousquet, 2008), or dynamic training data changing over time, such as video
sequences. To address these issues, we propose an online approach that processes the
signals, one at a time, or in mini-batches. This is particularly important in the context
of image and video processing (Protter and Elad, 2009; Mairal et al., 2008d), where it
is common to learn dictionaries adapted to small patches, with training data that may
include several millions of these patches (roughly one per pixel and per frame). In this
setting, online techniques based on stochastic approximations are an attractive alterna-
tive to batch methods (see, e.g., Bottou, 1998; Kushner and Yin, 2003; Shalev-Shwartz
et al., 2009). For example, first-order stochastic gradient descent with projections on
the constraint set (Kushner and Yin, 2003) is sometimes used for dictionary learning
(see Olshausen and Field, 1997, 1996; Aharon and Elad, 2008; Kavukcuoglu et al., 2008
for instance). We show in this chapter that it is possible to go further and exploit the
specific structure of sparse coding in the design of an optimization procedure tuned to
this problem, with low memory consumption and lower computational cost than classical
batch algorithms. As demonstrated by our experiments, it scales up gracefully to large
data sets with millions of training samples, is easy to use, and is faster than competitive
methods.

The chapter is structured as follows: Section 2.2 briefly recalls the dictionary learning
problem. The proposed method is introduced in Section 2.3, with a proof of convergence
in Section 2.4. Section 2.5 extends our algorithm to various matrix factorization problems
that generalize dictionary learning, and Section 2.6 is devoted to experimental results,
demonstrating that our algorithm is suited to a wide class of learning problems.

2.1.1 Contributions

This chapter makes four main contributions:

• We cast in Section 2.2 the dictionary learning problem as the optimization of a
smooth nonconvex objective function over a convex set, minimizing the (desired)
expected cost when the training set size goes to infinity, and propose in Section 2.3
an iterative online algorithm that solves this problem by efficiently minimizing
at each step a quadratic surrogate function of the empirical cost over the set of

52

2.2. Problem Statement

constraints. This method is shown in Section 2.4 to converge almost surely to a
stationary point of the objective function.

• As shown experimentally in Section 2.6, our algorithm is significantly faster than
previous approaches to dictionary learning on both small and large data sets of
natural images. To demonstrate that it is adapted to difficult, large-scale image-
processing tasks, we learn a dictionary on a 12-Megapixel photograph and use it
for inpainting—that is, filling some holes in the image.

• We show in Sections 2.5 and 2.6 that our approach is suitable to large-scale ma-
trix factorization problems such as non-negative matrix factorization and sparse
principal component analysis, while being still effective on small data sets.

• To extend our algorithm to several matrix factorization problems, we propose in
Appendix C efficient procedures for projecting onto two convex sets, which can be
useful for other applications that are beyond the scope of this chapter.

2.2 Problem Statement

Classical dictionary learning techniques for sparse representation (Engan et al., 1999;
Lewicki and Sejnowski, 2000; Aharon et al., 2006; Lee et al., 2007) consider a finite
training set of signals X = [x1, . . . ,xn] in R

m×n and optimize the empirical cost function

fn(D) ,
1
n

n∑

i=1

ℓ(xi,D), (2.1)

where D = [d1, . . . ,dp] in R
m×p is the dictionary, each column representing a basis

vector, and ℓ is a loss function such that ℓ(x,D) should be small if D is “good” at
representing the signal x in a sparse fashion. The number of samples n is usually large,
whereas the signal dimension m is relatively small, for example, m = 100 for 10 × 10
image patches, and n ≥ 100, 000 for typical image processing applications. In general, we
also have p≪ n (e.g., p = 200 for n = 100, 000), but each signal only uses a few elements
of D in its representation, say 10 for instance. Note that, in this setting, overcomplete
dictionaries with p > m are allowed. As others (see for example Olshausen and Field,
1997, 1996; Lee et al., 2007), we define ℓ(x,D) as the optimal value of the ℓ1 sparse
coding problem:

ℓ(x,D) , min
α∈Rp

1
2
‖x−Dα‖22 + λ‖α‖1, (2.2)

where λ is a regularization parameter. To prevent D from having arbitrarily large values
(which would lead to arbitrarily small values of α), it is common to constrain its columns
d1, . . . ,dp to have an ℓ2-norm less than or equal to one. We will call D the convex set
of matrices verifying this constraint:

D , {D ∈ R
m×p s.t. ∀j ∈ J1; pK, ‖dj‖22 ≤ 1}.

53

2. Online Learning for Matrix Factorization and Sparse Coding

Note that the problem of minimizing the empirical cost fn(D) is not convex with respect
to D. It can be rewritten as a joint optimization problem with respect to the dictionary D
and the coefficients A = [α1, . . . ,αn] in R

p×n of the sparse decompositions, which is not
jointly convex, but convex with respect to each of the two variables D and α when the
other one is fixed:

min
D∈D,A∈Rp×n

n∑

i=1

[1
2
‖xi −Dαi‖22 + λ‖αi‖1

]

. (2.3)

This can be rewritten as a matrix factorization problem with a sparsity penalty:

min
D∈D,A∈Rp×n

1
2
‖X−DA‖2F + λ‖A‖1,1,

where, as before, X = [x1, . . . ,xn] is the matrix of data vectors, and ‖A‖1,1 denotes
the ℓ1 norm of the matrix A—that is, the sum of the magnitude of its coefficients.
A natural approach for solving this problem is to alternate between the two variables,
minimizing over one while keeping the other one fixed, as proposed by Lee et al. (2007)
(see also Engan et al. 1999 and Aharon et al. 2006, who use ℓ0 rather than ℓ1 penalties,
or Zou et al. 2006 for the problem of sparse principal component analysis).1 Since the
computation of the coefficients vectors αi dominates the cost of each iteration in this
block-coordinate descent approach, a second-order optimization technique can be used
to accurately estimate D at each step when α is fixed.

As pointed out by Bottou and Bousquet (2008), however, one is usually not interested
in the minimization of the empirical cost fn(D) with high precision, but instead in the
minimization of the expected cost

f(D) , Ex[ℓ(x,D)] = lim
n→∞

fn(D) a.s.,

where the expectation (which is supposed finite) is taken relative to the (unknown)
probability distribution p(x) of the data.2 In particular, given a finite training set, one
should not spend too much effort on accurately minimizing the empirical cost, since it is
only an approximation of the expected cost. An “inaccurate” solution may indeed have
the same or better expected cost than a “well-optimized” one. Bottou and Bousquet
(2008) further show that stochastic gradient algorithms, whose rate of convergence is
very poor in conventional optimization terms, may in fact in certain settings be shown
both theoretically and empirically to be faster in reaching a solution with low expected
cost than second-order batch methods. With large training sets, the risk of overfitting is
lower, but classical optimization techniques may become impractical in terms of speed
or memory requirements.

In the case of dictionary learning, the classical projected first-order projected stochas-
tic gradient descent algorithm (as used by Olshausen and Field 1997, 1996; Aharon and

1In our setting, as in Lee et al. (2007), we have preferred to use the convex ℓ1 norm, that has
empirically proven to be better behaved in general than the ℓ0 pseudo-norm for dictionary learning.

2We use “a.s.” to denote almost sure convergence.

54

2.3. Proposed Approach

Elad 2008; Kavukcuoglu et al. 2008 for instance) consists of a sequence of updates of D:

Dt = ΠD
[

Dt−1 − δt∇Dℓ(xt,Dt−1)
]

,

where Dt is the estimate of the optimal dictionary at iteration t, δt is the gradient step,
ΠD is the orthogonal projector onto D, and the vectors xt are i.i.d. samples of the
(unknown) distribution p(x). Even though it is often difficult to obtain such i.i.d. sam-
ples, the vectors xt are in practice obtained by cycling on a randomly permuted training
set. As shown in Section 2.6, we have observed that this method can be competitive in
terms of speed compared to batch methods when the training set is large and when δt
is carefully chosen. In particular, good results are obtained using a learning rate of the
form δt , a/(t+ b), where a and b have to be well chosen in a data set-dependent way.
Note that first-order stochastic gradient descent has also been used for other matrix
factorization problems (see Koren et al., 2009 and references therein).

The optimization method we present in the next section falls into the class of online
algorithms based on stochastic approximations, processing one sample at a time (or
a mini-batch), but further exploits the specific structure of the problem to efficiently
solve it by sequentially minimizing a quadratic local surrogate of the expected cost. As
shown in Section 2.3.5, it uses second-order information of the cost function, allowing
the optimization without any explicit learning rate tuning.

2.3 Proposed Approach

We present in this section the basic components of our online algorithm for dictionary
learning (Sections 2.3.1–2.3.3), as well as a few minor variants which speed up our
implementation in practice (Section 2.3.4) and show some links with a Kalman algorithm
(Section 2.3.5).

2.3.1 Algorithm Outline

Our procedure is summarized in Algorithm 1. Assuming that the training set is composed
of i.i.d. samples of a distribution p(x), its inner loop draws one element xt at a time, as
in stochastic gradient descent, and alternates classical sparse coding steps for computing
the decomposition αt of xt over the dictionary Dt−1 obtained at the previous iteration,
with dictionary update steps where the new dictionary Dt is computed by minimizing
over D the function

f̂t(D) ,
1
t

t∑

i=1

[1
2
‖xi −Dαi‖22 + λ‖αi‖1

]

, (2.4)

and the vectors αi, for i < t, have been computed during the previous steps of the
algorithm. The motivation behind this approach is twofold:

• The function f̂t, which is quadratic in D, aggregates the past information with a
few sufficient statistics obtained during the previous steps of the algorithm, namely

55

2. Online Learning for Matrix Factorization and Sparse Coding

the vectors αi, and it is easy to show that it upperbounds the empirical cost ft(Dt)
from Eq. (2.1). One key aspect of our convergence analysis will be to show that
f̂t(Dt) and ft(Dt) converge almost surely to the same limit, and thus that f̂t acts
as a surrogate for ft.

• Since f̂t is close to f̂t−1 for large values of t, so are Dt and Dt−1, under suitable as-
sumptions, which makes it efficient to use Dt−1 as warm restart for computing Dt.

Algorithm 1 Online dictionary learning.
Require: x ∈ R

m ∼ p(x) (random variable and an algorithm to draw i.i.d samples
of p), λ ∈ R (regularization parameter), D0 ∈ R

m×p (initial dictionary), T (number
of iterations).

1: B0 ∈ R
p×p ← 0, C0 ∈ R

m×p ← 0 (reset the “past” information).
2: for t = 1 to T do
3: Draw xt from p(x).
4: Sparse coding: compute using LARS

αt , arg min
α∈Rp

1
2
‖xt −Dt−1α‖22 + λ‖α‖1.

5: Bt ← Bt−1 +αtαt⊤.
6: Ct ← Ct−1 + xtαt⊤.
7: Compute Dt using Algorithm 2, with Dt−1 as warm restart, so that

Dt , arg min
D∈D

1
t

t∑

i=1

(1
2
‖xi −Dαi‖22 + λ‖αi‖1

)

,

= arg min
D∈D

1
t

(1
2

Tr(D⊤DBt)− Tr(D⊤Ct)
)

. (2.5)

8: end for
9: return DT (learned dictionary).

2.3.2 Sparse Coding

The sparse coding problem of Eq. (2.2) with fixed dictionary is an ℓ1-regularized linear
least-squares problem. A number of recent methods for solving this type of problems are
based on coordinate descent with soft thresholding (Fu, 1998; Friedman et al., 2007; Wu
and Lange, 2008). When the columns of the dictionary have low correlation, we have
observed that these simple methods are very efficient. However, the columns of learned
dictionaries are in general highly correlated, and we have empirically observed that these
algorithms become much slower in this setting. This has led us to use instead the LARS-
Lasso algorithm, a homotopy method (Osborne et al., 2000b; Efron et al., 2004) that

56

2.3. Proposed Approach

Algorithm 2 Dictionary update.
Require: D = [d1, . . . ,dp] ∈ R

m×p (input dictionary),
B = [b1, . . . ,bp] ∈ R

p×p,
C = [c1, . . . , cp] ∈ R

m×p.
1: repeat
2: for j = 1 to p do
3: Update the j-th column to optimize for (2.5):

uj ← 1
Bjj

(cj −Dbj) + dj ,

dj ← 1
max(‖uj‖2, 1)

uj .

(2.6)

4: end for
5: until convergence
6: return D (updated dictionary).

provides the whole regularization path—that is, the solutions for all possible values of λ.
With an efficient Cholesky-based implementation (see Efron et al., 2004; Zou and Hastie,
2005) for brief descriptions of such implementations), it has proven experimentally at
least as fast as approaches based on soft thresholding, while providing the solution with
a higher accuracy and being more robust as well since it does not require an arbitrary
stopping criterion. We provide more details on these methods in Sections 1.4.3–1.4.2.

2.3.3 Dictionary Update

Our algorithm for updating the dictionary uses block-coordinate descent with warm
restarts (see Bertsekas, 1999). One of its main advantages is that it is parameter free
and does not require any learning rate tuning. Moreover, the procedure does not require
to store all the vectors xi and αi, but only the matrices Bt =

∑t
i=1α

iαi⊤ in R
p×p

and Ct =
∑t
i=1 xiαi⊤ in R

m×p. Concretely, Algorithm 2 sequentially updates each
column of D. A simple calculation shows that solving (2.5) with respect to the j-th
column dj , while keeping the other ones fixed under the constraint ‖dj‖2 ≤ 1, amounts
to an orthogonal projection of the vector uj defined in Eq. (2.6), onto the constraint
set, namely the ℓ2-ball here, which is solved by Eq. (2.6). Since the convex optimization
problem (2.5) admits separable constraints in the updated blocks (columns), convergence
to a global optimum is guaranteed (Bertsekas, 1999). In practice, the vectors αi are
sparse and the coefficients of the matrix Bt are often concentrated on the diagonal,
which makes the block-coordinate descent more efficient.3 After a few iterations of our
algorithm, using the value of Dt−1 as a warm restart for computing Dt becomes effective,

3We have observed that this is true when the columns of D are not too correlated. When a group
of columns in D are highly correlated, the coefficients of the matrix Bt concentrate instead on the
corresponding principal submatrices of Bt.

57

2. Online Learning for Matrix Factorization and Sparse Coding

and a single iteration of Algorithm 2 has empirically found to be sufficient to achieve
convergence of the dictionary update step. Other approaches have been proposed to
update D: For instance, Lee et al. (2007) suggest using a Newton method on the dual
of Eq. (2.5), but this requires inverting a p× p matrix at each Newton iteration, which
is impractical for an online algorithm.

2.3.4 Optimizing the Algorithm

We have presented so far the basic building blocks of our algorithm. This section dis-
cusses a few simple improvements that significantly enhance its performance.

Handling Fixed-Size Data Sets

In practice, although it may be very large, the size of the training set often has a
predefined finite size (of course this may not be the case when the data must be treated
on the fly like a video stream for example). In this situation, the same data points may
be examined several times, and it is very common in online algorithms to simulate an
i.i.d. sampling of p(x) by cycling over a randomly permuted training set (see Bottou
and Bousquet, 2008 and references therein). This method works experimentally well in
our setting but, when the training set is small enough, it is possible to further speed
up convergence: In Algorithm 1, the matrices Bt and Ct carry all the information from
the past coefficients α1, . . . ,αt. Suppose that at time t0, a signal x is drawn and the
vector αt0 is computed. If the same signal x is drawn again at time t > t0, then it is
natural to replace the “old” information αt0 by the new vector αt in the matrices Bt

and Ct—that is, Bt ← Bt−1 + αtαt
⊤ − αt0αt0⊤ and Ct ← Ct−1 + xtαt⊤ − xtαt0⊤. In

this setting, which requires storing all the past coefficients αt0 , this method amounts to
a block-coordinate descent for the problem of minimizing Eq. (2.3). When dealing with
large but finite sized training sets, storing all coefficients αi is impractical, but it is still
possible to partially exploit the same idea, by removing the information from Bt and Ct

that is older than two epochs (cycles through the data), through the use of two auxiliary
matrices B̃t and C̃t of size p× p and m× p respectively. These two matrices should be
built with the same rules as Bt and Ct, except that at the end of an epoch, Bt and Ct

are respectively replaced by B̃t and C̃t, while B̃t and C̃t are set to 0. Thanks to this
strategy, Bt and Ct do not carry any coefficients αi older than two epochs.

Scaling the “Past” Data

At each iteration, the “new” information αt that is added to the matrices Bt and Ct has
the same weight as the “old” one. A simple and natural modification to the algorithm
is to rescale the “old” information so that newer coefficients αt have more weight, which
is classical in online learning. For instance, Neal and Hinton (1998) present an online
algorithm for EM, where sufficient statistics are aggregated over time, and an exponential
decay is used to forget out-of-date statistics. In this work, we propose to replace lines 5

58

2.3. Proposed Approach

and 6 of Algorithm 1 by

Bt ← βtB
t−1 +αtαt⊤,

Ct ← βtC
t−1 + xtαt⊤,

where βt ,
(
1− 1

t

)ρ, and ρ is a new parameter. In practice, one can apply this strategy
after a few iterations, once Bt is well-conditioned. Tuning ρ improves the convergence
rate, when the training sets are large, even though, as shown in Section 2.6, it is not
critical. To understand better the effect of this modification, note that Eq. (2.5) becomes

Dt , arg min
D∈D

1
∑t
j=1(j/t)ρ

t∑

i=1

(i

t

)ρ(1
2
‖xi −Dαi‖22 + λ‖αi‖1

)

,

= arg min
D∈D

1
∑t
j=1(j/t)ρ

(1
2

Tr(D⊤DBt)− Tr(D⊤Ct)
)

.

When ρ = 0, we obtain the original version of the algorithm. Of course, different
strategies and heuristics could also be investigated. In practice, this parameter ρ is useful
for large data sets only (n ≥ 100 000). For smaller data sets, we have not observed a
better performance when using this extension.

Mini-Batch Extension

In practice, we can also improve the convergence speed of our algorithm by drawing
η > 1 signals at each iteration instead of a single one, which is a classical heuristic in
stochastic gradient descent algorithms. In our case, this is further motivated by the
fact that the complexity of computing η vectors αi is not linear in η. A Cholesky-
based implementation of LARS-Lasso for decomposing a single signal has a complexity
of O(pms + ps2), where s is the number of nonzero coefficients. When decomposing η
signals, it is possible to pre-compute the Gram matrix Dt⊤Dt and the total complexity
becomes O(p2m+ η(pm+ ps2)), which is much cheaper than η times the previous com-
plexity when η is large enough and s is small. Let us denote by xt,1, . . . ,xt,η the signals
drawn at iteration t. We can now replace lines 5 and 6 of Algorithm 1 by

Bt ← Bt−1 +
1
η

η
∑

i=1

αt,iαt,i⊤,

Ct ← Ct−1 +
1
η

η
∑

i=1

xt,iαt,i⊤.

Slowing Down the First Iterations

As in the case of stochastic gradient descent, the first iterations of our algorithm may
update the parameters with large steps, immediately leading to large deviations from the
initial dictionary. To prevent this phenomenon, classical implementations of stochastic
gradient descent use gradient steps of the form a/(t+b), where b “reduces” the step size.

59

2. Online Learning for Matrix Factorization and Sparse Coding

An initialization of the form B0 = t0I and C0 = t0D0 with t0 ≥ 0 also slows down the
first steps of our algorithm by forcing the solution of the dictionary update to stay close
to D0. As shown in Section 2.6, we have observed that our method does not require this
extension to achieve good results in general.

Purging the Dictionary from Unused Atoms

Every dictionary learning technique sometimes encounters situations where some of the
dictionary atoms are never (or very seldom) used, which typically happens with a very
bad initialization. A common practice is to replace these during the optimization by
randomly chosen elements of the training set, which solves in practice the problem in
most cases. For more difficult and highly regularized cases, it is also possible to choose
a continuation strategy consisting of starting from an easier, less regularized problem,
and gradually increasing λ. This continuation method has not been used in this work.

2.3.5 Link with Second-order Stochastic Gradient Descent

For unconstrained learning problems with twice differentiable expected cost, the second-
order stochastic gradient descent algorithm (see Bottou and Bousquet, 2008 and refer-
ences therein) improves upon its first-order version, by replacing the learning rate by the
inverse of the Hessian. When this matrix can be computed or approximated efficiently,
this method usually yields a faster convergence speed and removes the problem of tun-
ing the learning rate. However, it cannot be applied easily to constrained optimization
problems and requires at every iteration an inverse of the Hessian. For these two rea-
sons, it cannot be used for the dictionary learning problem, but nevertheless it shares
some similarities with our algorithm, which we illustrate with the example of a different
problem.

Suppose that two major modifications are brought to our original formulation: (i)
the vectors αt are independent of the dictionary D—that is, they are drawn at the same
time as xt; (ii) the optimization is unconstrained—that is, D = R

m×p. This setting leads
to the least-square estimation problem

min
D∈Rm×p

E(x,α)

[‖x−Dα‖22
]
, (2.7)

which is of course different from the original dictionary learning formulation. Nonethe-
less, it is possible to address Eq. (2.7) with our method and show that it amounts to
using the recursive formula

Dt ← Dt−1 + (xt −Dt−1αt)αt⊤
(t∑

i=1

αiαi⊤
)−1

,

which is equivalent to a second-order stochastic gradient descent algorithm: The gradient
obtained at (xt,αt) is the term −(xt −Dt−1αt)αt⊤, and the sequence (1/t)

∑t
i=1α

iαi⊤

converges to the Hessian of the objective function. Such sequence of updates admit a
fast implementation called Kalman algorithm (see Kushner and Yin, 2003; Bottou, 1998
and references therein).

60

2.4. Convergence Analysis

2.4 Convergence Analysis

The main tools used in our proofs are the convergence of empirical processes (Van der
Vaart, 1998) and, following Bottou (1998), the convergence of quasi-martingales (Fisk,
1965). Our analysis is limited to the basic version of the algorithm, although it can in
principle be carried over to the optimized versions discussed in Section 2.3.4. Before
proving our main result, let us first discuss the (reasonable) assumptions under which
our analysis holds.

2.4.1 Assumptions

(A) The data admits a distribution with compact support K. Assuming a com-
pact support for the data is natural in audio, image, and video processing applications,
where it is imposed by the data acquisition process.

(B) The quadratic surrogate functions f̂t are strictly convex with lower-
bounded Hessians. We assume that the smallest eigenvalue of the positive semi-
definite matrix 1

tB
t defined in Algorithm 1 is greater than or equal to some constant κ1.

As a consequence, Bt is invertible and f̂t is strictly convex with Hessian I⊗ 2
tB
t. This

hypothesis is in practice verified experimentally after a few iterations of the algorithm
when the initial dictionary is reasonable, consisting for example of a few elements from
the training set, or any common dictionary, such as DCT (bases of cosines products)
or wavelets (Mallat, 1999). Note that it is easy to enforce this assumption by adding
a term κ1

2 ‖D‖2F to the objective function, which is equivalent to replacing the positive
semi-definite matrix 1

tB
t by 1

tB
t+κ1I. We have omitted for simplicity this penalization

in our analysis.
(C) A particular sufficient condition for the uniqueness of the sparse coding
solution is satisfied. Before presenting this assumption, let us briefly recall classical
optimality conditions for the ℓ1 decomposition problem in Eq. (2.2) (Fuchs, 2005). For x
in K and D in D, α in R

p is a solution of Eq. (2.2) if and only if

dj⊤(x−Dα) = λ sign(αj) if αj 6= 0,

|dj⊤(x−Dα)| ≤ λ otherwise.
(2.8)

Let α⋆ be such a solution. Denoting by Λ the set of indices j such that |dj⊤(x−Dα⋆)| =
λ, and DΛ the matrix composed of the columns from D restricted to the set Λ, it is easy
to see from Eq. (2.8) that the solution α⋆ is necessary unique if (D⊤ΛDΛ) is invertible
and that

α⋆Λ = (D⊤ΛDΛ)−1(D⊤Λx− λεΛ), (2.9)

where α⋆Λ is the vector containing the values of α⋆ corresponding to the set Λ and εΛ
carries the signs of α⋆Λ (elementwise). With this preliminary uniqueness condition in
hand, we can now formulate our assumption: We assume that there exists κ2 > 0 such
that, for all x in K and all dictionaries D in the subset of D considered by our algorithm,

61

2. Online Learning for Matrix Factorization and Sparse Coding

the smallest eigenvalue of D⊤ΛDΛ is greater than or equal to κ2. This guarantees the
invertibility of (D⊤ΛDΛ) and therefore the uniqueness of the solution of Eq. (2.2). It
is of course easy to build a dictionary D for which this assumption fails. However,
having D⊤ΛDΛ invertible is a common assumption in linear regression and in methods
such as the LARS algorithm aimed at solving Eq. (2.2) (Efron et al., 2004). It is also
possible to enforce this condition using an elastic net penalization (Zou and Hastie,
2005), replacing ‖α‖1 by ‖α‖1 + κ2

2 ‖α‖22 and thus improving the numerical stability of
homotopy algorithms, which is the choice made by Zou et al. (2006). Again, we have
omitted this penalization in our analysis.

2.4.2 Main Results

Given assumptions (A)–(C), let us now show that our algorithm converges to a sta-
tionary point of the objective function. Since this work is dealing with non-convex
optimization, neither our algorithm nor any one in the literature is guaranteed to find
the global optimum of the optimization problem. However, such stationary points have
often been found to be empirically good enough for practical applications, for example,
for image restoration (Elad and Aharon, 2006; Mairal et al., 2008b).

Our first result (Proposition 4 below) states that given (A)–(C), f(Dt) converges
almost surely and f(Dt)− f̂t(Dt) converges almost surely to 0, meaning that f̂t acts as
a converging surrogate of f . First, we prove a lemma to show that Dt−Dt−1 = O(1/t).
It does not ensure the convergence of Dt, but guarantees the convergence of the positive
sum

∑∞
t=1 ‖Dt − Dt−1‖2F, a classical condition in gradient descent convergence proofs

(Bertsekas, 1999).

Lemma 2 (Asymptotic variations of Dt.)
Assume (A)–(C). Then,

Dt+1 −Dt = O
(1
t

)

a.s.

The proof of this lemma as well the ones of the subsequent propositions are all
given in Appendix B for readability purposes. We can now state and prove our first
proposition, which shows that we are indeed minimizing a smooth function.

Proposition 4 (Regularity of f .)
Assume (A) to (C). For x in the support K of the probability distribution p, and D in
the feasible set D, let us define

α⋆(x,D) = arg min
α∈Rp

1
2
‖x−Dα‖22 + λ‖α‖1. (2.10)

Then,

1. the function ℓ defined in Eq. (2.2) is continuously differentiable and

∇Dℓ(x,D) = −(x−Dα⋆(x,D))α⋆(x,D)⊤.

2. f is continuously differentiable and ∇f(D) = Ex

[∇Dℓ(x,D)
]
;

62

2.5. Extensions to Matrix Factorization

3. ∇f(D) is Lipschitz on D.

Now that we have shown that f is a smooth function, we can state our first result
showing that the sequence of functions f̂t acts asymptotically as a surrogate of f and
that f(Dt) converges almost surely in the following proposition.

Proposition 5 (Convergence of f(Dt) and of the surrogate function.)
Let f̂t denote the surrogate function defined in Eq. (2.4). Assume (A) to (C). Then,

1. f̂t(Dt) converges almost surely;

2. f(Dt)− f̂t(Dt) converges almost surely to 0;

3. f(Dt) converges almost surely.

With Proposition 5 in hand, we can now prove our final and strongest result, namely
that first-order necessary optimality conditions are verified asymptotically with proba-
bility one.

Proposition 6 (Convergence to a stationary point.)
Under assumptions (A) to (C), the distance between Dt and the set of stationary points
of the dictionary learning problem converges almost surely to 0 when t tends to infinity.

2.5 Extensions to Matrix Factorization

In this section, we present variations of the basic online algorithm to address different
optimization problems. We first present different possible regularization terms for the
coefficients α and D, which can be used with our algorithm, and then detail some specific
cases such as non-negative matrix factorization, sparse principal component analysis,
constrained sparse coding, and simultaneous sparse coding.

2.5.1 Using Different Regularizers for α

In various applications, different priors for the coefficients α may lead to different reg-
ularizers Ω(α). As long as the assumptions of Section 2.4.1 are verified, our algorithm
can be used with:

• Positivity constraints on α that are added to the ℓ1-regularization. The homotopy
method presented by Efron et al. (2004) is able to handle such constraints.

• The Tikhonov regularization, Ω(α) = λ1

2 ‖α‖22, which does not lead to sparse solu-
tions.

• The elastic net (Zou and Hastie, 2005), Ω(α) = λ1‖α‖1 + λ2

2 ‖α‖22, leading to a
formulation relatively close to Zou et al. (2006).

• The group Lasso (Yuan and Lin, 2006; Turlach et al., 2005; Bach, 2008), Ω(α) =
∑s
i=1 ‖αi‖2, where αi is a vector corresponding to a group of variables.

63

2. Online Learning for Matrix Factorization and Sparse Coding

Non-convex regularizers such as the ℓ0 pseudo-norm, ℓq pseudo-norms with q < 1 can
be used as well. However, as with any classical dictionary learning techniques exploiting
non-convex regularizers (e.g., Olshausen and Field, 1997; Engan et al., 1999; Aharon
et al., 2006), there is no theoretical convergence results in these cases. Note also that
convex smooth approximation of sparse regularizers (Bradley and Bagnell, 2009), or
structured sparsity-inducing regularizers (Jenatton et al., 2009; Jacob et al., 2009) could
be used as well even though we have not tested them.

2.5.2 Using Different Constraint Sets for D

In the previous subsection, we have claimed that our algorithm could be used with
different regularization terms on α. For the dictionary learning problem, we have con-
sidered an ℓ2-regularization on D by forcing its columns to have less than unit ℓ2-
norm. We have shown that with this constraint set, the dictionary update step can be
solved efficiently using a block-coordinate descent approach. Updating the j-th column
of D, when keeping the other ones fixed is solved by orthogonally projecting the vector
uj = dj + (1/Bjj)(cj −Dbj) on the constraint set D, which in the classical dictionary
learning case amounts to a projection of uj on the ℓ2-ball.

It is easy to show that this procedure can be extended to different convex constraint
sets D′ as long as the constraints are a union of independent constraints on each column
of D and the orthogonal projections of the vectors uj onto the set D′ can be done
efficiently. Examples of different sets D′ that we propose as an alternative to D are

• The “non-negative” constraints:

D′ , {D ∈ R
m×p s.t. ∀j ∈ J1; pK, ‖dj‖2 ≤ 1 and dj ≥ 0}.

• The “elastic-net” constraints:

D′ , {D ∈ R
m×p s.t. ∀j ∈ J1; pK, ‖dj‖22 + γ‖dj‖1 ≤ 1}.

These constraints induce sparsity in the dictionary D (in addition to the sparsity-
inducing regularizer on the vectors αi). By analogy with the regularization pro-
posed by Zou and Hastie (2005), we call these constraints “elastic-net constraints.”
Here, γ is a new parameter, controlling the sparsity of the dictionary D. Adding
a non-negativity constraint is also possible in this case. Note that the presence of
the ℓ2 regularization is important here. It has been shown by Bach et al. (2008)
that using the ℓ1-norm only in such problems lead to trivial solutions when p is
large enough. The combination of ℓ1 and ℓ2 constraints has also been proposed
recently for the problem of matrix factorization by Witten et al. (2009), but in a
slightly different setting.

• The “fused lasso” (Tibshirani et al., 2005) constraints. When one is looking for
a dictionary whose columns are sparse and piecewise-constant, a fused lasso reg-
ularization can be used. For a vector u in R

m, we consider the ℓ1-norm of the

64

2.5. Extensions to Matrix Factorization

consecutive differences of u denoted by

FL(u) ,

m∑

i=2

|ui − ui−1|,

and define the “fused lasso” constraint set

D′ , {D ∈ R
m×p s.t. ∀j ∈ J1; pK, ‖dj‖22 + γ1‖dj‖1 + γ2 FL(dj) ≤ 1}.

This kind of regularization has proven to be useful for exploiting genomic data
such as CGH arrays (Tibshirani and Wang, 2008).

In all these settings, replacing the projections of the vectors uj onto the ℓ2-ball by
the projections onto the new constraints, our algorithm is still guaranteed to converge
and find a stationary point of the optimization problem. The orthogonal projection onto
the “non negative” ball is simple (additional thresholding) but the projection onto the
two other sets is slightly more involved. In Appendix C, we propose two algorithms for
efficiently solving these problems. The first one is presented in Section C.1 and computes
the projection of a vector onto the elastic-net constraint in linear time, by extending the
efficient projection onto the ℓ1-ball from Maculan and de Paula (1989) and Duchi et al.
(2008). The second one is a homotopy method, which solves the projection on the
fused lasso constraint set in O(ps), where s is the number of piecewise-constant parts
in the solution. This method also solves efficiently the fused lasso signal approximation
problem presented in Friedman et al. (2007):

min
u∈Rn

1
2
‖b− u‖22 + γ1‖u‖1 + γ2 FL(u) + γ3‖u‖22.

Being able to solve this problem efficiently has also numerous applications, which are
beyond the scope of this work. For instance, it allows us to use the fast algorithm of
Nesterov (2007) for solving the more general fused lasso problem (Tibshirani et al., 2005).
Note that the proposed method could be used as well with more complex constraints for
the columns of D, which we have not tested in this work, addressing for instance the
problem of structured sparse PCA (Jenatton et al., 2010c).

Now that we have presented a few possible regularizers for α and D, that can be
used within our algorithm, we focus on a few classical problems which can be formulated
as dictionary learning problems with specific combinations of such regularizers.

2.5.3 Non Negative Matrix Factorization

Given a matrix X = [x1, . . . ,xn] in R
m×n, Lee and Seung (2001) have proposed the non

negative matrix factorization problem (NMF), which consists of minimizing the following
cost

min
D∈D,A∈Rp×n

n∑

i=1

[1
2
‖xi −Dαi‖22

]

s.t. D ≥ 0, ∀ i, αi ≥ 0,

65

2. Online Learning for Matrix Factorization and Sparse Coding

where we recall that A = [α1, . . . ,αn]. With this formulation, the matrix D and the
vectors αi are forced to have non negative components, which leads to sparse solu-
tions. When applied to images, such as faces, Lee and Seung (2001) have shown that
the learned features are more localized than the ones learned with a classical singular
value decomposition. As for dictionary learning, classical approaches for addressing this
problem are batch algorithms, such as the multiplicative update rules of Lee and Seung
(2001), or the projected gradient descent algorithm of Lin (2007).

Following this line of research, Hoyer (2002, 2004) has proposed non negative sparse
coding (NNSC), which extends non-negative matrix factorization by adding a sparsity-
inducing penalty to the objective function to further control the sparsity of the vectorsαi:

min
D∈D,A∈Rp×n

n∑

i=1

[1
2
‖xi −Dαi‖22 + λ

p
∑

j=1

αij

]

s.t. D ≥ 0, ∀ i ∈ J1;nK, αi ≥ 0.

When λ = 0, this formulation is equivalent to NMF. The only difference with the dic-
tionary learning problem is that non-negativity constraints are imposed on D and the
vectors αi. A simple modification of our algorithm, presented above, allows us to han-
dle these constraints, while guaranteeing to find a stationary point of the optimization
problem. Moreover, our approach can work in the setting when n is large.

2.5.4 Sparse Principal Component Analysis

Principal component analysis (PCA) is a classical tool for data analysis, which can be
interpreted as a method for finding orthogonal directions maximizing the variance of the
data, or as a low-rank matrix approximation method. Jolliffe et al. (2003), Zou et al.
(2006), d’Aspremont et al. (2007), d’Aspremont et al. (2008), Witten et al. (2009) and
Zass and Shashua (2007) have proposed different formulations for sparse principal com-
ponent analysis (SPCA), which extends PCA by estimating sparse vectors maximizing
the variance of the data, some of these formulations enforcing orthogonality between the
sparse components, whereas some do not. In this work, we formulate SPCA as a sparse
matrix factorization which is equivalent to the dictionary learning problem with possibly
sparsity constraints on the dictionary—that is, we use the ℓ1-regularization term for α
and the “elastic-net” constraint for D (as used in a penalty term by Zou et al. 2006):

min
D∈Rm×p,A∈Rp×n

n∑

i=1

[1
2
‖xi −Dαi‖22 + λ‖αi‖1

]

s.t. ∀j ∈ J1; pK, ‖dj‖22 + γ‖dj‖1 ≤ 1.

As detailed above, our dictionary update procedure amounts to successive orthogonal
projection of the vectors uj on the constraint set. More precisely, the update of dj

becomes

uj ← 1
Bjj

(cj −Dbj) + dj ,

dj ← arg min
d∈Rm

‖uj − d‖22 s.t. ‖d‖22 + γ‖d‖1 ≤ 1,

which can be solved in linear time using Algorithm 9 presented in Appendix C. In
addition to that, our SPCA method can be used with fused Lasso constraints as well.

66

2.5. Extensions to Matrix Factorization

2.5.5 Constrained Sparse Coding

Constrained sparse coding problems are often encountered in the literature, and lead to
different loss functions such as

ℓ′(x,D) = min
α∈Rp

‖x−Dα‖22 s.t. ‖α‖1 ≤ T, (2.11)

or
ℓ′′(x,D) = min

α∈Rp
‖α‖1 s.t. ‖x−Dα‖22 ≤ ε, (2.12)

where T and ε are pre-defined thresholds. Even though these loss functions lead to
equivalent optimization problems in the sense that for given x,D and λ, there exist ε
and T such that ℓ(x,D), ℓ′(x,D) and ℓ′′(x,D) admit the same solution α⋆, the problems
of learning D using ℓ, ℓ′ of ℓ′′ are not equivalent. For instance, using ℓ′′ has proven
experimentally to be particularly well adapted to image denoising (Elad and Aharon,
2006; Mairal et al., 2008b).

For all T , the same analysis as for ℓ can be carried for ℓ′, and the simple modification
which consists of computing αt using Eq. (2.11) in the sparse coding step leads to the
minimization of the expected cost minD∈C Ex[ℓ′(x,D)].

Handling the case ℓ′′ is a bit different. We propose to use the same strategy as for
ℓ′—that is, using our algorithm but computing αt solving Eq. (2.12). Even though our
analysis does not apply since we do not have a quadratic surrogate of the expected cost,
experimental evidence shows that this approach is efficient in practice.

2.5.6 Simultaneous Sparse Coding

In some situations, the signals xi are not i.i.d samples of an unknown probability distribu-
tion, but are structured in groups (which are however independent from each other), and
one may want to address the problem of simultaneous sparse coding, which appears also
in the literature under various names such as group sparsity or grouped variable selection
(Cotter et al., 2005; Turlach et al., 2005; Yuan and Lin, 2006; Obozinski et al., 2009, 2008;
Zhang et al., 2008; Tropp et al., 2006; Tropp, 2006). Let X = [x1, . . . ,xq] ∈ R

m×q be a
set of signals. Suppose one wants to obtain sparse decompositions of the signals on the
dictionary D that share the same active set (non-zero coefficients). Let A = [α1, . . . ,αq]
in R

p×q be the matrix composed of the coefficients. One way of imposing this joint spar-
sity is to penalize the number of non-zero rows of α. A classical convex relaxation of
this joint sparsity measure is to consider the ℓ1,2-norm on the matrix α

‖A‖1,2 ,

p
∑

j=1

‖Aj‖2,

where Aj is the j-th row of A. In that setting, the ℓ1,2-norm of A is the ℓ1-norm of the
ℓ2-norm of the rows of A.

The problem of jointly decomposing the signals xi can be written as a ℓ1,2-sparse
decomposition problem, which is a subcase of the group Lasso (Turlach et al., 2005;

67

2. Online Learning for Matrix Factorization and Sparse Coding

Yuan and Lin, 2006; Bach, 2008), by defining the cost function

ℓ′′′(X,D) = min
A∈Rp×q

1
2
‖X−DA‖2F + λ‖A‖1,2,

which can be computed using a block-coordinate descent approach (Friedman et al.,
2007) or an active set method (Roth and Fischer, 2008).

Suppose now that we are able to draw groups of signals Xi, i = 1, . . . , n which have
bounded size and are independent from each other and identically distributed, one can
learn an adapted dictionary by solving the optimization problem

min
D∈D

lim
n→∞

1
n

n∑

i=1

ℓ′′′(Xi,D).

Being able to solve this optimization problem is important for many applications. For
instance, in Mairal et al. (2009c), state-of-the-art results in image denoising and demo-
saicking are achieved with this formulation. The extension of our algorithm to this case
is relatively easy, computing at each sparse coding step a matrix of coefficients A, and
keeping the updates of Bt and Ct unchanged.

All of the variants of this section have been implemented. Next section evaluates
some of them experimentally. An efficient C++ implementation with a Matlab interface
of these variants is available on the Willow project-team web page.4

2.6 Experimental Validation

In this section, we present experiments on natural images and genomic data to demon-
strate the efficiency of our method for dictionary learning, non-negative matrix factor-
ization, and sparse principal component analysis.

2.6.1 Performance Evaluation for Dictionary Learning

For our experiments, we have randomly selected 1.25× 106 patches from images in the
Pascal VOC’06 image database (Everingham et al., 2007), which is composed of varied
natural images; 106 of these are kept for training, and the rest for testing. We used these
patches to create three data sets A, B, and C with increasing patch and dictionary sizes
representing various settings which are typical in image processing applications: We have

Data set Signal size m Nb p of atoms Type
A 8× 8 = 64 256 b&w
B 12× 12× 3 = 432 512 color
C 16× 16 = 256 1024 b&w

centered and normalized the patches to have unit ℓ2-norm and used the regularization

4http://www.di.ens.fr/willow/SPAMS/

68

http://www.di.ens.fr/willow/SPAMS/

2.6. Experimental Validation

parameter λ = 1.2/
√
m in all of our experiments. The 1/

√
m term is a classical nor-

malization factor (Bickel et al., 2009), and the constant 1.2 has shown to yield about 10
nonzero coefficients for data set A and 40 for data sets B and C in these experiments.
We have implemented the proposed algorithm in C++ with a Matlab interface. All the
results presented in this section use the refinements from Section 2.3.4 since this has lead
empirically to speed improvements. Although our implementation is multithreaded, our
experiments have been run for simplicity on a single-CPU, single-core 2.66Ghz machine.

The first parameter to tune is η, the number of signals drawn at each iteration.
Trying different powers of 2 for this variable has shown that η = 512 was a good choice
(lowest objective function values on the training set—empirically, this setting also yields
the lowest values on the test set). Even though this parameter is fairly easy to tune since
values of 64, 128, 256 and 1024 have given very similar performances, the difference with
the choice η = 1 is significant.

Our implementation can be used in both the online setting it is intended for, and
in a regular batch mode where it uses the entire data set at each iteration. We have
also implemented a first-order stochastic gradient descent algorithm that shares most of
its code with our algorithm, except for the dictionary update step. This setting allows
us to draw meaningful comparisons between our algorithm and its batch and stochastic
gradient alternatives, which would have been difficult otherwise. For example, comparing
our algorithm to the Matlab implementation of the batch approach from Lee et al. (2007)
developed by its authors would have been unfair since our C++ program has a built-
in speed advantage.5 To measure and compare the performances of the three tested
methods, we have plotted the value of the objective function on the test set, acting as a
surrogate of the expected cost, as a function of the corresponding training time.

Online vs. Batch

The left column of Figure 2.1 compares the online and batch settings of our implemen-
tation. The full training set consists of 106 samples. The online version of our algorithm
draws samples from the entire set, and we have run its batch version on the full data set
as well as subsets of size 104 and 105 (see Figure 2.1). The online setting systematically
outperforms its batch counterpart for every training set size and desired precision. We
use a logarithmic scale for the computation time, which shows that in many situations,
the difference in performance can be dramatic. Similar experiments have given similar
results on smaller data sets. Our algorithm uses all the speed-ups from Section 2.3.4.
The parameter ρ was chosen by trying the values 0, 5, 10, 15, 20, 25, and t0 by trying
different powers of 10. We have selected (t0 = 0.001, ρ = 15), which has given the best
performance in terms of objective function evaluated on the training set for the three
data sets. We have plotted three curves for our method: OL1 corresponds to the optimal

5Both LARS and the feature-sign algorithm (Lee et al., 2007) require a large number of low-level
operations which are not well optimized in Matlab. We have indeed observed that our C++ implemen-
tation of LARS is up to 50 times faster than the Matlab implementation of the feature-sign algorithm
of Lee et al. (2007) for our experiments.

69

2. Online Learning for Matrix Factorization and Sparse Coding

setting (t0 = 0.001, ρ = 15). Even though tuning two parameters might seem cumber-
some, we have plotted two other curves showing that, on the contrary, our method is
very easy to use. The curve OL2, corresponding to the setting (t0 = 0.001, ρ = 10), is
very difficult to distinguish from the first curve and we have observed a similar behavior
with the setting (t0 = 0.001, ρ = 20). showing that our method is robust to the choice
of the parameter ρ. We have also observed that the parameter ρ is useful for large data
sets only. When using smaller ones (n ≤ 100, 000), it did not bring any benefit.

Moreover, the curve OL3 is obtained without using a tuned parameter t0—that is,
ρ = 15 and t0 = 0, and shows that its influence is very limited since very good results are
obtained without using it. On the other hand, we have observed that using a parameter
t0 too big, could slightly slow down our algorithm during the first epoch (cycle on the
training set).

Comparison with Stochastic Gradient Descent

Our experiments have shown that obtaining good performance with stochastic gradient
descent requires using both the mini-batch heuristic and carefully choosing a learning
rate of the form a/(ηt + b). To give the fairest comparison possible, we have thus
optimized these parameters. As for our algorithm, sampling η values among powers of
2 (as before) has shown that η = 512 was a good value and gives a significant better
performance than η = 1.

In an earlier version of this work (Mairal et al., 2009a), we have proposed a strategy
for our method which does not require any parameter tuning except the mini-batch η
and compared it with the stochastic gradient descent algorithm (SGD) with a learning
rate of the form a/(ηt). While our method has improved in performance using the new
parameter ρ, SGD has also proven to provide much better results when using a learning
rate of the form a/(ηt + b) instead of a/(ηt), at the cost of an extra parameter b to
tune. Using the learning rate a/(ηt) with a high value for a results indeed in too large
initial steps of the algorithm increasing dramatically the value of the objective function,
and a small value of a leads to bad asymptotic results, while a learning rate of the form
a/(ηt+ b) is a good compromise.

We have tried different powers of 10 for a and b. First selected the couple (a =
100, 000, b = 100, 000) and then refined it, trying the values 100, 000×2i for i = −3, . . . , 3.
Finally, we have selected (a = 200, 000, b = 400, 000). As shown on the right column
of Figure 2.1, this setting represented by the curve SG1 leads to similar results as our
method. The curve SG2 corresponds to the parameters (a = 400, 000, b = 400, 000) and
shows that increasing slightly the parameter a makes the curves worse than the others
during the first iterations (see for instance the curve between 1 and 102 seconds for
data set A), but still lead to good asymptotic results. The curve SG3 corresponds to a
situation where a and b are slightly too small (a = 50, 000, b = 100, 000). It is as good as
SG1 for data sets A and B, but asymptotically slightly below the others for data set C. All
the curves are obtained as the average of three experiments with different initializations.
Interestingly, even though the problem is not convex, the different initializations have

70

2.6. Experimental Validation

10
−1

10
0

10
1

10
2

10
3

10
4

0.275

0.28

0.285

0.29

0.295

0.3

0.305

Evaluation set A

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Batch n=10
4

Batch n=10
5

Batch n=10
6

OL1

OL2

OL3

10
−1

10
0

10
1

10
2

10
3

10
4

0.275

0.28

0.285

0.29

0.295

0.3

0.305

Evaluation set A

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

SG1
SG2
SG3
OL1

10
−1

10
0

10
1

10
2

10
3

10
4

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

Evaluation set B

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Batch n=10
4

Batch n=10
5

Batch n=10
6

OL1

OL2

OL3

10
−1

10
0

10
1

10
2

10
3

10
4

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

Evaluation set B

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

SG1
SG2
SG3
OL1

10
−1

10
0

10
1

10
2

10
3

10
4

0.215

0.22

0.225

0.23

0.235

0.24

0.245

Evaluation set C

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Batch n=10
4

Batch n=10
5

Batch n=10
6

OL1

OL2

OL3

10
−1

10
0

10
1

10
2

10
3

10
4

0.215

0.22

0.225

0.23

0.235

0.24

0.245

Evaluation set C

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

SG1
SG2
SG3
OL1

Figure 2.1: Left: Comparison between our method and the batch approach for dictionary
learning. Right: Comparison between our method and stochastic gradient descent. The
results are reported for three data sets as a function of computation time on a logarithmic
scale. Note that the times of computation that are less than 0.1s are not reported. See
text for details.

71

2. Online Learning for Matrix Factorization and Sparse Coding

led to very similar values of the objective function and the variance of the experiments
was always insignificant after 10 seconds of computations.

2.6.2 Non Negative Matrix Factorization and Non Negative Sparse
Coding

In this section, we compare our method with the classical algorithm of Lee and Seung
(2001) for NMF and the non-negative sparse coding algorithm of Hoyer (2002) for NNSC.
The experiments have been carried out on three data sets with different sizes:

• Data set D is composed of n = 2, 429 face images of size m = 19× 19 pixels from
the the MIT-CBCL Face Database #1 (Sung, 1996).

• Data set E is composed of n = 2, 414 face images of size m = 192×168 pixels from
the Extended Yale B Database (Georghiades et al., 2001; Lee et al., 2005).

• Data set F is composed of n = 100, 000 natural image patches of size m = 16× 16
pixels from the Pascal VOC’06 image database (Everingham et al., 2007).

We have used the Matlab implementations of NMF and NNSC of P. Hoyer, which
are freely available at http://www.cs.helsinki.fi/u/phoyer/software.html. Even
though our C++ implementation has a built-in advantage in terms of speed over these
Matlab implementations, most of the computational time of NMF and NNSC is spent
on large matrix multiplications, which are typically well optimized in Matlab. All the
experiments have been run for simplicity on a single-CPU, single-core 2.4GHz machine,
without using the parameters ρ and t0 presented in Section 2.3.4—that is, ρ = 0 and
t0 = 0. As in Section 2.6.1, a minibatch of size η = 512 is chosen. Following the original
experiment of Lee and Seung (2001) on data set D, we have chosen to learn p = 49 basis
vectors for the face images data sets D and E, and we have chosen p = 64 for data set F.
Each input vector is normalized to have unit ℓ2-norm.

The experiments we present in this section compare the value of the objective function
on the data sets obtained with the different algorithms as a function of the computation
time. Since our algorithm learns the matrix D but does not provide the matrix α,
the computation times reported for our approach include two steps: First, we run our
algorithm to obtain D. Second, we run one sparse coding step over all the input vectors
to obtain α. Figure 2.2 presents the results for NMF and NNSC. The gradient step for
the algorithm of Hoyer (2002) was optimized for the best performance and λ was set to

1√
m

. Both D and α were initialized randomly. The values reported are those obtained
for more than 0.1s of computation. Since the random initialization provides an objective
value which is by far greater than the value obtained at convergence, the curves are
all truncated to present significant objective values. All the results are obtained using
the average of 3 experiments with different initializations. As shown on Figure 2.2, our
algorithm provides a significant improvement in terms of speed compared to the other
tested methods, even though the results for NMF and NNSC could be improved a bit
using a C++ implementation.

72

http://www.cs.helsinki.fi/u/phoyer/software.html

2.6. Experimental Validation

10
−1

10
0

10
1

10
2

10
3

10
4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Evaluation set D

time (in seconds)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Our method

Lee & Seung

10
−1

10
0

10
1

10
2

10
3

10
4

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Evaluation set D

time (in seconds)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Our method

Hoyer

10
−1

10
0

10
1

10
2

10
3

10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Evaluation set E

time (in seconds)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Our method

Lee & Seung

10
−1

10
0

10
1

10
2

10
3

10
4

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Evaluation set E

time (in seconds)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Our method

Hoyer

10
−1

10
0

10
1

10
2

10
3

10
4

1

2

3

4

5

6

7

x 10
−3 Evaluation set F

time (in seconds)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Our method

Lee & Seung

10
−1

10
0

10
1

10
2

10
3

10
4

0.0614

0.0616

0.0618

0.062

0.0622

0.0624

Evaluation set F

time (in seconds)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Our method

Hoyer

Figure 2.2: Left: Comparison between our method and the approach of Lee and Seung
(2001) for NMF. Right: Comparison between our method and the approach of Hoyer
(2002) for NNSC. The value of the objective function is reported for three data sets as
a function of computation time on a logarithmic scale.

73

2. Online Learning for Matrix Factorization and Sparse Coding

2.6.3 Sparse Principal Component Analysis

We present here the application of our method addressing SPCA with various types of
data: faces, natural image patches, and genomic data.

Faces and Natural Patches

In this section, we compare qualitatively the results obtained by PCA, NMF, our dic-
tionary learning and our sparse principal component analysis algorithm on the data sets
used in Section 2.6.2. For dictionary learning, PCA and SPCA, the input vectors are
first centered and normalized to have a unit norm. Visual results are presented on fig-
ures 2.3, 2.4 and 2.5, respectively for the data sets D, E and F. The parameter λ for
dictionary learning and SPCA was set so that the decomposition of each input signal has
approximately 10 nonzero coefficients. The results for SPCA are presented for various
values of the parameter γ, yielding different levels of sparsity. The scalar τ indicates the
percentage of nonzero values of the dictionary.

Each image is composed of p small images each representing one learned feature
vector. Negative values are blue, positive values are red and the zero values are rep-
resented in white. Confirming earlier observations from Lee and Seung (2001), PCA
systematically produces features spread out over the images, whereas NMF produces
more localized features on the face databases D and E. However, neither PCA, nor NMF
are able to learn localized features on the set of natural patches F. On the other hand,
the dictionary learning technique is able to learn localized features on data set F, and
SPCA is the only tested method that allows controlling the level of sparsity among the
learned matrices.

Genomic Data

This experiment follows Witten et al. (2009) and demonstrates that our matrix decom-
position technique can be used for analyzing genomic data. Gene expression measure-
ments and DNA copy number changes (comparative genomic hybridization CGH) are
two popular types of data in genomic research, which can be used to characterize a set of
abnormal tissue samples for instance. When these two types of data are available, a re-
cent line of research tries to analyze the correlation between them—that is, to determine
sets of expression genes which are correlated with sets of chromosomal gains or losses
(see Witten et al., 2009 and references therein). Let us suppose that for n tissue samples,
we have a matrix X in R

n×p of gene expression measurements and a matrix Y in R
n×q

of CGH measurements. In order to analyze the correlation between these two sets of
data, recent works have suggested the use of canonical correlation analysis (Hotelling,
1936), which solves6

min
u∈Rp,v∈Rq

cov(Xu,Yv) s.t. ‖Xu‖2 ≤ 1 and ‖Yv‖2 ≤ 1.

6Note that when more than one couple of factors are needed, two sequences u1,u2, . . . and v1,v2, . . .
of factors can be obtained recursively subject to orthogonality constraints of the sequences Xu1,Xu2, . . .
and Yv1,Yv2,

74

2.6. Experimental Validation

(a) PCA (b) SPCA, τ = 70%

(c) NMF (d) SPCA, τ = 30%

(e) Dictionary Learning (f) SPCA, τ = 10%

Figure 2.3: Results obtained by PCA, NMF, dictionary learning, SPCA for data set D.
75

2. Online Learning for Matrix Factorization and Sparse Coding

(a) PCA (b) SPCA, τ = 70%

(c) NMF (d) SPCA, τ = 30%

(e) Dictionary Learning (f) SPCA, τ = 10%

Figure 2.4: Results obtained by PCA, NMF, dictionary learning, SPCA for data set E.
76

2.6. Experimental Validation

(a) PCA (b) SPCA, τ = 70%

(c) NMF (d) SPCA, τ = 30%

(e) Dictionary Learning (f) SPCA, τ = 10%

Figure 2.5: Results obtained by PCA, NMF, dictionary learning, SPCA for data set F.
77

2. Online Learning for Matrix Factorization and Sparse Coding

When X and Y are centered and normalized, it has been further shown that with this
type of data, good results can be obtained by treating the covariance matrices X⊤X
and Y⊤Y as diagonal, leading to a rank-one matrix decomposition problem

min
u∈Rp,v∈Rq

‖X⊤Y− uv⊤‖2F s.t. ‖u‖2 ≤ 1, and ‖v‖2 ≤ 1.

Furthermore, as shown by Witten et al. (2009), this method can benefit from sparse
regularizers such as the ℓ1 norm for the gene expression measurements and a fused lasso
for the CGH arrays, which are classical choices used for these data. The formulation we
have chosen is slightly different from the one used by Witten et al. (2009) and can be
addressed using our algorithm:

min
u∈Rp,v∈Rq

‖Y⊤X− vu⊤‖2F + λ‖u‖2 s.t. ‖v‖22 + γ1‖v‖1 + γ2 FL(v) ≤ 1. (2.13)

In order to assess the effectivity of our method, we have conducted the same experiment
as Witten et al. (2009) using the breast cancer data set described by Chin et al. (2006),
consisting of q = 2, 148 gene expression measurements and p = 16, 962 CGH measure-
ments for n = 89 tissue samples. The matrix decomposition problem of Eq. (2.13) was
addressed once for each of the 23 chromosomes, using each time the CGH data avail-
able for the corresponding chromosome, and the gene expression of all genes. Following
the original choice of Witten et al. (2009), we have selected a regularization parame-
ter λ resulting in about 25 non-zero coefficients in u, and selected γ1 = γ2 = 1, which
results in sparse and piecewise-constant vectors v. The original matrices (X,Y) are
divided into a training set (Xtr,Ytr) formed with 3/4 of the n samples, keeping the rest
(Xte,Yte) for testing. This experiment is repeated for 10 random splits, for each chro-
mosome a couple of factors (u,v) are computed, and the correlations corr(Xtru,Ytrv)
and corr(Xteu,Ytev) are reported on Figure 2.6. The average standard deviation of the
experiments results was 0.0339 for the training set and 0.1391 for the test set.

Comparing with the original curves reported by Witten et al. (2009) for their penal-
ized matrix decomposition (PMD) algorithm, our method exhibits in general a perfor-
mance similar as PMD.7 Nevertheless, the purpose of this section is more to demonstrate
that our method can be used with genomic data than comparing it carefully with PMD.
To draw substantial conclusions about the performance of both methods, more experi-
ments would of course be needed.

2.6.4 Application to Large-Scale Image Processing

We demonstrate in this section that our algorithm can be used for a difficult large-scale
image processing task, namely, removing the text (inpainting) from the damaged 12-
Megapixel image of Figure 2.7. Using a multi-threaded version of our implementation,
we have learned a dictionary with 256 elements from the roughly 7 × 106 undamaged

7The curves for PMD were generated with the R software package available at
http://cran.r-project.org/web/packages/PMA/index.html and a script provided by Witten
et al. (2009).

78

http://cran.r-project.org/web/packages/PMA/index.html

2.6. Experimental Validation

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Genomic Experiment: Correlation Analysis

Chromosome

C
o

rr
e

la
ti
o

n

Train PMD

Test PMD

Train OL

Test OL

Figure 2.6: SPCA was applied to the covariance matrix obtained from the breast cancer
data (Chin et al., 2006). A fused lasso regularization is used for the CGH data. 3/4 of
the n samples are used as a training set, keeping the rest for testing. Average correlations
from 10 random splits are reported for each of the 23 chromosomes, for PMD (Witten
et al., 2009) and our method denoted by OL.

12 × 12 color patches in the image with two epochs in about 8 minutes on a 2.4GHz
machine with eight cores. Once the dictionary has been learned, the text is removed
using the sparse coding technique for inpainting of Mairal et al. (2008b), and we obtain
a convincing result, where artefacts are hardly visible. Our intent here is of course not
to evaluate our learning procedure in inpainting tasks, which would require a thorough
comparison with state-the-art techniques on standard data sets. Instead, we just wish
to demonstrate that it can indeed be applied to a realistic, non-trivial image processing
task on a large image. Indeed, to the best of our knowledge, this is the first time
that dictionary learning is used for image restoration on such large-scale data. For
comparison, the dictionaries used for inpainting in Mairal et al. (2008b) are learned (in
batch mode) on 200,000 patches only.

79

2. Online Learning for Matrix Factorization and Sparse Coding

Figure 2.7: Inpainting example on a 12-Megapixel image. Top: Damaged and restored
images. Bottom: Zooming on the damaged and restored images. Note that the pictures
presented here have been scaled down for display, and are best seen in color by zooming
on a computer screen.

2.7 Conclusion

We have introduced in this work new stochastic online algorithm for learning dictionaries
adapted to sparse coding tasks, and proven its convergence. Experiments demonstrate
that it is significantly faster than batch alternatives such as Engan et al. (1999), Aharon
et al. (2006) and Lee et al. (2007) on large data sets that may contain millions of
training examples, yet it does not require a careful learning rate tuning like regular
stochastic gradient descent methods. Moreover, we have extended it to other matrix
factorization problems such as non negative matrix factorization, and we have proposed
a formulation for sparse principal component analysis which can be solved efficiently
using our method. Our approach has already shown to be useful for image restoration
tasks such as denoising (Mairal et al., 2009c); more experiments are of course needed to
better assess its promise in bioinformatics and signal processing. Beyond this, we plan
to use the proposed learning framework for sparse coding in computationally demanding

80

2.7. Conclusion

video restoration tasks (Protter and Elad, 2009), with dynamic data sets whose size is
not fixed, and extending this framework to different loss functions (Mairal et al., 2009b)
to address discriminative tasks such as image classification, which are more sensitive to
overfitting than reconstructive ones.

81

3

Network Flow Algorithms for Structured Sparsity

Chapter abstract: We consider a class of learning problems that involve a structured sparsity-
inducing norm defined as the sum of ℓ∞-norms over groups of variables. Whereas a lot of
effort has been put in developing fast optimization methods when the groups are disjoint or
embedded in a specific hierarchical structure, we address here the case of general overlapping
groups. To this end, we show that the corresponding optimization problem is related to network
flow optimization. More precisely, the proximal problem associated with the norm we consider
is dual to a quadratic min-cost flow problem. We propose an efficient procedure which computes
its solution exactly in polynomial time. Our algorithm scales up to millions of variables, and
opens up a whole new range of applications for structured sparse models. We present several
experiments on image and video data, demonstrating the applicability and scalability of our
approach for various problems.

The work presented in this chapter was achieved with the collaboration of Rodolphe
Jenatton, Guillaume Obozinski and Francis Bach, with equal contribution between
Rodolphe Jenatton and myself. The main topic of this chapter is optimization and
proximal methods. Therefore, Section 1.4.3 should be read before this chapter. The
reader is also strongly encouraged to have a look at Section 1.4.8. The material of this
chapter is based on the following publication:

J. Mairal∗, R. Jenatton∗, G. Obozinski, F. Bach. Network Flow Algorithms for
Structured Sparsity. Advances in Neural Information Processing Systems. 2010

and introduces some material from

R. Jenatton∗, J. Mairal∗, G. Obozinski, F. Bach. Proximal Methods for Sparse
Hierarchical Dictionary Learning. In Proceedings of the International Conference on
Machine Learning (ICML). 2010

R. Jenatton∗, J. Mairal∗, G. Obozinski, F. Bach. Proximal Methods for Hierarchical
Sparse Coding. submitted. arXiv:1009.2139v2, 2010 (long version of the previous article)

(∗equal contributions)

83

3. Network Flow Algorithms for Structured Sparsity

3.1 Introduction

Sparse linear models have become a popular framework for dealing with various unsu-
pervised and supervised tasks in machine learning and signal processing. In such models,
linear combinations of small sets of variables are selected to describe the data. Regular-
ization by the ℓ1-norm has emerged as a powerful tool for addressing this combinatorial
variable selection problem, relying on both a well-developed theory (see Bickel et al.,
2009, and references therein) and efficient algorithms (Efron et al., 2004; Nesterov, 2007;
Beck and Teboulle, 2009).

The ℓ1-norm primarily encourages sparse solutions, regardless of the potential struc-
tural relationships (e.g., spatial, temporal or hierarchical) existing between the variables.
Much effort has recently been devoted to designing sparsity-inducing regularizations
capable of encoding higher-order information about allowed patterns of non-zero co-
efficients (Jenatton et al., 2009; Jacob et al., 2009; Zhao et al., 2009; Huang et al.,
2009; Baraniuk et al., 2010), with successful applications in bioinformatics (Jacob et al.,
2009; Kim and Xing, 2010), topic modeling (Jenatton et al., 2010a) and computer vi-
sion (Huang et al., 2009). Other attempts for modelling relations between variables
include the use of graphical models by Cevher et al. (2009); Garrigues and Olshausen
(2008).

By considering sums of norms of appropriate subsets, or groups, of variables, these
regularizations control the sparsity patterns of the solutions. The underlying optimiza-
tion problem is usually difficult, in part because it involves nonsmooth components.
Proximal methods have proven to be effective in this context, essentially because of their
fast convergence rates and their ability to deal with large problems (Nesterov, 2007; Beck
and Teboulle, 2009). While the settings where the penalized groups of variables do not
overlap (Roth and Fischer, 2008) or are embedded in a tree-shaped hierarchy (Jenat-
ton et al., 2010a) have already been studied, sparsity-inducing regularizations of general
overlapping groups have, to the best of our knowledge, never been considered within the
proximal method framework.

3.1.1 Contributions

This work makes the following contributions:

• It shows that the proximal operator associated with the structured norm we con-
sider can be computed by solving a quadratic min-cost flow problem, thereby es-
tablishing a connection with the network flow optimization literature.

• It presents a fast and scalable procedure for solving a large class of structured
sparse regularized problems, which, to the best of our knowledge, have not been
addressed efficiently before.

• It shows that the dual norm of the sparsity-inducing norm we consider can also be
evaluated efficiently, which enables us to compute duality gaps for the correspond-
ing optimization problems.

84

3.2. Related Work and Problem Statement

• It demonstrates that our method is relevant for various applications, from video
background subtraction to estimation of hierarchical structures for dictionary learn-
ing of natural image patches.

3.2 Related Work and Problem Statement

We consider in this work convex optimization problems of the form

min
α∈Rp

f(α) + λΩ(α), (3.1)

where f : R
p → R is a convex differentiable function with uniformly Lipschitz gradient

and Ω : R
p → R is a convex, nonsmooth, sparsity-inducing regularization function.

When one knows a priori that the solutions of this learning problem only have a few
non-zero coefficients, Ω is often chosen to be the ℓ1-norm, leading for instance to the
Lasso (Tibshirani, 1996). When these coefficients are organized in groups, a penalty
encoding explicitly this prior knowledge can improve the prediction performance and/or
interpretability of the learned models (Roth and Fischer, 2008; Yuan and Lin, 2006;
Huang et al., 2009; Obozinski et al., 2009). Such a penalty, might for example take
the form

Ω(α) ,
∑

g∈G
ηg‖αg‖, (3.2)

where G is a set of groups of indices, αj denotes the j-th coordinate of α for j in
J1; pK, the vector αg in R

|g| records the coefficients of α indexed by g in G, and the
scalars ηg are positive weights. ‖.‖ could be any norm, but it is often taken to be the
ℓ2- or ℓ∞-norm in practice, which when G is the set of singletons of J1; pK, gets back
to the ℓ1-norm. For example, we present in the next section an algorithm for dealing
with groups embedded in a particular hierarchical structure that works for the ℓ2 or
ℓ∞-norms. The more general algorithm that we show later and which is the main topic
of this chapter requires a sum of ℓ∞-norms, which are piecewise linear, a property that
we take advantage of in this work.

If G is a partition of J1; pK—that is, the groups do not overlap, variables are selected
in groups rather than individually. When the groups overlap, Ω is still a norm and sets
groups of variables to zero together (Jenatton et al., 2009). The latter setting has first
been considered for hierarchies (Zhao et al., 2009) and will be presented in the next
section, and then extended to general group structures (Jenatton et al., 2009). Note
that other types of structured sparse models have also been introduced, either through
a different norm (Jacob et al., 2009), or through non-convex criteria (Huang et al., 2009;
Baraniuk et al., 2010). Solving Eq. (3.1) in this context becomes challenging and is the
topic of this work. Following Jenatton et al. (2010a) who tackled the case of hierarchical
groups, we propose to approach this problem with proximal methods.

85

3. Network Flow Algorithms for Structured Sparsity

3.2.1 Proximal Methods

We suppose known proximal methods, which have been presented in Section 1.4.3. We
only recall that using these methods requires to efficiently solve the proximal operator
associated with the regularization λΩ, which is the function that maps a vector u in R

p

to the (unique, by strong convexity) solution of

min
v∈Rp

1
2
‖u− v‖22 + λΩ(v). (3.3)

Solving efficiently this problem is the topic of this chapter. In the simple setting where G
is the set of singletons and the ηg are all set to 1, Ω is the ℓ1-norm, and the proximal
operator is the elementwise soft-thresholding operator vj ← sign(uj) max(|uj |−λ, 0) for
j ∈ J1; pK. Similarly, when the groups in G do not overlap, the proximal operator can be
computed in closed form (Liu et al., 2009). The case of a tree-shaped hierarchical struc-
ture has recently been tackled by Jenatton et al. (2010a) based on a dual optimization
problem.

The approach we develop extends Jenatton et al. (2010a) to the case of general
overlapping groups when Ω is a weighted sum of ℓ∞-norms1, extending the applicability
of these regularizations to larger problems.

We first recall the approach of Jenatton et al. (2010a) in the next section, and then
show that, for a general set G of overlapping groups, a convex dual of the problem of
Eq. (3.3) can be reformulated as a quadratic min-cost flow problem.

3.2.2 Solving The Hierarchical Case

We present in this section the approach of Jenatton et al. (2010a) for dealing with the
case of hierarchies. To simplify the presentation, we present the regularization in the
context of a tree-structured dictionary for solving the following problem

min
α∈Rp

1
2
‖x−Dα‖22 + λΩ(α),

with Ω is a specific structured sparsity-inducing norm, which we will explicit in the
sequel. x in R

m is a signal, D in R
m×p a dictionary, and λ is the regularization parameter.

Let us now explicit the norm Ω.

3.2.3 Hierarchical Sparsity Inducing Norms

We organize the p entries of α in a rooted-tree T composed of p nodes, one for each
dictionary element dj , j ∈ J1; pK. We will identify these indices j in J1; pK and the nodes
of T . We want to exploit the structure of T in the following sense: the decomposition
of any vector x can involve a dictionary element dj only if the ancestors of dj in T are
themselves part of the decomposition. Equivalently, one can say that when a dictionary

1For hierarchies, the approach of Jenatton et al. (2010a) applies also to the case of where Ω is a
weighted sum of ℓ2-norms.

86

3.2. Related Work and Problem Statement

element dj is not involved in the decomposition of a vector x then its descendants in T
should not be part of the decomposition. While these two views are equivalent, the latter
leads to an intuitive penalization term.

Figure 3.1: Left: example of a tree-structured set of groups G (dashed contours in red),
corresponding to a tree T = {1, . . . , 6} (in black). Right, example of a sparsity pattern:
the groups {2, 4}, {4} and {6} are set to zero, so that the corresponding nodes (in gray)
that form subtrees of T are removed. The remaining nonzero variables {1, 3, 5} are such
that, if a node is selected, the same goes for all its ancestors.

To obtain models with the desired property, one considers for all j in T , the group
gj ⊆ {1, . . . , p} of dictionary elements that only contains j and all its descendants, and
penalizes the number of such groups that are involved in the decomposition of x (a group
being “involved in the decomposition” meaning here that at least one of its dictionary
element is part of the decomposition). We call G this set of groups (Figure 3.1).

While this penalization is non-convex, a convex proxy has been introduced by Zhao
et al. (2009) and was further considered by Bach (2009) and Kim and Xing (2010) in
the context of regression. It takes the same form as Eq. (3.2)—that is, for any vector α
in R

p, it can be written Ω(α) =
∑

g∈G ηg‖αg‖, where ‖.‖ stands either for the ℓ∞ or ℓ2
norm, and (ηg)g∈G denotes some positive weights2. As analyzed by Zhao et al. (2009),
when penalizing by Ω, some of the vectors αg are set to zero for some g ∈ G. Therefore,
the components of α corresponding to some entire subtrees of T are set to zero, which
is exactly the desired effect (Figure 3.1).

Note that even though we have presented for simplicity reasons this hierarchical norm
in the context of a single tree with a single element at each node, it can be extended
easily to the case of forests of trees, and/or trees containing several dictionary elements
at each node. More generally, this formulation can be extended with the notion of
tree-structured groups, which we now present.

2For a complete definition of Ω for any ℓq norm, a discussion of the choice of q, and a strategy for
choosing the weights ηg, see (Zhao et al., 2009; Kim and Xing, 2010).

87

3. Network Flow Algorithms for Structured Sparsity

Definition 1 (Tree-structured set of groups.)
A set of groups G = {g}g∈G is said to be tree-structured in {1, . . . , p}, if

⋃

g∈G g =
{1, . . . , p} and for all g, h ∈ G, (g∩h 6= ∅)⇒ (g ⊆ h or h ⊆ g). For such a set of groups,
there exists a (non-unique) total order relation � such that:

g � h ⇒ {
g ⊆ h or g ∩ h = ∅}.

Sparse hierarchical norms having been introduced, we now address the optimization
dealing with such norms.

3.2.4 Optimization for Hierarchies

Within the context of regression, several optimization methods to cope with the regular-
ization Ω have already been proposed. A boosting-like technique with a path-following
strategy is used by Zhao et al. (2009). Kim and Xing (2010) use a reweighted least-
squares scheme when ‖.‖ is the ℓ2 norm. The same approach is considered by Zhao et al.
(2009), but built upon an active set strategy. In this chapter, we propose to perform
the updates of the vectors αi based on a proximal approach which we have introduced
in Section 1.4.3.

Proximal Operator for the Norm Ω

We now address the general optimization problem presented in Eq. 3.1 with the help of
proximal methods, which we have recalled in Section 3.2.1, and we show that Eq. (3.3)
can be solved with a primal-dual approach. The procedure solves a dual formulation
of Eq. (3.3) involving the dual norm3 of ‖.‖, denoted by ‖.‖∗, and defined by ‖κ‖∗ =
max‖z‖≤1 z⊤κ for any vector κ in R

p. The formulation is described in the next lemma
that relies on conic duality (Boyd and Vandenberghe, 2004). The rationale for using
conic duality is to come up with a dual problem without overlapping variables.

Lemma 3 (Dual of the proximal problem)
Let u ∈ R

p and let us consider the problem

max
ξ∈Rp×|G|

−1
2
(‖u−

∑

g∈G
ξg‖22 − ‖u‖22

)

s.t. ∀g ∈ G, ‖ξg‖∗ ≤ ληg and ξgj = 0 if j /∈ g,
(3.4)

where ξ = (ξg)g∈G and ξgj denotes the j-th coordinate of the vector ξg in R
p. Then,

problems (3.3) and (3.4) are dual to each other and strong duality holds. In addition,
the pair of primal-dual variables {v, ξ} is optimal if and only if ξ is a feasible point of

3It is easy to show that the dual norm of the ℓ2 norm is the ℓ2 norm itself. The dual norm of the
ℓ∞ is the ℓ1 norm.

88

3.2. Related Work and Problem Statement

the optimization problem (3.4), and

v = u−
∑

g∈G
ξg,

and for all g ∈ G,
{

v⊤|gξ
g = ‖v|g‖‖ξg‖∗ and ‖ξg‖∗ = ληg,

or v|g = 0.

(3.5)

In this lemma, we use the notation vgi which is the vector of size p whose coordinates
are equal to those of v for indices in the set g, and 0 otherwise. Note the difference with
the notation vg, which is often used in works on structured sparsity, where vg is a vector
of size |g|. The proof of the lemma, as well as all the ones of the subsequent lemmas
and propositions are given in Appendix B for readability purposes. Note that we focus
here on specific tree-structured groups, but the previous lemma is valid regardless of the
nature of G.

After removing the constant terms, the dual problem can be rewritten as

min
ξ∈Rp×|G|

1
2
‖u−

∑

g∈G
ξg‖22 s.t. ∀g ∈ G, ‖ξg‖∗ ≤ ληg and ξgj = 0 if j /∈ g.

The structure of the dual problem of Eq. (3.4), i.e., the separability of the (convex)
constraints for each vector ξg, g ∈ G, makes it possible to use block coordinate ascent
(Bertsekas, 1999). Such a procedure is presented in Algorithm 3. It optimizes sequen-
tially Eq. (3.4) with respect to the variable ξg, while keeping fixed the other variables ξh,
for h 6= g. It is easy to see from Eq. (3.4) that such an update for a group g in G amounts
to the orthogonal projection of the vector u|g −

∑

h 6=g ξ
h
|g onto the ball of radius ληg of

the dual norm ‖.‖∗. We denote this projection by Π∗ληg .

Algorithm 3 Block coordinate ascent in the dual
Inputs: u ∈ R

p and set of groups G.
Outputs: (v, ξ) (primal-dual solutions).
Initialization: v = u, ξ = 0.
while (maximum number of iterations not reached) do

for g ∈ G do
v← u−∑h 6=g ξh.
ξg ← Π∗ληg(v|g).

end for
end while
v← u−∑g∈G ξg.

Convergence in One Pass for the ℓ2- and ℓ∞-Norms

In general, Algorithm 3 is not guaranteed to solve exactly Eq. (3.3) in a finite number
of iterations. However, when ‖.‖ is the ℓ2- or ℓ∞-norm, and provided that the groups

89

3. Network Flow Algorithms for Structured Sparsity

in G are appropriately ordered, we now prove that only one pass of Algorithm 3, i.e.,
only one iteration over all groups, is sufficient to obtain the exact solution of Eq. (3.3).

Before stating this result, we need to introduce two lemmas. The first lemma char-
acterizes the projections onto norm balls.

Lemma 4 (Projection on the dual ball)
Let v ∈ R

p and t > 0. We have
κ = Π∗t (v)

if and only if

{

if ‖v‖∗ ≤ t, κ = v,

otherwise, ‖κ‖∗ = t and κ⊤(v− κ) = ‖κ‖∗‖v− κ‖.
The second lemma shows that, given two nested groups g, h such that g ⊆ h ⊆

{1, . . . , p}, if ξg is updated before ξh in Algorithm 3, then the optimality condition of
ξg is not perturbed by the update of ξh. In other words, this lemma indicates that the
correct order to consider in Algorithm 3 is � (see Definition 1).

Lemma 5 (Projections with nested groups)
Let ‖.‖ denote either the ℓ2 or ℓ∞ norm, and g and h be two nested groups—that is,
g ⊆ h ⊆ {1, . . . , p}. Let v be a vector in R

p, and let us consider the successive projections

κg , Π∗tg(v|g) and κh , Π∗th(v|h − κ
g)

with tg, th > 0. Then, we have as well

κg = Π∗tg(v|g − κh|g).

The previous lemma establishes the convergence in one pass of Algorithm 3 in the case
where G contains only two nested groups g ⊆ h, provided that ξg is computed before ξh.
In the following proposition, this lemma is extended to general tree-structured sets of
groups G:

Proposition 7 (Convergence in one pass)
Suppose that the groups in G are ordered according to � and that the norm ‖.‖ is either
the ℓ2 or ℓ∞ norm. Then, after initializing ξ to 0, one pass of Algorithm 3 with the
order � gives the solution of 3.4.

Interestingly, this property that is true for the ℓ2 or ℓ∞-norms is not true for other
ℓq-norms, and in fact counter examples exists for q 6= 2,∞ (see Jenatton et al., 2010b).

Efficient Implementation of the Proximal Operator

Since one pass of Algorithm 3 involves p projections on the dual balls (respectively the ℓ2
and the ℓ1 balls for the ℓ2- and ℓ∞-norms) of vectors in R

p, a naive implementation leads
to a polynomial complexity in O(p2), since each of these projections can be obtained in
O(p) operations (Brucker, 1984; Maculan and de Paula, 1989). However, we show that
in these cases, the primal solution v, which is the quantity of interest, can be obtained
with a smaller complexity, without considering explicitly the dual variable ξ.

90

3.2. Related Work and Problem Statement

We present a fast recursive implementation in Algorithm 4 for the ℓ2-norm case. Two
new notations are used: For a group g in G, we denote by root(g) the indices of the vari-
ables that are at the root of the subtree corresponding to g, and by children(g) the set
of groups that are the children of root(g) in the tree. For instance, in the tree presented
in Figure 3.1, root({3, 5, 6}) = {3}, root({1, 2, 3, 4, 5, 6}) = {1}, children({3, 5, 6}) =
{{5}, {6}}, and children({1, 2, 3, 4, 5, 6}) = {{2, 4}, {3, 5, 6}}. Note that all the groups
of children(g) are necessarily included in g.

Algorithm 4 Fast implementation of Algorithm 3 when ‖.‖ is the ℓ2-norm.
Require: u ∈ R

p (input vector), set of groups G, (ηg)g∈G (positive weights), and g0

(root of the tree).
1: Variables: ρ = (ρg)g∈G in R

|G| (scaling factors); v in R
p (output, primal variable).

2: computeNorm(g0).
3: recursiveScaling(g0,1).
4: return v (primal solution).

Procedure computeNorm(g)
1: Compute the squared norm of the group:

γg ← ‖uroot(g)‖22 +
∑

h∈children(g)

computeNorm(h).

2: Compute the scaling factor of the group: ρg ← max(0, 1− ληg/√γg).
3: return γgρ

2
g.

Procedure recursiveScaling(g,t)
1: ρg ← tρg.
2: vroot(g) ← ρguroot(g).
3: for h ∈ children(g) do
4: recursiveScaling(h,ρg).
5: end for

The successive projections on the ball of the ℓ2-norm in Algorithm 3 amount to
performing sequences of scaling operations. The intuition behind the recursive imple-
mentation presented in Algorithm 4 is that part of the computations corresponding to
these scaling operations can be factorized thanks to the tree structure. The next lemma
ensures the correctness of this implementation and gives its complexity. More details
can be found in the proof, which is relegated to the appendix.

Lemma 6 (Correctness and complexity of Algorithm 4)
When ‖.‖ is chosen to be the ℓ2-norm, Algorithm 4 gives the solution of the primal
problem Eq. (3.3) in O(p) operations.

We then give a simple recursive implementation of Algorithm 3 when ‖.‖ is chosen
to be the ℓ∞-norm. The details of the procedure are described in Algorithm 5.

The next lemma ensures the correctness of this algorithm and gives its complexity:

91

3. Network Flow Algorithms for Structured Sparsity

Algorithm 5 Fast implementation of Algorithm 3 when ‖.‖ is the ℓ∞-norm.
Require: u ∈ Rp, set of groups G, (ηg)g∈G (positive weights), and g0 (index of the group

that contains everybody).
1: Variables: ρ = (ρg)g∈G in R

|G|, v in R
p (output).

2: Initialization: v← u.
3: recursiveProjection(g0).
4: return v (primal solution).

Procedure recursiveProjection(g)
1: for h ∈ children(g) do
2: recursiveProjection(h).
3: end for
4: v|g ← v|g −Π∗ληg(v|g).

Lemma 7 (Correctness and complexity of Algorithm 5)
When ‖.‖ is chosen to be the ℓ∞-norm, Algorithm 5 gives the solution of the primal
problem Eq. (3.3) in O(pd) operations, where d is the depth of the tree.

Note that the claim of having a linear complexity in the ℓ∞-case is slightly abusive,
since d could depend of p as well. For instance, in an unbalanced case, the worse case
could be d = O(p), in a balanced tree, one could have d = O(log(p)). In practice,
the structures we have considered experimentally are relatively flat, with a depth not
exceeding d = 5.

3.3 Proposed Approach

The dual formulation to problem (3.3) has been introduced, we now look at the general
case of overlapping groups, and stop assuming a tree-structure. From now on, however,
Ω as to be a sum of ℓ∞-norms. Specializing the dual formulation to this case, we can
rewrite it in the following way

Lemma 8 (Dual of the proximal problem for the ℓ∞-norm)
Let u ∈ R

p and consider the problem

min
ξ∈Rp×|G|

1
2
‖u−

∑

g∈G
ξg‖22 s.t. ∀g ∈ G, ‖ξg‖1 ≤ ληg and ξ

g
j = 0 if j /∈ g, (3.6)

where ξ = (ξg)g∈G and ξgj denotes the j-th coordinate of the vector ξg in R
p. Then,

denoting by v⋆ the solution of Eq. (3.3), and ξ⋆ a solution of Eq. (3.6), the following
relation holds: v⋆ = u−∑g∈G ξ⋆g.

To interpret this dual problem as a network flow problem, we introduce the appro-
priate framework.

92

3.3. Proposed Approach

3.3.1 Graph Model

Without loss of generality4, we assume in the rest of the chapter that the scalars uj are
all non-negative, and add non-negativity constraints on ξ.

Let G be a directed graph G = (V,E, s, t), where V is a set of vertices, E ⊆ V ×V a
set of arcs, s a source, and t a sink. Let c and c′ be two functions on the arcs, c : E → R

and c′ : E → R
+, where c is a cost function and c′ is a non-negative capacity function. A

flow is a non-negative function on arcs that satisfies capacity constraints on all arcs (the
value of the flow on an arc is less than or equal to the arc capacity) and conservation
constraints on all vertices (the sum of incoming flows at a vertex is equal to the sum of
outgoing flows) except for the source and the sink.

We introduce a unique canonical graph G associated with our optimization problem,
which is characterized by the following construction:
(i) V is the union of two sets of vertices Vu and Vgr, where Vu contains exactly one vertex
for each index j in J1; pK, and Vgr contains exactly one vertex for each group g in G. We
thus have |V | = |G|+ p. For simplicity, we identify groups and indices with the vertices
of the graph.
(ii) For every group g in G, E contains an arc (s, g). These arcs have capacity ληg and
zero cost.
(iii) For every group g in G, and every index j in g, E contains an arc (g, j) with zero
cost and infinite capacity. We denote by ξgj the flow on this arc.
(iv) For every index j in J1; pK, E contains an arc (j, t) with infinite capacity and a
cost cj , 1

2(uj − ξ̄j)2, where ξ̄j is the flow on (j, t). Note that by flow conservation, we
necessarily have ξ̄j =

∑

g∈G ξ
g
j .

Examples of canonical graphs are given in Figures 3.2a-3.2c, The flows ξgj associated
with G can now be identified with the variables of problem (3.6): indeed, the sum of the
costs on the edges leading to the sink is equal to the objective function of (3.6), while
the capacities of the arcs (s, g) match the constraints on each group. This shows that
finding a flow minimizing the sum of the costs on such a graph is equivalent to solving
problem (3.6).

When some groups are included in others, a canonical graph can be simplified to
yield a graph with a smaller number of edges. Specifically if h and g are groups with
h ⊂ g, the edges (g, j) for j ∈ h carrying a flow ξgj can be removed and replaced by a
single edge (g, h) of infinite capacity and zero cost, carrying the flow

∑

j∈h ξ
g
j which is

then redistributed after node h. This simplification is illustrated in Figure 3.2d, where
the graph is equivalent to the one of Figure 3.2c. Remarkably it does not change the
optimal value of ξ̄

⋆
, which is the quantity of interest for computing the optimal primal

variable v⋆. These modifications are useful in practice, as they reduce the number of
edges in the graph and improve the speed of the algorithms we are going to present.

4 Let ξ⋆ denote a solution of Eq. (3.6). The optimality conditions of Eq. (3.6) derived by Jenatton
et al. (2010a) show that for all j in J1; pK, the signs of the non-zero coefficients ξ⋆gj for g in G are the same
as the signs of the entries uj . To solve Eq. (3.6), one can therefore flip the signs of the negative variables
uj , solve the modified dual formulation (with non-negative variables), which gives the magnitude of the
coefficients ξ⋆gj (the signs of these being known beforehand).

93

3. Network Flow Algorithms for Structured Sparsity

s

g

ξ
g
1+ξg2+ξg3≤ληg

u2

ξ
g
2

u1

ξ
g
1

u3

ξ
g
3

t

ξ̄1, c1 ξ̄2, c2 ξ̄3, c3

(a) G={g={1, 2, 3}}.

s

g

ξ
g
1+ξg2≤ληg

h

ξh2 +ξh3≤ληh

u2

ξh2ξ
g
2

u1

ξ
g
1

u3

ξh3

t

ξ̄1, c1 ξ̄2, c2 ξ̄3, c3

(b) G={g={1, 2}, h={2, 3}}.

s

g

ξ
g
1+ξg2+ξg3≤ληg

h

ξh2 +ξh3≤ληh

u2

ξh2ξ
g
2

u1

ξ
g
1

u3

ξ
g
3 ξh3

t

ξ̄1, c1 ξ̄2, c2 ξ̄3, c3

(c) G={g={1, 2, 3}, h={2, 3}}.

s

g

ξ
g
1+ξg2+ξg3≤ληg

h

ξh2 +ξh3≤ληh

ξ
g
2+ξg3

u2

ξ
g
2+ξh2

u1

ξ
g
1

u3

ξ
g
3+ξh3

t

ξ̄1, c1 ξ̄2, c2 ξ̄3, c3

(d) G={g={1} ∪ h, h={2, 3}}.

Figure 3.2: Graph representation of simple proximal problems with different group struc-
tures G. The three indices 1, 2, 3 are represented as grey squares, and the groups g, h
in G as red discs. The source is linked to every group g, h with respective maximum
capacity ληg, ληh and zero cost. Each variable uj is linked to the sink t, with an infinite
capacity, and with a cost cj , 1

2(uj − ξ̄j)2. All other arcs in the graph have zero cost
and infinite capacity, and represent inclusion relations, children being included in their
parents. Note that the graphs (c) and (d) correspond to a special case of tree-structured
hierarchy in the sense of (Jenatton et al., 2010a). Their min-cost flow problems are
equivalent.

94

3.3. Proposed Approach

Formally, such a notion of equivalence between graphs can be summarized by the
following lemma.

Lemma 9 (Equivalence to canonical graphs.)
Let G = (V,E, s, t) be the canonical graph corresponding to a group structure G with
weights (ηg)g∈G. Let G′ = (V,E′, s, t) be a graph sharing the same set of vertices, source
and sink as G, but with a different arc set E′. We say that G′ is equivalent to G if and
only if the following conditions hold:

• Arcs of E′ outgoing from the source are the same as in E, with the same costs and
capacities.

• Arcs of E′ going to the sink are the same as in E, with the same costs and capac-
ities.

• For every arc (g, j) in E, with (g, j) in Vgr × Vu, there exists a unique path in E′

from g to j with zero costs and infinite capacities on every arc of the path.

• Conversely, if there exists a path in E′ between a vertex g in Vgr and a vertex j in
Vu, then there exists an arc (g, j) in E.

Then, the cost of the optimal min-cost flow on G and G′ are the same. Moreover, the
values of the optimal flow on the arcs (j, t), j in Vu, are the same on G and G′.

The proof of this lemma, as well as all other proofs of this chapter, are given in
Appendix B.

3.3.2 Proposed Algorithm

Quadratic min-cost flow problems have been well studied in the operations research
literature (Hochbaum and Hong, 1995). One of the simplest cases, where G contains a
single group g as in Figure 3.2a, can be solved by an orthogonal projection on the ℓ1-ball
of radius ληg.

It has been shown, both in machine learning (Duchi et al., 2008) and operations
research (Hochbaum and Hong, 1995; Brucker, 1984), that such a projection can be done
in O(p) operations. In the latter community, this problem is known to be a particular
instance of the continuous quadratic knapsack problem. When the group structure is a
tree (i.e., the only overlaps possible are inclusions), as in Figure 3.2d (Note that in that
case the graph induced on V is a tree), strategies developed in the two communities are
also similar (Jenatton et al., 2010a; Hochbaum and Hong, 1995), and solve the problem
in O(pd) operations, where d is the depth of the tree.

The general case of overlapping groups is more difficult. Hochbaum and Hong (1995)
have shown that quadratic min-cost flow problems can be reduced to a specific parametric
max-flow problem, for which efficient algorithms exists (Gallo et al., 1989).5 While this

5By definition, a parametric max-flow problem consists in solving, for every value of a parameter, a
max-flow problem on a graph whose arc capacities depend on this parameter.

95

3. Network Flow Algorithms for Structured Sparsity

approach could be used to solve Eq. (3.6), it ignores the fact that our graphs have non-
zero costs only on edges leading to the sink. To take advantage of this specificity, we
propose the dedicated Algorithm 6. Our method clearly shares some similarities with
a simplified version of Gallo et al. (1989) presented by Babenko and Goldberg (2006),
namely a divide and conquer strategy. We perform an empirical comparison between
our algorithm and algorithms described by Gallo et al. (1989) in Section 3.5.2.

Algorithm 6 Computation of the proximal operator for overlapping groups.
1: Inputs: u ∈ R

p, a set of groups G, positive weights (ηg)g∈G , and λ (regularization
parameter).

2: Build a graph G0 = (V0, E0, s, t) as explained in Section 3.3.1.
3: Compute the optimal flow: ξ̄ ← computeFlow(V0, E0).
4: Return: v = u− ξ̄ (optimal solution of the proximal problem).

Function computeFlow(V = Vu ∪ Vgr, E)
1: Projection step: γ ← arg minγ

∑

j∈Vu
1
2(uj − γj)2 s.t.

∑

j∈Vu γj ≤ λ
∑

g∈Vgr ηg.
2: For all nodes j in Vu, set γj to be the capacity of the arc (j, t).
3: Max-flow step: Update (ξ̄j)j∈Vu by computing a max-flow on the graph (V,E, s, t).
4: if ∃ j ∈ Vu s.t. ξ̄j 6= γj then
5: Denote by (s, V +) and (V −, t) the two disjoint subsets of (V, s, t) separated by the

minimum (s, t)-cut of the graph, and remove the arcs between V + and V −. Call
E+ and E− the two remaining disjoint subsets of E corresponding to V + and V −.

6: (ξ̄j)j∈V +
u
← computeFlow(V +, E+).

7: (ξ̄j)j∈V −u ← computeFlow(V −, E−).
8: end if
9: Return: (ξ̄j)j∈Vu .

Informally, computeFlow(V0, E0) returns the optimal flow vector ξ̄, proceeding as
follows: This function first solves a relaxed version of problem Eq. (3.6) obtained by
replacing the sum of the vectors ξg by a single vector γ whose ℓ1-norm should be less
than, or equal to, the sum of the constraints on the vectors ξg. The optimal vector γ
therefore gives a lower bound ‖u−γ‖22/2 on the optimal cost. Then, the maximum-flow
step (Goldberg and Tarjan, 1986) tries to find a feasible flow such that the vector ξ̄
matches γ. If ξ̄ = γ, then the cost of the flow reaches the lower bound, and the flow
is optimal. If ξ̄ 6= γ, the lower bound cannot be reached, and we construct a minimum
(s, t)-cut of the graph (Ford and Fulkerson, 1956) that defines two disjoints sets of nodes
V + and V −; V + is the part of the graph that can potentially receive more flow from
the source, whereas all arcs linking s to V − are saturated. The properties of a min
(s, t)-cut (Bertsekas, 1991) imply that there are no arcs from V + to V − (arcs inside V
have infinite capacity by construction), and that there is no flow on arcs from V − to V +.
At this point, it is possible to show that the value of the optimal min-cost flow on these
arcs is also zero. Thus, removing them yields an equivalent optimization problem, which

96

3.3. Proposed Approach

can be decomposed into two independent problems of smaller size and solved recursively
by the calls to computeFlow(V +, E+) and computeFlow(V −, E−). Note that when Ω is
the ℓ1-norm, our algorithm solves problem (3.6) during the first projection step in line
1 and stops.

We now prove that our algorithm converges and that it finds the optimal solution
of the proximal problem. This requires that we introduce the optimality conditions for
problem (3.6) derived by Jenatton et al. (2010a), since our convergence proof essentially
checks that these conditions are satisfied upon termination of the algorithm.

Lemma 10 (Optimality conditions of the problem (3.6), Jenatton et al.,
2010a)
The primal-dual variables (v, ξ) are respectively solutions of the primal (3.3) and dual
problems (3.6) if and only if the dual variable ξ is feasible for the problem (3.6) and

v = u−∑g∈G ξg,

∀g ∈ G,
{

v⊤g ξ
g
g = ‖vg‖∞‖ξg‖1 and ‖ξg‖1 = ληg,

or vg = 0.

This lemma is only an application of Lemma 7. Its proof is therefore immediate. Note
that these optimality conditions provide an intuitive view of our min-cost flow problem.
Solving the min-cost flow problem is equivalent to sending the maximum amount of
flow in the graph under the capacity constraints, while respecting the rule that the flow
outgoing from a group g should always be directed to the variables uj with maximum
residual uj −

∑

g∈G ξ
g
j .

Before proving the convergence and correctness of our algorithm, we also recall clas-
sical properties of the min capacity cuts, which we intensively use in the proofs of this
chapter. The procedure computeFlow of our algorithm finds a minimum (s, t)-cut of a
graph G = (V,E, s, t), dividing the set V into two disjoint parts V + and V −. V + is by
construction the sets of nodes in V such that there exists a non-saturating path from
s to V , while all the paths from s to V − are saturated. Conversely, arcs from V + to t
are all saturated, whereas there can be non-saturated arcs from V − to t. Moreover, the
following properties hold

• There is no arc going from V + to V −. Otherwise the value of the cut would be
infinite. (Arcs inside V have infinite capacity by construction of our graph).

• There is no flow going from V − to V + (see properties of the minimum (s, t)-cut
Bertsekas, 1991).

• The cut goes through all arcs going from V + to t, and all arcs going from s to V −.

All these properties are illustrated in Figure 3.3.
Recall that we assume (cf. Section 3.3.1) that the scalars uj are all non negative,

and that we add non-negativity constraints on ξ. With the optimality conditions of
Lemma 10 in hand, we can show our first convergence result.

97

3. Network Flow Algorithms for Structured Sparsity

s

g

ξ
g
1+ξg2<ληg

V + h

ξh2 =ληh

V −

u2

0ξ
g
2

u1

ξ
g
1

u3

ξh3

t

ξ̄1=γ1
ξ̄2=γ2 ξ̄3<γ3

Figure 3.3: Cut computed by our algorithm. V + = V +
u ∪ V +

gr , with V +
gr = {g}, V +

u =
{1, 2}, and V − = V −u ∪ V −gr , with V −gr = {h}, V −u = {3}. Arcs going from s to V − are
saturated, as well as arcs going from V + to t. Saturated arcs are in bold. Arcs with
zero flow are dotted.

Proposition 8 (Convergence of Algorithm 6)
Algorithm 6 converges in a finite and polynomial number of operations.

The proof is given in Appendix B. After proving the convergence, we prove that the
algorithm is correct with the next proposition.

Proposition 9 (Correctness of Algorithm 6)
Algorithm 6 solves the proximal problem of Eq. (3.3).

Implementation Details and Extensions

We describe hereafter several implementation details that are crucial to the efficiency of
the algorithm:

• Exploiting maximal connected components: When there exists no arc be-
tween two subsets of V , it is possible to process them independently to solve the
global min-cost flow problem.
To that effect, before calling the function computeFlow(V,E), we look for maximal
connected components (V1, E1), . . . , (VN , EN) and call sequentially the procedure
computeFlow(Vi, Ei) for i in J1;NK.

• Efficient max-flow algorithm: We have implemented the “push-relabel” algo-
rithm of (Goldberg and Tarjan, 1986) to solve our max-flow problems, using classi-
cal heuristics that significantly speed it up in practice (see (Goldberg and Tarjan,

98

3.4. Computation of the Dual Norm

1986; Cherkassky and Goldberg, 1997)). Our implementation uses the so-called
“highest-active vertex selection rule, global and gap heuristics” (see (Goldberg and
Tarjan, 1986; Cherkassky and Goldberg, 1997)), and has a worst-case complexity
of O(|V |2|E|1/2) for a graph (V,E, s, t). Note that this algorithm uses the concept
of pre-flowthat relaxes the definition of flows by allowing vertices to have a positive
excess.

• Using flow warm-restarts: The main advantage of the push-relabel method for
us is that it can be initialized with any valid pre-flow. Since we use this algorithm
a large number of times (in the inner loop in our algorithm, and each time we call
the proximal operator), we can easily use the value of the pre-flow obtained during
the previous iteration to build a valid pre-flow for the current one.

• Improved projection step: The first line of the procedure computeFlow can be
replaced by

γ ← arg min
γ

∑

j∈Vu

1
2

(uj − γj)2 s.t.
∑

j∈Vu
γj ≤ λ

∑

g∈Vgr
ηg and |γj | ≤ λ

∑

g∋j
ηg.

The idea is that the structure of the graph will not allow ξ̄j to be greater than
λ
∑

g∋j ηg after the max-flow step. Adding these additional constraints leads to
better performance when the graph is not well balanced. This modified projection
step can still be computed in linear time (Brucker, 1984).

3.4 Computation of the Dual Norm

We show here how to compute efficiently the dual norm of Ω, and use it here to monitor
the convergence of the proximal method through a duality gap, and define a proper
optimality criterion for problem (3.1). The duality gap can be derived from standard
Fenchel duality arguments (Borwein and Lewis, 2006) and is equal to f(α) + λΩ(α) +
f∗(−κ), for α,κ ∈ R

p with Ω∗(κ) ≤ λ, where f∗(κ) , supz[z⊤κ− f(z)] is the Fenchel
conjugate of f . Therefore, efficiently computing this duality gap requires efficiently
evaluating Ω∗, in order to find a feasible dual variable κ. Similarly to the proximal
operator, the computation of dual norm Ω∗ can itself shown to solve another network
flow problem, based on the following variational formulation, which extends a previous
result from Jenatton et al. (2009):

Lemma 11 (Dual Formulation of the Dual-norm Ω⋆)
Let κ ∈ R

p. We have

Ω∗(κ) = min
ξ∈Rp×|G|,τ

τ s.t.
∑

g∈G
ξg = κ, and ∀g ∈ G, ‖ξg‖1 ≤ τηg with ξgj = 0 if j /∈ g.

(3.7)

From a graph viewpoint, let us parameterize the capacities on the arcs (s, g), g ∈ G,
by τηg, and fix the capacities on the arcs (i, t), i in J1; pK, to κi. The above problem

99

3. Network Flow Algorithms for Structured Sparsity

amounts to finding the smallest value of τ , such that there exists a flow saturating the
capacities κi on the arcs leading to the sink t (i.e., ξ̄ = κ). The corresponding algorithm
is presented below (see Algorithm 7), and is proven to be correct in the supplemental
material.

Algorithm 7 Computation of the dual norm
1: Inputs: κ ∈ R

p, a set of groups G, positive weights (ηg)g∈G .
2: Build a graph G0 = (V0, E0, s, t) as explained in Section 3.3.
3: τ ← dualNorm(V0, E0).
4: Return: τ (value of the dual norm).

Function dualNorm(V = Vu ∪ Vgr, E)
1: τ←(

∑

j∈Vu κj)/(
∑

g∈Vgr ηg) and set the capacities of arcs (s, g) to τηg for all g in Vgr.

2: Max-flow step: Update (ξ̄j)j∈Vu by computing a max-flow on the graph (V,E, s, t).
3: if ∃ j ∈ Vu s.t. ξ̄j 6= κj then
4: Define (V +, E+) and (V −, E−) as in Algorithm 6,

and set τ ← dualNormAux(V −, E−).
5: end if
6: Return: τ .

We now prove that Algorithm 7 is correct.

Proposition 10 (Convergence and correctness of Algorithm 7)
Algorithm 7 computes the value of the dual norm of Eq. (3.7) in a finite and polynomial
number of operations.

The proof is given in Appendix B.

3.5 Applications and Experiments

We present in this section experiments to demonstrate the usefulness of our approaches,
with experiments on natural image patches, background subtraction, and speed bench-
marks.

3.5.1 Learning Hierarchical Dictionaries of Natural Image Patches

We start by presenting an experiment from Jenatton et al. (2010a), which learns a
dictionary with a hierarchical structure. As far as we know, while much attention has
been given to efficiently solving dictionary learning problems (Lee et al., 2007; Mairal
et al., 2010b), there are few attempts in the literature to make the model richer by adding
structure between dictionary elements (Kavukcuoglu et al., 2009). We propose to use
the structured sparsity framework to embed the dictionary elements in a hierarchy.

Hierarchies of latent variables, typically used in neural networks and deep learning
architectures (see Bengio, 2009, and references therein) have emerged as a natural struc-

100

3.5. Applications and Experiments

ture in several applications, notably to model text documents. Indeed, in the context
of topic models (Blei et al., 2003), hierarchical models using Bayesian non-parametric
methods have been proposed by Blei et al. (2010). Quite recently, hierarchies have also
been considered in the context of kernel methods (Bach, 2009). Structured sparsity has
been used to regularize dictionary elements by Jenatton et al. (2010c), but to the best
of our knowledge, it has never been used to model dependencies between them.

Let us now consider a set X = [x1, . . . ,xn] ∈ R
m×n of n signals of dimension m. As

in previous parts of this thesis, we want to learn a dictionary D = [d1, . . . ,dp] ∈ R
m×p,

and a matrix of decomposition coefficients A = [α1, . . . ,αn] ∈ R
p×n, so that xi ≈ Dαi

for every signal xi, as measured by any convex loss, e.g., the square loss.
This leads to the following formulation,

min
D∈C,A∈A

1
n

n∑

i=1

[1
2
‖xi −Dαi‖22 + λΩ(αi)

]

, (3.8)

where A and C denote two convex sets and Ω is a regularization term, usually a norm,
whose effect is controlled by the regularization parameter λ > 0. For instance, the
standard sparse coding formulation takes Ω to be the ℓ1 norm, C to be the set of matrices
in R

m×p whose columns are in the unit ball of the ℓ2 norm, withA = R
p×n. However, this

classical setting treats each dictionary element independently from the others, and does
not exploit possible relationships between them. We address this potential limitation
of the ℓ1 norm by embedding the dictionary in a tree structure, using the hierarchical
norm presented in Section 3.2

Optimization for dictionary learning has already been presented in this thesis. We
choose in this chapter the classical alternating between the variables D and A =
[α1, . . . ,αn], i.e., minimizing over one while keeping the other one fixed, which yields
good results in general, even though it can be further accelerated using online learning
algorithms, as presented in Chapter 2.

The main difficulty of our problem lies essentially in the optimization of the vec-
tors αi, i ∈ J1;nK for D fixed, since n may be large, and since it requires to deal with
the nonsmooth regularization term Ω. The optimization of the dictionary D (for A

fixed) is in general easier, and we use Algorithm 2 presented in Section 2.3.1 to that
effect.

This experiment studies whether a hierarchical structure can help dictionaries for
denoising natural image patches, and in which noise regime the potential gain is signifi-
cant. We aim at reconstructing corrupted patches from a test set, after having learned
dictionaries on a training set of non-corrupted patches. Though not typical in machine
learning, this setting is reasonable in the context of images, where lots of non-corrupted
patches are easily available.6

We have extracted 100, 000 patches of size m = 8 × 8 pixels from the Berkeley
segmentation database of natural images (Martin et al., 2001) which contains a high

6Note that we study the ability of the model to reconstruct independent patches, and additional work
is required to apply our framework to a full image processing task, where patches usually overlap (Elad
and Aharon, 2006).

101

3. Network Flow Algorithms for Structured Sparsity

variability of scenes. We have then split this dataset into a training set Xtr, a validation
set Xval, and a test set Xte, respectively of size 50, 000, 25, 000, and 25, 000 patches. All
the patches are centered and normalized to have unit ℓ2 norm.

The validation and test sets are corrupted by removing a certain percentage of pixels,
the task being to reconstruct the missing pixels from the known pixels. We thus introduce
for each element x of the validation/test set, a vector x̃, equal to x for the known pixel
values and 0 otherwise. In the same way, we define D̃ as the matrix equal to D, except
for the rows corresponding to missing pixel values, which are set to 0. By decomposing x̃

on D̃, we obtain a sparse code α, and the estimate of the reconstructed patch is defined
as Dα. Note that this procedure assumes that we know which pixel is missing and which
is not for every element x.

The parameters of the experiment are the regularization parameter λtr used during
the train step, the regularization parameter λte used during the validation/test step,
and the structure of the tree. For every reported result, these parameters have been
selected by taking the ones offering the best performance on the validation set, before
reporting any result from the test set. The values for the regularization parameters
λtr, λte were tested on a logarithmic scale {2−10, 2−9, . . . , 22}, and then further refined
on a finer logarithmic scale of factor 2−1/4. For simplicity reasons, we have chosen
arbitrarily to use the ℓ∞-norm in the structured norm Ω, with all the weights equal to
one. We have tested 21 balanced tree structures of depth 3 and 4, with different branching
factors p1, p2, . . . , pd−1, where d is the depth of the tree and pk, k ∈ {1, . . . , d − 1} is
the number of children for the nodes at depth k. The branching factors tested for
the trees of depth 3 where p1 ∈ {5, 10, 20, 40, 60, 80, 100}, p2 ∈ {2, 3}, and for trees
of depth 4, p1 ∈ {5, 10, 20, 40}, p2 ∈ {2, 3} and p3 = 2, giving 21 possible structures
associated with dictionaries with at most 401 elements. For each tree structure, we
evaluated the performance obtained with the tree-structured dictionary along with the
non-structured dictionary containing the same number of elements. These experiments
were carried out four times, each time with a different initialization, and with a different
noise realization. Quantitative results are reported on Table 3.1. For every number of

noise 50 % 60 % 70 % 80 % 90 %
flat 19.3± 0.1 26.8± 0.1 36.7 ± 0.1 50.6± 0.0 72.1± 0.0
tree 18.6± 0.1 25.7 ± 0.1 35.0± 0.1 48.0± 0.0 65.9± 0.3

Table 3.1: Quantitative results of the reconstruction task on natural image patches. First
row: percentage of missing pixels. Second and third rows: mean square error multiplied
by 100, respectively for classical sparse coding, and tree-structured sparse coding.

missing pixels, the tree-structured dictionary outperforms the “unstructured one”, and
the most significant improvement is obtained in the noisiest setting. Note that having
more dictionary elements is worthwhile when using the tree structure. To study the
influence of the chosen structure, we have reported in Figure 3.4 the results obtained
by the 14 tested structures of depth 3, along with those obtained with the unstructured
dictionaries containing the same number of elements, when 90% of the pixels are missing.

102

3.5. Applications and Experiments

1 2 3 4 5 6 7 8 9 10 11 12 13 14
50

60

70

80

Figure 3.4: Mean square error multiplied by 100 obtained with 14 structures with error
bars, sorted by number of dictionary elements. Red plain bars represents the tree-
structured dictionaries. White bars correspond to the flat dictionary model containing
the same number of dictionary as the tree-structured one. For readability purpose, the
y-axis of the graph starts at 50.

For every number of dictionary elements, the tree-structured dictionary significantly
outperforms the unstructured ones. An example of a learned tree-structured dictionary
is presented in Figures 3.5 and 3.6. Dictionary elements naturally organize in groups of
patches, with often low frequencies near the root of the tree, and high frequencies near
the leaves. Dictionary elements tend to be highly correlated with their parents.

For more experiments on this hierarchical norm, the reader should refer to Jenatton
et al. 2010a,b, where experiments on wavelets, speed benchmarks and experiments on
text are presented. Interestingly, this type of method can indeed be used for modeling
topics in text documents, and a bridge between dictionary learning for sparse coding
and hierarchical topic models (Blei et al., 2010) can be established, which builds upon
the interpretation of topic models as multinomial PCA (Buntine, 2002).

3.5.2 Speed Comparison of Algorithm 6 with Parametric Max-flow
Algorithms

As shown by Hochbaum and Hong (1995), min-cost flow problems, and in particular,
the dual problem of (3.3), can be reduced to a specific parametric max-flow problem.
We thus compare our approach (ProxFlow) with the efficient parametric max-flow al-
gorithm proposed by Gallo et al. (1989) and a simplified version of the latter proposed
by Babenko and Goldberg (2006). We refer to these two algorithms as GGT and SIMP
respectively. The benchmark is established on the same datasets as those already used
in the experimental section of the chapter, namely: (1) three datasets built from over-
complete bases of discrete cosine transforms (DCT), with respectively 104, 105 and
106 variables, and (2) images used for the background subtraction task, composed of
57600 pixels. For GGT and SIMP, we use the paraF software which is a C++ paramet-

103

3. Network Flow Algorithms for Structured Sparsity

Figure 3.5: Learned dictionary with tree structure of depth 4. The root of the tree is
in the middle of the figure. The branching factors are p1 = 10, p2 = 2, p3 = 2. The
dictionary is learned on 50, 000 patches of size 16× 16 pixels.

ric max-flow implementation available at http://www.avglab.com/andrew/soft.html.
Experiments were conducted on a single-core 2.33 Ghz.

We report in the following table the execution time in seconds of each algorithm, as
well as the statistics of the corresponding problems:

Number of variables p 10 000 100 000 1 000 000 57 600

|V | 20 000 200 000 2 000 000 75 600
|E| 110 000 500 000 11 000 000 579 632

ProxFlow (in sec.) 0.4 3.1 113.0 1.7

GGT (in sec.) 2.4 26.0 525.0 16.7
SIMP (in sec.) 1.2 13.1 284.0 8.31

Although we provide the speed comparison for a single value of λ (the one used in the

104

3.5. Applications and Experiments

Figure 3.6: Learned dictionary with a tree structure of depth 5. The root of the tree is
in the middle of the figure. The branching factors are p1 = 10, p2 = 2, p3 = 2, p4 = 2.
The dictionary is learned on 50, 000 patches of size 16× 16 pixels.

corresponding experiments of the chapter), we observed that our approach consistently
outperforms GGT and SIMP for values of λ corresponding to different regularization
regimes.

3.5.3 Speed Comparison for Solving Structured Sparse Problems

Our experiments use the algorithm of (Beck and Teboulle, 2009) based on our prox-
imal operator, with weights ηg set to 1. We compare our method (ProxFlow) and
two generic optimization techniques, namely a subgradient descent (SG) and an inte-
rior point method,7 on a regularized linear regression problem. Both SG and Prox-
Flow are implemented in C++. Experiments are run on a single-core 2.8 GHz CPU.
We consider a design matrix (dictionary) D in R

m×p built from overcomplete dictio-

7In our simulations, we use the commercial software Mosek, http://www.mosek.com/

105

3. Network Flow Algorithms for Structured Sparsity

naries of discrete cosine transforms (DCT), which are naturally organized on one- or
two-dimensional grids and display local correlations. The following families of groups G
using this spatial information are thus considered: (1) every contiguous sequence of
length 3 for the one-dimensional case, and (2) every 3×3-square in the two-dimensional
setting. We generate vectors y in R

m according to the linear model y = Dα0 +ε, where
ε ∼ N (0, 0.01‖Dα0‖22). The vector α0 has about 20% percent nonzero components, ran-
domly selected, while respecting the structure of G, and uniformly generated between
[−1, 1].

In our experiments, the regularization parameter λ is chosen to achieve this level of
sparsity. For SG, we take the step size to be equal to a/(k+ b), where k is the iteration
number, and (a, b) are the best parameters selected in {10−3, . . . , 10}×{102, 103, 104}.
For the interior point methods, since problem (3.1) can be cast either as a quadratic (QP)
or as a conic program (CP), we show in Figure 3.7 the results for both formulations.
Our approach compares favorably with the other methods, on three problems of different
sizes, (n, p) ∈ {(100, 103), (1024, 104), (1024, 105)}, see Figure 3.7. In addition, note that
QP, CP and SG do not obtain sparse solutions, whereas ProxFlow does. We have also run
ProxFlow and SG on a larger dataset with (n, p) = (100, 106): after 12 hours, ProxFlow
and SG have reached a relative duality gap of 0.0006 and 0.02 respectively.8

3.5.4 Background Subtraction

Following Cevher et al. (2009); Huang et al. (2009), we consider a background subtraction
task. Given a sequence of frames from a fixed camera, we try to segment out foreground
objects in a new image. If we denote by y ∈ Rm this image composed of m pixels, we
model y as a sparse linear combination of p other images D ∈ R

m×p, plus an error term e

in Rm, i.e., y ≈ Dα+ e for some sparse vector α in R
p. This approach is reminiscent of

Wright et al. (2009a) in the context of face recognition, where e is further made sparse to
deal with small occlusions. The term Dα accounts for background parts present in both y

and D, while e contains specific, or foreground, objects in y. The resulting optimization
problem is minα,e 1

2‖y−Dα−e‖22+λ1‖α‖1+λ2‖e‖1, with λ1, λ2 ≥ 0. In this formulation,
the ℓ1-norm penalty on e does not take into account the fact that neighboring pixels
in y are likely to share the same label (background or foreground), which may lead
to scattered pieces of foreground and background regions (Figure 3.8). We therefore
put an additional structured regularization term Ω on e, where the groups in G are all
the overlapping 3× 3-squares on the image. A dataset with hand-segmented evaluation
images is used to illustrate the effect of Ω.9 For simplicity, we use a single regularization
parameter, i.e., λ1 = λ2, chosen to maximize the number of pixels matching the ground
truth. We consider p = 200 images with m = 57600 pixels (i.e., a resolution of 120×
160, times 3 for the RGB channels). As shown in Figure 3.8, adding Ω improves the
background subtraction results for the two tested images, by removing the scattered

8Due to the computational burden, QP and CP could not be run on every problem.
9
http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm

106

3.5. Applications and Experiments

−2 −1 0 1 2
−10

−8

−6

−4

−2

0

2

n=100, p=1000, one−dimensional DCT

log(CPU time) in seconds

lo
g

(r
e

la
ti
v
e

 d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

)

CP
QP
ProxFlow
SG

−2 0 2 4
−10

−8

−6

−4

−2

0

2

n=1024, p=10000, two−dimensional DCT

log(CPU time) in seconds

lo
g
(r

e
la

ti
v
e
 d

is
ta

n
c
e
 t
o
 o

p
ti
m

u
m

)

CP

ProxFlow
SG

−2 0 2 4
−10

−8

−6

−4

−2

0

2

n=1024, p=100000, one−dimensional DCT

log(CPU time) in seconds

lo
g
(r

e
la

ti
v
e
 d

is
ta

n
c
e
 t
o
 o

p
ti
m

u
m

)

ProxFlow

SG

Figure 3.7: Speed comparisons: distance to the optimal primal value versus CPU time
(log-log scale). Due to the computational burden, QP and CP could not be run on every
problem.

107

3. Network Flow Algorithms for Structured Sparsity

artifacts due to the lack of structural constraints of the ℓ1-norm, which encodes neither
spatial nor color consistency.

3.5.5 Multi-Task Learning of Hierarchical Structures

Jenatton et al. (2010a) have recently proposed to use a hierarchical structured norm to
learn dictionaries of natural image patches. Following their work, we seek to represent n
signals {x1, . . . ,xn} of dimension m as sparse linear combinations of elements from
a dictionary D = [d1, . . . ,dp] in R

m×p. This can be expressed for all i in J1;nK as
xi ≈ Dαi, for some sparse vector αi in R

p. In (Jenatton et al., 2010a), the dictionary
elements are embedded in a predefined tree T , via a particular instance of the structured
norm Ω, which we refer to it as Ωtree, and call G the underlying set of groups. In this
case, each signal xi admits a sparse decomposition in the form of a subtree of dictionary
elements.

Inspired by ideas from multi-task learning (Obozinski et al., 2009), we propose to
learn the tree structure T by pruning irrelevant parts of a larger initial tree T0. We
achieve this by using an additional regularization term Ωjoint across the different de-
compositions, so that subtrees of T0 will simultaneously be removed for all signals yi.
In other words, the approach of Jenatton et al. (2010a) is extended by the following
formulation:

min
D∈D,A

1
n

n∑

i=1

[1
2
‖xi−Dαi‖22+λ1Ωtree(αi)

]

+λ2Ωjoint(A), s.t. ‖dj‖2 ≤ 1, for all j in J1; pK,

(3.9)
where A , [α1, . . . ,αn] is the matrix of decomposition coefficients in R

p×n. The
new regularization term operates on the rows of A and is defined as Ωjoint(A) ,
∑

g∈G maxi∈J1;nK ‖αig‖∞.10 The overall penalty on A, which results from the combi-
nation of Ωtree and Ωjoint, is itself an instance of Ω with general overlapping groups, as
defined in Eq (3.2).

To address problem (3.9), we use the same optimization scheme as Jenatton et al.
(2010a), i.e., alternating between D and A, fixing one variable while optimizing with
respect to the other. The task we consider is the denoising of natural image patches, with
the same dataset and protocol as Jenatton et al. (2010a). We study whether learning the
hierarchy of the dictionary elements improves the denoising performance, compared to
standard sparse coding (i.e., when Ωtree is the ℓ1-norm and λ2 = 0) and the hierarchical
dictionary learning of Jenatton et al. (2010a) based on predefined trees (i.e., λ2 = 0).
The dimensions of the training set — 50 000 patches of size 8×8 for dictionaries with up
to p = 400 elements — impose to handle extremely large graphs, with |E| ≈ |V | ≈ 4.107.
Since problem (3.9) is too large to be solved exactly sufficiently many times to select the
regularization parameters (λ1, λ2) rigorously, we use the following heuristics: we optimize
mostly with the currently pruned tree held fixed (i.e., λ2 = 0), and only prune the tree
(i.e., λ2 > 0) every few steps on a random subset of 10 000 patches. We consider the same

10The simplified case where Ωtree and Ωjoint are the ℓ1- and mixed ℓ1/ℓ2-norms (Yuan and Lin, 2006)
corresponds to (Sprechmann et al., 2010).

108

3.5. Applications and Experiments

(a) Input (b) images/background Ω + ℓ1 (c) images/foreground ℓ1

(d) images/foreground Ω + ℓ1 (e) images/foreground Ω + ℓ1

(f) Input (g) images/background Ω + ℓ1 (h) images/foreground ℓ1

(i) images/foreground Ω + ℓ1 (j) images/foreground Ω + ℓ1

Figure 3.8: Original images y, the background (i.e., Dα) reconstructed by our method
Ω + ℓ1, and the images/foreground (i.e., the sparsity pattern of e as a mask on the
original image) detected with ℓ1 and with ℓ1 + Ω. We also show the results obtained
on a different image. with the same values of λ1, λ2 as for the previous image. For the
top image, the percentage of pixels matching the ground truth is 98.8% with Ω, 87.0%
without. As for the bottom image, the result is 93.8% with Ω, 90.4% without.

109

3. Network Flow Algorithms for Structured Sparsity

hierarchies as Jenatton et al. (2010a), involving between 30 and 400 dictionary elements.
The regularization parameter λ1 is selected on the validation set of 25 000 patches, for
both sparse coding (Flat) and hierarchical dictionary learning (Tree). Starting from
the tree giving the best performance (in this case the largest one, see Figure 3.9), we
solve problem (3.9) following our heuristics, for increasing values of λ2. As shown in
Figure 3.9, there is a regime where our approach performs significantly better than the
two other compared methods. The standard deviation of the noise is 0.2 (the pixels have
values in [0, 1]); no significant improvements were observed for lower levels of noise. A
visual example of a pruned tree is given in Figure 3.10.

0 100 200 300 400

0.19

0.2

0.21
Denoising Experiment: Mean Square Error

Dictionary Size

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

Flat

Tree

Multi−task Tree

Figure 3.9: Mean square error versus dictionary size. The error bars represent two
standard deviations, based on three runs.

Figure 3.10: Hierarchy obtained by pruning a larger tree of 76 elements.

110

3.6. Conclusions

3.6 Conclusions

We have presented a new optimization framework for solving sparse structured problems
involving sums of ℓ∞-norms of any (overlapping) groups of variables. Interestingly, this
sheds new light on connections between sparse methods and the literature of network
flow optimization. In particular, the proximal operator for the formulation we consider
can be cast as a quadratic min-cost flow problem, for which we propose an efficient
and simple algorithm. This allows the use of accelerated gradient methods. Several
experiments demonstrate that our algorithm can be applied to a wide class of learning
problems, which have not been addressed before within sparse methods.

111

4

Non-Local Sparse Models for Image Restoration

Chapter abstract: We propose in this work to unify two different approaches to image restora-
tion: On the one hand, learning a basis set (dictionary) adapted to sparse signal descriptions has
proven to be very effective in image reconstruction and classification tasks. On the other hand,
explicitly exploiting the self-similarities of natural images has led to the successful non-local
means approach to image restoration. We propose simultaneous sparse coding as a framework
for combining these two approaches in a natural manner. This is achieved by jointly decompos-
ing groups of similar signals on subsets of the learned dictionary. Experimental results in image
denoising and demosaicking tasks with synthetic and real noise show that the proposed method
outperforms the state of the art, making it possible to effectively restore raw images from digital
cameras at a reasonable speed and memory cost.

This chapter is relatively independent from the previous one, and only requires reading
Section 1.6 as a prerequisite. The material of this part is essentially based on the
following work

J. Mairal, F. Bach, J. Ponce and G. Sapiro. Non-Local Sparse Models for Image
Restoration. In Proceedings of the International Conference on Computer Vision
(ICCV). 2009

4.1 Introduction

This work addresses the problem of reconstructing and enhancing an image given the
noisy observations gathered by a digital camera sensor. Today, with advances in sen-
sor design, the signal is relatively clean for digital SLRs at low sensitivities, but it
remains noisy for consumer-grade and mobile-phone cameras at high sensitivities (low-
light and/or high-speed conditions). The restoration problem is thus still of acute and in
fact growing importance (e.g., Buades et al., 2005; Dabov et al., 2007; Elad and Aharon,
2006; Chatterjee and Milanfar, 2009; Lyu et al., 2004; Mairal et al., 2008b,d).

113

4. Non-Local Sparse Models for Image Restoration

Working with noisy images recorded by digital cameras is difficult since different
devices introduce different types of artefacts and spatial correlations in the noise as a
result of internal post-processing (demosaicking, white balance, etc.). In this work, we
operate directly on the raw sensor output, that suffers from non-homogeneous noise, but
is less spatially correlated and not corrupted by post-processing artefacts. In turn, this
requires demosaicking the raw signal—that is, reconstructing a full color image from the
sensor’s RGB (Bayer) pattern—a difficult problem in itself.

Whereas demosaicking is usually tackled using interpolation-based methods (Gun-
turk et al., 2002, 2005; Paliy et al., 2007; Zhang and Wu, 2005), much of the denoising
effort has been aimed at finding a good model for natural images. Early work relied on
various smoothness assumptions—such as anisotropic filtering (Perona and Malik, 1990),
total variation (Rudin and Osher, 1994), or image decompositions on fixed bases such as
wavelets (Mallat, 1999) for example. More recent approaches include non-local means
filtering (Buades et al., 2005) and its variants (Kervrann and Boulanger, 2008) that ex-
ploit image self-similarities, learned sparse models (Elad and Aharon, 2006; Mairal et al.,
2008b,d), Gaussian scale mixtures (Portilla et al., 2003), kernel regression (Takeda et al.,
2007; Chatterjee and Milanfar, 2009), fields of experts (Roth and Black, 2005), and block
matching with 3D filtering (BM3D) (Dabov et al., 2007).

We view both denoising and demosaicking as image reconstruction problems, and
propose a novel image model that combines two now classical techniques into a single
framework: The non-local means approach to image restoration explicitly exploits self-
similarities in natural images (Buades et al., 2005; Efros and Leung, 1999) to average out
the noise among similar patches, whereas sparse coding encodes natural image statistics
by decomposing each image patch into a sparse linear combination of a few elements
from a basis set called a dictionary.1 Although fixed dictionaries based on various
types of wavelets (Mallat, 1999) have been used in this setting, sparse decompositions
based on learned, possibly overcomplete, dictionaries adapted to specific images have
been shown to provide better results in practice (Elad and Aharon, 2006; Mairal et al.,
2008b). We propose to extend and combine these two approaches by using simultaneous
sparse coding (Tropp et al., 2006; Tropp, 2006; Turlach et al., 2005; Yuan and Lin, 2006;
Obozinski et al., 2009) to impose that similar patches share the same dictionary elements
in their sparse decomposition.

To the best of our knowledge, this is the first time that the corresponding models
of image self-similarities are explicitly used in a common setting with sparse coding.
There are a few recent works that are related to ours: The BM3D procedure of Dabov
et al. (2007) exploits both self-similarities and sparsity for the denoising task, but it is
based on classical, fixed orthogonal dictionaries. The locally learned dictionaries model
of Chatterjee and Milanfar (2009) clusters similar patches together, builds orthonormal
dictionaries for each cluster using principal component analysis, and use them in a kernel
regression framework. Finally, the approach of Yu et al. (2010) simultaneously learns
clusters of patches and orthonormal basis for each cluster with an EM algorithm. There

1The usage of the word “basis” is slightly abusive here since the elements of the dictionaries are not
(a priori) necessarily independent.

114

4.2. Related Work

is, in all these works and ours, a common principle that consists of jointly processing
groups of patches, with richer and more complex data processing tools than just simple
averaging, as it was done in the original nl-means method (Buades et al., 2005).

Experiments with images corrupted by synthetic or real noise show that the pro-
posed method outperforms the state of the art in both image denoising and image
demosaicking tasks, making it possible to effectively restore raw images from digital
cameras at a reasonable speed and memory cost. Furthermore, although it is demon-
strated on image denoising and demosaicking tasks in this work, our model is generic,
admits straightforward extensions to various image and video restoration tasks such as
inpainting (Bertalmio et al., 2000; Criminisi et al., 2004), and can adapt to a large class
of data, e.g., multispectral images or MRI data. This model should also prove of interest
in deblurring that have become the topic of much recent research (e.g., Puetter et al.,
2005) with the emergence of computational photography.

4.1.1 Contributions

To summarize, this chapter makes two contributions

• It introduces a formulation to exploit both learned sparse coding and image self-
similarities for image restoration.

• It shows that the proposed approach leads to state-of-the-art results for image de-
noising and image demosaicking, allowing restoring raw images from digital cam-
eras.

This chapter is organized as follows: Section 4.2 presents several works that are
related to ours. Section 4.3 is devoted to the approach we propose. Experiments are
presented in Section 4.4 and Section 4.5 concludes the chapter.

4.2 Related Work

We start with a brief description of well-established approaches to image restoration
that are relevant and related to the approach proposed in the next section. Since it
is difficult to design a standard model for digital camera noise, these methods assume
white Gaussian noise. Even though this generic setting slightly differs from that of real
image denoising, it has allowed the development of effective algorithms that are now
widely used in digital cameras and commercial software packages. We will use the same
assumption in the rest of this work, but will demonstrate empirically that our approach
is effective at restoring real images corrupted by non-Gaussian, non-uniform noise.

4.2.1 Non-Local Means Filtering

Efros and Leung (1999) showed that the self-similarities inherent to natural images could
effectively be used in texture synthesis tasks. Following their insight, Buades et al. (2005)
introduced the non-local means approach to image denoising, where the prominence of

115

4. Non-Local Sparse Models for Image Restoration

self-similarities is used as a prior on natural images. This idea has in fact appeared
in the literature in various guises and under different equivalent interpretations, e.g.,
kernel density estimation (Efros and Leung, 1999), Nadaraya-Watson estimators (Buades
et al., 2005), mean-shift iterations (Awate and Whitaker, 2006), diffusion processes on
graphs (Szlam et al., 2007), long-range random fields (Li and Huttenlocher, 2008), PAC-
Bayesian estimation (Salmon and Pennec, 2009). Concretely, let us consider a noisy
image written as a column vector y in R

n, and denote by yi the i-th pixel and by yi the
patch of size m centered on this pixel for some appropriate size m. This approach exploits
the simple but very effective idea that two pixels associated with similar patches yi and yj

should have similar pixel values yi and yj . Using yi as an explanatory variable for yi
leads to the non-local means formulation, where the denoised pixel xi is obtained by a
weighted average (the corresponding Nadaraya-Watson estimator (Buades et al., 2005):

xi =
n∑

j=1

Kh(yi − yj)
∑n
l=1Kh(yi − yl)

yj , (4.1)

and Kh is a Gaussian kernel of bandwidth h. Variants of this formulation have been
proposed, which essentially vary in the strategy for choosing the kernel for a given
pixel (Kervrann and Boulanger, 2008; Salmon and Pennec, 2009)

4.2.2 Learned Sparse Coding

Although most of this section has already been presented in Section 1.6.2, we recall
briefly the concept of image denoising using learned dictionaries for self-containedness
reasons, but the reader should refer to Section 1.6.2 for more details.

We suppose that there exists a dictionary D in R
m×p such that denoising a patch yi

in R
m amounts to solving the sparse decomposition problem

min
α∈Rp

‖α‖q s.t. ‖yi −Dα‖22 ≤ ε, (4.2)

where Dα is an estimate of the clean signal, and ‖α‖q is a sparsity-inducing regular-
ization term. This regularizer is associated with the ℓ1 norm when q = 1, leading to
the well-known Lasso (Tibshirani, 1996) and basis pursuit (Chen et al., 1998) problems,
and with the ℓ0 pseudo norm when q = 0. We refer to Section 1.6.2 for the choice of the
parameter ε.

To improve the performance of pre-defined dictionaries, Elad and Aharon (2006)
have proposed instead to learn a dictionary D adapted to image patches from the image
at hand, and demonstrated that it leads to better empirical performance. For an image
of size n, a dictionary in R

m×p adapted to the n overlapping patches of size m (typically
m = 8× 8≪ n) associated with the image pixels, is learned by addressing the following
optimization problem

min
D∈D,A

n∑

i=1

‖αi‖q s.t. ‖yi −Dαi‖22 ≤ ε, (4.3)

116

4.3. Proposed Formulation

where D is the set of matrices in R
m×p with unit ℓ2-norm columns, A = [α1, . . . ,αn]

is a matrix in R
p×n, yi is the i-th patch of the noisy image y, αi is the corresponding

code, and Dαi is the estimate of the denoised patch. Although dictionary learning is
traditionally considered as extremely costly, online procedures such as (Mairal et al.,
2010b, 2009a) make it possible to efficiently process millions of patches, allowing the use
of large photographs and/or large image databases.

Once the dictionary D and codes αi have been learned, every pixel admits m esti-
mates (one per patch containing it), and its value can be computed by averaging these:

x =
1
m

n∑

i=1

RiDαi, (4.4)

where Ri in R
n×m is the binary matrix which places patch number i at its proper position

in the image.

4.2.3 Methods based on Processing Clusters of Patches

Dabov et al. (2007) have proposed a patch-based procedure called BM3D (Block Match-
ing with 3D Filtering) that exploits image self-similarities and gives state-of-the-art
results. As in (Elad and Aharon, 2006), they estimate the codes of overlapping patches
and average the estimates. However, similar to non-local means filtering (Buades et al.,
2005), they reconstruct patches by finding similar ones in the image (block matching),
stacking them together into a 3D signal block, and denoising the block using hard or
soft thresholding (Donoho, 1998) with a 3D orthogonal dictionary (3D filtering). In
conjunction with a few heuristics, amely, using a combination of weighted averages of
overlapping patches, Kaiser windows, and Wiener filtering to further improve results.
this simple idea has proven to be very efficient and gives better results than regular non-
local means. A key idea of our method is to implement a similar joint decomposition
approach in the context of sparse coding with learned dictionaries, as explained in the
next section.

A similar principle was used in a different way by Chatterjee and Milanfar (2009),
but combined with the kernel regression framework introduced before for image process-
ing (Takeda et al., 2007). Note that their procedure also exploits adapted dictionaries
for each cluster, using principal component analysis. This is also related to the work
of Yu et al. (2010), who have proposed a joint formulation for clustering the patches and
learning a model for every cluster. Their method is based on an EM algorithm, and end
up learning both clusters and principal components of each cluster.

4.3 Proposed Formulation

We show in this section how image self-similarities can be used to improve learned
sparse models with simultaneous sparse coding, which encourages similar patches to
admit similar sparse decompositions.

117

4. Non-Local Sparse Models for Image Restoration

Figure 4.1: Sparsity vs. joint sparsity: Grey squares represents non-zeros values in
vectors (left) or matrix (right).

4.3.1 Simultaneous Sparse Coding

A joint sparsity pattern—that is, a common set of nonzero coefficients—can be imposed
to a set of vectors α1, . . . ,αl through a grouped-sparsity regularizer on the matrix A =
[α1, . . . ,αl] in R

p×l (Figure 4.1). This amounts to restricting the number of nonzero
rows of A, or replacing the ℓq vector (pseudo) norm in Eq. (4.3) by the ℓq,r (pseudo)
matrix norm

‖A‖q,r ,

p
∑

i=1

‖Ai‖qr, (4.5)

where Ai denotes the i-th row of A. In practice, one usually chooses for the pair (q, r)
the values (1, 2) or (0,∞), the former leading to a convex norm, while the latter actually
counts the number of nonzero rows and is only a pseudo norm (Tropp, 2004).

4.3.2 Principle of the Formulation

Non-local means filtering has proven very effective in general, but it fails in some cases. In
the extreme, when a patch does not look like any other one in the image, it is impossible
to exploit self-similarities to denoise the corresponding pixel value. Sparse image models
can handle such situations by exploiting the redundancy between overlapping patches,
but they suffer from another drawback: Similar patches sometimes admit very different
estimates due to the potential instability of sparse decompositions (the ℓ0 pseudo norm
is, after all, piecewise constant, and its ℓ1 counterpart is only piecewise differentiable),
which can result in practice in noticeable reconstruction artefacts. In this chapter,
we address this problem by forcing similar patches to admit similar decompositions.
Concretely, let us define for each patch yi the set Si of similar patches as

Si , {j = 1, . . . , n s.t. ‖yi − yj‖22 ≤ ξ}, (4.6)

118

4.3. Proposed Formulation

where ξ is some threshold. Let us also consider for the moment a fixed dictionary D

in R
m×p. Decomposing the patch yi with a grouped-sparsity regularizer on the set Si

amounts to solving

min
Ai
‖Ai‖q,r s.t.

∑

j∈Si
‖yj −Dαi,j‖22 ≤ εi, (4.7)

where Ai = [αi,j]j∈Si ∈ R
p×|Si|. We adopt the same strategy as in Section 4.2.2 to

choose εi accordingly to the size of Si: εi = σ2F−1
m|Si|(τ). In the ℓ1,2-case, this opti-

mization problem is convex and can be solved efficiently (Friedman et al., 2007). In the
ℓ0,∞ case, on the other hand, it is intractable, and a greedy approach such as simultane-
ous orthogonal matching pursuit (Tropp, 2004) must be used to obtain an approximate
solution.

In the framework of learned sparse coding, adapting D to the image(s) of interest
naturally leads to the following optimization problem

min
(Ai)n

i=1
,D∈D

n∑

i=1

‖Ai‖q,r
|Si|q

s.t. ∀i
∑

j∈Si
‖yj −Dαi,j‖22 ≤ εi (4.8)

where D is in R
m×p with unit ℓ2-norm columns. The normalization by |Si|q is used to

ensure equal weights for all groups (as before, we only consider the cases where (q, r) is
(1, 2) or (0,∞)). As noted in Section 1.6, in classical learned sparse coding, we prefer the
ℓ1 norm for learning the dictionary and the ℓ0 pseudo norm for the final reconstruction.
We adopt here a similar choice: We use the convex ℓ1,2 norm for learning the dictionary,
which can be done efficiently (Mairal et al., 2010b), and we use the ℓ0,∞ pseudo-norm for
the final reconstruction. As in (Elad and Aharon, 2006), this formulation allows all the
image patches to be processed as if they were independent of each other. To reconstruct
the final image, we average the estimates of each pixel,

x = diag(
n∑

i=1

∑

j∈Si
Rj1m)−1

n∑

i=1

∑

j∈Si
RjDαi,j , (4.9)

where Rj is defined as in Eq. (4.4) and 1m is a vector of size m filled with ones. The
term on the left is a scaling diagonal matrix, counting the number of estimates for each
pixel. Note that when Si = {i}, our formulation is equivalent to regular learned sparse
coding.

At first sight, the proposed technique may seem particularly costly, since decom-
posing a single patch requires solving a large-scale optimization problem (4.7). Similar
concerns hold for the original formulations of non-local means (Buades et al., 2005)
and BM3D (Dabov et al., 2007). As in these cases, slight changes to our approach are
sufficient to make it efficient.

4.3.3 Practical Formulation and Implementation

The computational cost of the optimization problem (4.8) is dominated by the compu-
tation of the vectors αi,j . In the worst case scenario, n2 of these vectors have to be

119

4. Non-Local Sparse Models for Image Restoration

computed. We show in the rest of this section how to modify our original formulation
in order to make this number linear in n and allow efficient optimization.
Semi-local grouping. When building Si, one can restrict the search for patches similar
to yi to a window of size w × w. This semi-local approach is also used by Dabov et al.
(2007), and it reduces the worst-case number of vectors αi,j to nw2. In practice, we
never use w greater than 64 in this chapter.
Clustering. It is also possible to cluster pixels into disjoint groups Ck such that all
pixels i in Ck share the same set Si. The optimization problems (4.7) associated with
all pixels in the same cluster are identical, further reducing the overall computational
cost: In fact, only n vectors αi,j are computed in this case since each pixel belongs to
exactly one cluster. This is a key ingredient to the efficiency of our implementation.
Other strategies are also possible, allowing a few clusters to overlap for instance.
Initialization of D. One important asset of sparse representations is that they can
benefit from dictionaries learned offline on a database of natural images, which can be
used as a good initial dictionaries for the denoising procedure (Elad and Aharon, 2006).
Using the online procedure of Mairal et al. (2010b, 2009a), our initial dictionaries are
learned on 2×107 patches of natural images taken randomly from the 10 000 images of the
PASCAL VOC’07 database. As shown in the next section, using this online procedure
and such a large training sample has led to a significant performance improvement
compared to methods such as (Mairal et al., 2008b) that use batch learning methods
such as K-SVD (Aharon et al., 2006) and are unusable with such large-scale data.
Improved matching. Following Dabov et al. (2007), we have noticed that better
groups of similar patches can be found by using a first round of denoising on the patches
(using, for example, the classical sparse coding approach of Eq. (4.3) presented in the
previous section) before grouping them. In turn, as shown by our experiments, our
simultaneous sparse coding approach greatly improves on this initial denoising step.
Patch normalization. To improve the numerical stability of sparse coding, the mean
intensity (or RGB color) value of a patch is often subtracted from all its pixel values
before decomposing it, then added back to the estimated values (Elad and Aharon, 2006).
We have adopted this approach in our implementation, and our experiments have shown
that it improves the visual quality of the results.
Reducing the memory cost. At first sight, Eq. (4.8) requires storing a large number
of codes αi,j . Even though these are sparse, and their number can be reduced to the
number of pixels using the clustering strategy presented above, this could potentially be
a problem for large images. In fact, only a small subset of the vectors αi,j is stored at
any given time: The online procedure of Mairal et al. (2010b, 2009a) computes them on
the fly and does not require storing them to learn the dictionary. In the case of Eq. (4.8),
the maximum number of vectors αi,j that have to be stored at any given time is the size
of the largest cluster of similar patches.

4.3.4 Real Images and Demosaicking

Single-chip digital cameras do not capture a noisy RGB signal at each pixel. Instead,
combined with a red (R), green (G), or blue (B) filter, the sensor associated with each

120

4.4. Experimental Validation

pixel integrates the incoming light flux over the corresponding frequency range and a
short period of time. The relation between the pixels and the color information they
record is obtained through a specific pattern, the most famous one being the Bayer
pattern, G-R-G-R on odd lines and B-G-B-G on even ones. The demosaicking problem
consists of reconstructing the whole color image given the sensor measurements. Al-
though most of the approaches found in the literature to solve this problem are based
on interpolation (Gunturk et al., 2002, 2005; Paliy et al., 2007; Zhang et al., 2008), the
image models investigated in this chapter have also been used for demosaicking: Self-
similarities have been exploited by Buades et al. (2009), and learned sparse coding has
been used by Mairal et al. (2008b). We adapt here Mairal et al. (2008b) to our simulta-
neous sparse coding framework. First we learn an initial dictionary D0 using our online
dictionary learning algorithm on a database of natural color images. Our demosaicking
procedure can then be decomposed into four simple steps:
(1) Cluster similar patches on the mosaicked image y.
(2) Reconstruct each patch using D0, addressing for all i

min
Ai∈R

p×|Si|
‖Ai‖0,∞ s.t. ∀j Mj(yj −D0αi,j) = 0, (4.10)

where Mj is a binary masked corresponding to the Bayer pattern of measured values,
and average the reconstructions to obtain an estimate x of the demosaicked image.
(3) Learn a dictionary D1 for x with a strong regularization—that is, replace y by x in
Eq. (4.8), solving this equation with a large value for εi.
(4) Reconstruct each patch using D2 = [D0 D1] instead of D0 in Eq. (4.10), and average
the estimates using Eq. (4.9) to obtain the final demosaicked image.

As shown in the next section, this procedure outperforms the state of the art from
quantitative and qualitative points of view. The raw mosaicked signal of digital cameras
in low-light, short-exposure settings is noisy. It should therefore be denoised before de-
mosaicking is attempted. Since our denoising procedure is generic and does not necessary
assume the input data to be natural images, the denoising procedure can be performed
on the mosaicked image itself.

4.4 Experimental Validation

We present in this section experiments on image denoising with synthetic noise and
image demosaicking, before processing raw images from a digital camera, corrupted by
real noise.

4.4.1 Denoising – Synthetic Noise

Experiments on denoising with synthetic white Gaussian noise have carried out with
12 standard benchmark images. The parameters used in this experiment are p = 512,
m = 9×9 for σ ≤ 25, m = 12×12 for σ = 50 and m = 16×16 for σ = 100. The value of τ
is chosen a bit more conservatively than in Mairal et al. (2008b) and is set to 0.8, while ξ

121

4. Non-Local Sparse Models for Image Restoration

is chosen according to an empirical rule, ξ = (32σ)2/m for images scaled between 0 and
255, which has shown to be appropriate in all of our denoising experiments for both real
and synthetic noise. Peak signal-to-noise ratio (PNSR) is used as performance measure
in our quantitative evaluation.2 Table 4.1 reports the results obtained on each image for
different values of the (known) standard deviation of the noise σ, and Table 4.2 compares
the average PSNR on these images obtained by several state-of-the-art image denoising
methods—namely GSM (Portilla et al., 2003), FoE (Roth and Fischer, 2008), K-SVD
(Elad and Aharon, 2006) and BM3D (Dabov et al., 2007)—with our method in three
settings: SC (sparse coding) uses a fixed dictionary learned on a database of natural
images without grouping the patches. It is therefore similar to the global approach to
denoising of (Elad and Aharon, 2006). The only differences are that we have used our
online learning procedure to learn the dictionary from 2 × 107 natural image patches
instead of the 105 patches used by Elad and Aharon (2006), and we have used an ℓ1
regularizer instead of an ℓ0 one to learn the dictionary. In the second setting (LSC, for
learned sparse coding), the dictionary is adapted to the test image, again using an ℓ1
regularizer, which is similar to the adaptive approach of Elad and Aharon (2006) except
for our (better) initial dictionary and their ℓ0 regularizer. The last setting (LSSC, for
learned simultaneous sparse coding) adds a grouping step and uses the full power of our
simultaneous sparse coding framework. These PSNR comparisons show that our model
leads to better performance than the state-of-the-art techniques in general, and is always
at least as good as BM3D, the top performer among those, especially for high values
of σ. Additional qualitative examples are given in Figure 4.2 and 4.3.

Note that the parameters have not been optimized for speed but for quality in these
experiments. On a recent Intel Q9450 2.66Ghz CPU, it takes for instance 0.5s to denoise
the 256×256 image peppers with σ = 25 and the setting SC, 85s with LSC, and 220s with
LSSC. With parameters optimized for speed (k = 256, fewer iterations in the dictionary
learning procedure), the computation times become respectively 0.25s for SC, 10s for
LSC, and 21s for LSC, and the final results’ quality only drops by 0.05dB, which is
visually imperceptible. Our framework is therefore flexible in terms of speed/quality
compromise.

4.4.2 Demosaicking

We have used the standard Kodak PhotoCD benchmark to evaluate the performance of
our demosaicking algorithm. This dataset consists of 24 RGB images of size 512 × 768
to which a Bayer mask has been applied. Ground truth is thus available, allowing
quantitative comparisons. We have arbitrarily tuned the parameters of our method
to optimize its performance on the 5 last images, choosing p = 256 (dictionary size),
m = 8 × 8 (patch size), and ξ = 3 × 104 (for images scaled between 0 and 255). These
parameters have been used for all 24 photos.

2Denoting by MSE the mean-squared-error for images whose intensities are between 0 and 255, the
PSNR is defined as PSNR = 10 log10(2552/MSE) and is measured in dB. A gain of 1dB reduces the
MSE by approximately 20%.

122

4.4. Experimental Validation

σ 5 10 15 20 25 50 100
house 39.93 36.96 35.35 34.16 33.15 30.04 25.83

peppers 38.18 34.80 32.82 31.37 30.21 26.62 23.00
camera. 38.32 34.21 32.01 30.57 29.51 26.42 23.08

lena 38.69 35.83 34.15 32.90 31.87 28.87 25.82
barbara 38.48 34.97 33.00 31.57 30.47 27.06 23.59

boat 37.35 34.02 32.20 30.89 29.87 26.74 23.84
hill 37.17 33.67 31.89 30.71 29.80 27.05 24.44

couple 37.45 33.98 32.06 30.69 29.61 26.30 23.28
man 37.89 34.06 32.01 30.64 29.63 26.69 24.00

fingerp. 36.70 32.57 30.31 28.78 27.62 24.25 21.26
bridge 35.78 31.22 28.92 27.46 26.42 23.68 21.46
flintst. 36.13 32.46 30.78 29.63 28.71 25.16 21.10
Av. 37.67 34.06 32.12 30.78 29.74 26.57 23.39

Table 4.1: Quantitative denoising experiments on 12 standard images. The PSNR val-
ues are averaged over 5 experiments with 5 different noise realizations and values of σ
between 5 and 100. The variance is negligible and not reported due to space limitations.

σ GSM FOE K-SVD BM3D SC LSC LSSC
5 37.05 37.03 37.42 37.62 37.46 37.66 37.67
10 33.34 33.11 33.62 34.00 33.76 33.98 34.06
15 31.31 30.99 31.58 32.05 31.72 31.99 32.12
20 29.91 29.62 30.18 30.73 30.29 30.60 30.78
25 28.84 28.36 29.10 29.72 29.18 29.52 29.74
50 25.66 24.36 25.61 26.38 25.83 26.18 26.57
100 22.80 21.36 22.10 23.25 22.46 22.62 23.39

Table 4.2: Quantitative comparative evaluation. We compare our algorithm to
GSM (Portilla et al., 2003), FoE (Roth and Fischer, 2008), K-SVD (Elad and Aharon,
2006) and BM3D (Dabov et al., 2007), that were the top performers so far on this bench-
mark, and whose implementations are available online. The PSNR is chosen as before
as performance measure. Best results are in bold.

123

4. Non-Local Sparse Models for Image Restoration

Figure 4.2: Left: noisy images. Middle: Original images. Right: restored images. From
top to bottom: house image (σ = 15), man image (σ = 50), hill image (σ = 20), barbara

image (σ = 100). Note that we reproduce the original brick texture in the house image
and the hair texture for the man image both hardly visible in the noisy images.

124

4.4. Experimental Validation

Figure 4.3: Left: noisy images. Middle: Original images. Right: restored images. From
top to bottom: peppers image (σ = 20), lena image (σ = 10), couple image (σ = 15),
bridge image (σ = 10).

125

4. Non-Local Sparse Models for Image Restoration

Figure 4.4: Left: Demosaicking with LSC sometimes causes artefacts such as the yellow
and blue pixels in the middle of the fence. Right: The reconstruction obtained with the
LSSC algorithm does not exhibit such artefacts. (This figure should be viewed in color.)

We evaluate the performance of the three variants SC, LSC, LSSC of our framework
defined in the previous subsection, and compare them with the state of the art using
the experimental protocol of Paliy et al. (2007) whose LPA method is, to the best
of our knowledge, the top performer so far in terms of PSNR (or equivalently mean-
squared error) on the Kodak PhotoCD benchmark. Following Paliy et al. (2007), we
have excluded a 15-pixel border in fairness to methods that are susceptible to boundary
effects. Table 4.3 adds our results to those reported by Paliy et al. (2007) for each one of
the 24 photos. The proposed LSSC method outperforms the state-of-the-art algorithms
AP (Gunturk et al., 2002), DL (Zhang and Wu, 2005) and LPA (Paliy et al., 2007) by
a significant margin of 0.87dB even though our formulation is generic and not tuned to
the task of demosaicking, demonstrating the promise of our image model.

When including the image border so as to be able to compare our results with those of
Mairal et al. (2008b), it is interesting to note that, in the SC setting, we achieve a mean
PSNR of 40.72dB on the 24 images, compared to the 39.56dB of Mairal et al. (2008b).
Clearly, it is thus preferable in this case to learn the dictionary from a large dataset
of natural images. With LSC, we achieve a mean PSNR of 40.98dB, compared to the
40.32dB of Mairal et al. (2008b), reaching a mean PSNR of 41.24dB with LSSC. Although
this quantitative improvement may seem small, it is qualitatively quite significant. Even
though SC and LSC perform very well in terms of PSNR, they suffer from classical
demosaicking artefacts, as shown by the example of Figure 4.4. On the other hand,
our new LSSC model, which exploits self-similarities as well as learned sparse coding, is
usually free of most of these artefacts.

126

4.4. Experimental Validation

Im. AP DL LPA SC LSC LSSC
1 37.84 38.46 40.47 40.84 40.92 41.36
2 39.64 40.89 41.36 41.76 42.03 42.24
3 41.40 42.66 43.47 43.15 43.92 44.24
4 39.92 40.49 40.84 41.99 42.14 42.45
5 37.28 38.07 37.51 38.72 39.15 39.45
6 38.69 40.19 40.92 41.29 41.36 41.71
7 41.75 42.35 43.06 43.30 43.59 44.06
8 35.58 36.02 37.13 37.42 37.38 37.57
9 41.84 43.05 43.50 43.17 43.74 43.83
10 41.93 42.54 42.77 43.01 43.17 43.33
11 39.25 40.01 40.51 41.19 41.29 41.51
12 42.62 43.45 44.01 44.29 44.49 44.90
13 34.28 34.75 36.08 36.16 36.29 36.35
14 35.66 36.91 36.86 37.64 38.48 38.77
15 39.17 39.82 40.09 41.04 41.24 41.74
16 42.10 43.75 44.02 44.36 44.42 44.91
17 41.23 41.68 41.75 41.75 41.86 41.98
18 37.31 37.64 37.59 38.05 38.27 38.38
19 39.99 41.01 41.55 41.58 41.71 42.31
20 40.63 41.24 41.48 41.95 42.25 42.27
21 38.72 39.10 39.61 40.55 40.59 40.65
22 37.63 38.37 38.44 38.73 38.97 39.24
23 41.93 43.22 43.92 43.47 43.93 44.34
24 34.74 35.55 35.44 35.59 35.85 35.89

Av. 39.21 40.05 40.52 40.88 41.13 41.39

Table 4.3: Comparison of demosaicking performance in terms of PSNR between AP
(Gunturk et al., 2002), DL (Zhang and Wu, 2005), LPA (Paliy et al., 2007) and the SC,
LSC and LSSC variants of our method. Best results are in bold.

4.4.3 Denoising – Real Noise

To evaluate qualitatively our denoising method on real images, we have taken three
RAW photographs using a Canon Powershot G9 digital camera at 1600 ISO with a
short time exposure. At such a setting, the images are quite noisy. We have extracted
the mosaicked data from the RAW image using the open-source dcraw software. We have
then scaled manually the R,G,B channels so that they visually appear to contain similar
amounts of noise. At this point, the noise is, to a first approximation, roughly uniform,
and we apply our denoising algorithm to the scaled mosaicked image, before performing
demosaicking, white balance, sRGB space conversion, gamma correction, and contrast
enhancement to reconstruct the final image. This approach has proven experimentally
to lead to better results than denoising each R,G,B channel independently. Of course,

127

4. Non-Local Sparse Models for Image Restoration

assuming that the noise is uniform is only a rough approximation. Non-spatially uniform
noise models are available for specific cameras, and exploited by commercial software
packages such at those discussed later in this section. Incorporating these models into
our framework is feasible, following Mairal et al. (2008b), but beyond the scope of this
chapter. Instead, we demonstrate that, even with a uniform assumption, our algorithm
is qualitatively competitive with top-of-the-line commercial denoising software.

The parameters we have used are a patch size of m = 8 × 8 pixels, and p = 256
dictionary elements, which is typical for sparse coding methods (Elad and Aharon, 2006;
Mairal et al., 2008b). The noise level σ is estimated by the user and assumed to be
uniform across the image, and ξ is chosen according to the empirical rule presented in
Section 4.4.1. Demosaicking is performed using the same parameters as in Section 4.4.2.
Figures 4.5, 4.6 and 4.7 compare closeups of the images reconstructed from the RAW
file by the camera itself (jpeg output), the image obtained with Adobe Camera Raw
5.0 (no denoising), two state-of-the-art denoising softwares NoiseWare 4.2 and the DxO
Optics Pro 5.3 package, and our method. The commercial programs have been run with
their default parameters, and these could certainly be further tuned to improve image
quality a bit.3 However, note that, unlike ours, these programs do take advantage of
a detailed, non-uniform noise model specific to the camera, yet do not appear to give
qualitatively better results. Although a quantitative comparison is not possible, we
believe (subjectively) that our method does best on the first and third images, while
DxO Optics Pro is slightly better for the second one. As in our previous experiments,
LSSC suffers from fewer artefacts than LSC in general. The noise’s non-uniformity does
not seem to affect our results much, except perhaps for the background of the third
image, where part of the noise is reconstructed.

4.5 Conclusion

We have proposed in this work a new image model that combines the non-local means and
sparse coding approaches to image restoration into a unified framework where similar
patches are decomposed using similar sparsity patterns. Quantitative and qualitative
experiments with images corrupted with synthetic or real noise have shown that the
proposed algorithm outperforms the state of the art in image demosaicking and denoising
tasks. Next on our agenda is to include non-uniform noise models in the reconstruction
process, then adapt our approach to other challenging image manipulation problems in
computational photography, including deblurring, inpainting, and texture synthesis in
still images and video sequences.

3Note that NoiseWare does not process directly the RAW files, but requires at first to use a demo-
saicking software. We have chosen to combine NoiseWare and Adobe Camera Raw in our experiments.

128

4.5. Conclusion

(a) Camera jpeg (b) Adobe Camera Raw (c) Noiseware

(d) DxO (e) LSC (f) LSSC

Figure 4.5: Visual Comparison between Camera jpeg output, Adobe Camera Raw, Noise-
Ware, DxO Optics Pro, LSC, and proposed LSSC algorithm. (This figure should be
viewed in color and by zooming on a computer screen.)

129

4. Non-Local Sparse Models for Image Restoration

(a) Camera jpeg (b) Adobe Camera Raw (c) Noiseware

(d) DxO (e) LSC (f) LSSC

Figure 4.6: Visual Comparison between Camera jpeg output, Adobe Camera Raw, Noise-
Ware, DxO Optics Pro, LSC, and proposed LSSC algorithm. (This figure should be
viewed in color and by zooming on a computer screen.)

130

4.5. Conclusion

(a) Camera jpeg (b) Adobe Camera Raw (c) Noiseware

(d) DxO (e) LSC (f) LSSC

Figure 4.7: Visual Comparison between Camera jpeg output, Adobe Camera Raw, Noise-
Ware, DxO Optics Pro, LSC, and proposed LSSC algorithm. (This figure should be
viewed in color and by zooming on a computer screen.)

131

5

Modeling the Local Appearance of Image Patches

Chapter abstract: Sparse signal models have been the focus of much recent research, leading
to (or improving upon) state-of-the-art results in signal, image, and video restoration. This work
extends this line of research into a novel framework for local image discrimination tasks, proposing
an energy formulation with both sparse reconstruction and class discrimination components,
jointly optimized during dictionary learning. This approach improves over the state of the art
in texture segmentation experiments using the Brodatz database, and it paves the way for a
novel scene analysis and recognition framework based on simultaneously learning discriminative
and reconstructive dictionaries. Preliminary results in this direction using examples from the
Pascal VOC’06 and Graz02 datasets are presented as well. We also apply our method to edge
detection, category-based edge selection and image classification tasks. Experiments on the
Berkeley edge detection benchmark and the PASCAL VOC’05 and VOC’07 datasets demonstrate
the computational efficiency of our algorithm and its ability to learn local image descriptions that
effectively support demanding computer vision tasks.

The material of the chapter is based on the following publications:

J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman. Discriminative Learned
Dictionaries for Local Image Analysis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2008

J. Mairal, M. Leordeanu, F. Bach, M. Hebert and J. Ponce. Discriminative Sparse Image
Models for Class-Specific Edge Detection and Image Interpretation. In Proceedings of
the European Conference on Computer Vision (ECCV). 2008

These papers are prior to the task-driven dictionary learning approach which will be
presented in the next chapter. They introduce the concept of learning dictionaries in a
supervised way, and use different optimization methods, which are more heuristic than
the more recent approach of Chapter 6.

5.1 Introduction

Sparse representations have recently drawn much interest in signal, image, and video
processing. Under the assumption that natural images admit a sparse decomposition in

133

5. Modeling the Local Appearance of Image Patches

some redundant basis (or so-called dictionary), several such models have been proposed,
e.g., curvelets (Candes and Donoho, 2004), wedgelets (Donoho, 1998) bandlets (Mallat
and Pennec, 2005b,a) and various sorts of wavelets (Mallat, 1999). Recent works have
shown that learning non-parametric dictionaries for image representation instead of using
off-the-shelf ones, can improve image restoration (Elad and Aharon, 2006; Ranzato et al.,
2007b; Roth and Black, 2005; Weiss and Freeman, 2007). We consider in this chapter
the dictionary learning framework as a tool for modelling the local appearance of image
patches.

The computer vision community has indeed been interested in extracting sparse
information from images for recognition, mainly by designing different types of image
descriptors (e.g., SIFT, Lowe, 2004, HOG, Dalal and Triggs, 2005), although the sparsity
concept here is different from the sparse decompositions of images we have presented
so far in this manuscript. These representations have been shown to be discriminative
enough to be used in conjunction with classifiers (e.g., SVMs for SIFT descriptors in
“bags of features” models Wallraven et al., 2003; Lazebnik et al., 2006). Introducing
learning into the feature extraction task has been part of the motivation for some recent
works: e.g., Ranzato et al. (2007a) learns image features using convolutional neural
networks; while Lazebnik and Raginsky (2007); Winn et al. (2005) present discriminative
strategies for learning visual codebooks. Sparse decompositions have also been used for
face recognition (Wright et al., 2009a), signal classification (Grosse et al., 2007; Huang
et al., 2009) and texture classification (Lee and Lewicki, 2002; Peyré, 2009; Skretting and
Husoy, 2006). Interestingly, while discrimination is the main goal of these papers, the
optimization (dictionary design) is purely generative, based on a criteria which does not
explicitly include the actual discrimination task, which is one of the key contributions
of our work.

The framework introduced in this work addresses the learning of multiple dictionaries
which are simultaneously reconstructive and discriminative, and the use of the recon-
struction errors of these dictionaries on image patches to derive a pixelwise classification.
The novelty of the proposed approach is twofold: First, redundant non-parametric dic-
tionaries are learned, in contrast with the more common use of predefined features and
dictionaries (Huang and Aviyente, 2006; Wright et al., 2009a). Second, the sparse local
representations are learned with an explicit discriminative goal, making the proposed
model different from traditional reconstructive ones (Grosse et al., 2007; Peyré, 2009;
Skretting and Husoy, 2006). We illustrate the benefits of this approach in a texture
segmentation task on the Brodatz dataset (Randen and Husoy, 1999) for which it im-
proves over the state of the art (Lillo et al., 2007; Mäenpää et al., 2000; Skretting and
Husoy, 2006), and also present preliminary results showing that it can be used to learn
discriminative key patches from the Pascal VOC’06 (Everingham et al., 2007) database,
and perform the weakly supervised form of feature selection advocated by Pantofaru
et al. (2006); Tuytelaars and Schmid (2007) on images from the Graz02 dataset (Opelt
and Pinz, 2005). We also use this algorithm in a multiscale extension of our discrimi-
native framework and apply it to the problem of edge detection, with raw results very
close to the state of the art on the Berkeley segmentation dataset (Martin et al., 2001).

134

5.2. Learning Discriminative Dictionaries

Following Prasad et al. (2006), we also learn a class-specific edge detector and show that
using it as a preprocessing stage to a state-of-the-art edge-based classifier of Leordeanu
et al. (2007) can significantly improve the performance of the latter.

5.1.1 Contributions

This chapter makes three contributions

• It introduces discriminative dictionaries for modelling the local appearance of ob-
jects and textures, leading to state-of-the-art results for these tasks.

• It demonstrates that this approach is particularly well suited for modelling edges
in natural images and for learning a category-based edge detector.

• It shows that edge-based classifiers such as (Leordeanu et al., 2007) can be signif-
icantly improved when coupled with a category-based edge detector.

5.2 Learning Discriminative Dictionaries

Assume that we have N sets Si of training patches, i = 1 . . . N , belonging to N different
classes. The simplest strategy for using dictionaries for discrimination consists of first
learning N dictionaries Di, i = 1 . . . N , one for each class. Approximating each patch
using a constant sparsity L and the N different dictionaries provides N different residual
errors, which can then be used as classification features. This is essentially the strategy
employed by Peyré (2009); Skretting and Husoy (2006). Thus, the first naive way of
estimating the class i0 for some patch x is to write (as done by Wright et al. (2009a),
but with learned dictionaries):

ı̂0 = arg min
i=1...N

R⋆(x,Di), (5.1)

where

R⋆(x,Di) , min
α∈Rp

‖x−Diα‖22 s.t. φ(α) ≤ λ,

where φ denotes either the ℓ0 quasi-norm or the ℓ1 norm, and λ is a regularization
parameter.

Instead of this reconstruction-based approach, we show that better results can be
achieved, in general, by learning discriminative sparse representations, while keeping
the same robustness against noise or occlusions (see also Huang and Aviyente, 2006),
which discriminative methods may be sensitive to (Wright et al., 2009a).1

1Note also that due to the over-completeness of the dictionaries, and possible correlations between
the classes, sparse representations of members of one class with dictionaries from a different class can
still be very efficient and produce small values for the residual error R⋆.

135

5. Modeling the Local Appearance of Image Patches

5.2.1 Learning discriminative dictionaries

We present in this section a formulation for learning discriminative dictionaries, using
an energy formulation that contains both sparse reconstruction and class discrimina-
tion components, jointly optimized towards the learning of the dictionaries. Given N
classes Si of signals, i = 1, . . . , N , the goal is to learn N discriminative dictionaries Di,
each of them being adapted to reconstructing a specific class better than others. This
yields the following optimization problem:

min
{Dj}N

j=1

N∑

i=1

∑

l∈Si
Cγi
({R⋆(xl,Dj)}Nj=1

)
+ γνR⋆(xl,Di).

Here, R⋆(xl,Di) is the reconstruction error of the signal xl using the dictionary Di

and Cγi is a softmax discriminative cost function, which is the multiclass version of the
logistic regression function, defined as

Cγi (y1, y2, ..., yN) , log
(N∑

j=1

e−γ(yj−yi)
)

,

which is close to zero when yi is the smallest value among the yj j = 1, . . . , N , and
provides an asymptotic linear penalty cost γ(yi − minj yj) otherwise. These are the
multiclass versions of the logistic function presented in Figure 5.1, which is differentiable
and enjoys properties similar to the hinge loss function from the support vector machine
(SVM) literature. Increasing the value of the new parameter γ > 0 provides a higher
relative penalty cost for each misclassified patch, at the same time making the cost
function less smooth. Its purpose is to make the dictionary Di better at reconstructing

Figure 5.1: The logistic function (red, continuous), its first derivative (blue, dashed),
and its second derivative (black, dotted).

the signals from class Si than the dictionaries Dj for j different than i. In this equation, γ
is a parameter of the cost function, and ν controls the trade-off between reconstruction
and discrimination. More details on this formulation, on how to optimize it, and on the
choices of the parameters γ and ν are given in (Mairal et al., 2008a).

136

5.2. Learning Discriminative Dictionaries

5.2.2 A new multiscale feature space

In this subsection, we present a multiscale extension and some improvements to the
classification procedure outlined in (Mairal et al., 2008a), which have proven to improve
noticeably the performance of our classifier. Although it is presented for illustrative
purposes when the signals are image patches, its scope goes beyond vision tasks and
similar concepts could be applied in other situations.

An important assumption, commonly and successfully used in image processing, is
the existence of multiscale features in images, which we exploit using a multi-layer ap-
proach, presented in Figure 5.2. It allows us to work with images at different resolutions,
with different sizes of patches and avoids the choice of the hyperparameters λ during the
testing phase.

SubsamplingSignal input

Classifier 1

Classifier 2

Classifier 3

Sparse coding

Linear

classifier

Figure 5.2: Multiscale classifier using discriminative sparse coding. The signal input is
subsampled in different signal sizes. Then, each classifier outputs N curves of recon-
struction errors as functions of a sparsity constraint, one curve per dictionary. A linear
classifier provides a confidence value.

In (Mairal et al., 2008a), the class i0 for some patch x is taken according to Eq. (5.1).
However, R⋆ is a reconstruction error obtained with an arbitrary ℓ0 or ℓ1 constraint,
which does not take into account the different characteristics of the patches. Patches
with a high amount of information need indeed a lot of atoms to achieve a correct
representation, and should therefore benefit from being classified with a high sparsity
factor. On the other hand, some patches admit extremely sparse representations, and
should be classified with a small sparsity factor. To cope with this effect, we have
chosen when testing a given patch to compute many reconstruction errors with different
constraints (different values of λ). Thanks to the nature of the OMP and LARS-Lasso,
this can be done without additional computations since both these algorithms can plot

137

5. Modeling the Local Appearance of Image Patches

the reconstruction error as a function of the given constraint value in one pass. The
curves produced by each different dictionaries (one dictionary per class) on a patch can
then be incorporated into a logistic regression classifier or a linear SVM (Shawe-Taylor
and Cristianini, 2004) as feature vectors.

The same idea can be used to combine the output of different classifiers, working
at different resolutions and with different sizes of patches. Suppose you train P dis-
criminative classifiers with different sizes of patches and different resolutions. Testing a
signal x consists of sending x to each classifier independently, cropping and subsampling
it so that its size and resolution match the classifier. Each classifier produces N curves
representing the reconstruction errors using the N dictionaries and different sparsity
constraints. Then, a linear classifier (logistic regression or SVM) permits to combine
these outputs into a confidence value. This scheme is presented in Figure 5.2.

5.3 Modeling Texture and Local Appearance of Objects

We apply in this section our discriminative dictionary framework for modeling textures
and build a local representation of objects.

5.3.1 Data Issues

Before presenting experiments, we discuss here some data related issues. Depending on
the particular application of the proposed framework, different prefiltering operations can
be applied to the input data. We mention first the possibility to apply a Gaussian mask
to the input patches (by multiplying element-wise the patches by the mask), in order to
give more weight to the center of the patches, since the framework is designed for local
discrimination. We mention also the possibility to pre-process the data using a Laplacian
filter, which has proven to give more discriminatory power. Since a Laplacian filter can
be represented by a difference of Gaussians, this step is consistent with previous works
on local descriptors. Both proposed pre-filtering can be simultaneously used depending
on the chosen application.

The presented framework is flexible in the sense that it is very easy to take into
account different types of vectorial information. For instance, using color patches for the
K-SVD has been addressed by Mairal et al. (2008b) by concatenating R,G,B information
from a patch into single vectors. This can be directly applied here. One could also opt
to only include the mean color of a patch, if we consider that the geometrical structure
is more meaningful for discrimination. It is therefore possible to work with vectors
representing grayscale patches and just 3 average R,G,B values. This permits to take
into account the color information without multiplying by 3 the dimensionality of the
patches. Depending on the data, other types of information could be added this way.

5.3.2 Texture Segmentation of the Brodatz Dataset

Texture segmentation and classification is a natural application of our framework, since
it can be formulated as a local feature extraction and patch classification process. We

138

5.3. Modeling Texture and Local Appearance of Objects

♯ C1 C2 C3 C4 R1 R2 D1 D2
1 7.2 6.7 5.5 3.37 2.22 1.69 1.89 1.61
2 18.9 14.3 7.3 16.05 24.66 36.5 16.38 16.42
3 20.6 10.2 13.2 13.03 10.20 5.49 9.11 4.15
4 16.8 9.1 5.6 6.62 6.66 4.60 3.79 3.67
5 17.2 8.0 10.5 8.15 5.26 4.32 5.10 4.58
6 34.7 15.3 17.1 18.66 16.88 15.50 12.91 9.04
7 41.7 20.7 17.2 21.67 19.32 21.89 11.44 8.80
8 32.3 18.1 18.9 21.96 13.27 11.80 14.77 2.24
9 27.8 21.4 21.4 9.61 18.85 21.88 10.12 2.04
10 0.7 0.4 NA 0.36 0.35 0.17 0.20 0.17
11 0.2 0.8 NA 1.33 0.58 0.73 0.41 0.60
12 2.5 5.3 NA 1.14 1.36 0.37 1.97 0.78

Av. 18.4 10.9 NA 10.16 9.97 10.41 7.34 4.50

Table 5.1: Error rates for the segmentation/classification task for the Brodatz dataset.
The proposed framework is compared with a number of reported state-of-the-art results
(Lillo et al., 2007; Mäenpää et al., 2000; Skretting and Husoy, 2006) and the best results
reported by Randen and Husoy (1999). Randen and Husoy (1999) is denoted by C1,
Mäenpää et al. (2000) by C2, Skretting and Husoy (2006) by C3 and Lillo et al. (2007)
by C4. R1 and R2 denote the reconstructive approach, while D1 and D2 stand for the
discriminative one. A Gaussian regularization has been used for R1 and D1, a graph-
cut-based one for R2 and D2. The best results for each image are in bold.

have chosen to evaluate our method on the Brodatz dataset, introduced by Randen and
Husoy (1999), which provides a set of “patchwork” images composed of textures from
different classes, and a training sample for each class. The suite of the 12 images is
presented by Mäenpää et al. (2000).

In our experiments, following the same methodology as Skretting and Husoy (2006),
each of the patches of the training images were used as a training set. We use patches
of size m = 144 (12 × 12), dictionaries of size p = 128 and a sparsity factor λ = 4 (ℓ0
constraint). A Gaussian mask of standard deviation 4 (element-wise multiplication) and
a Laplacian filter were applied on each patch as a prefiltering. Then 30 iterations of our
discriminative framework are performed. After this training stage, each one of the 12×12
patches from the test images are classified using the learned dictionaries (by comparing
the corresponding representation error R⋆ for each dictionary). Smoothing follows to
obtain the segmentation. We present two alternatives, either using a simple Gaussian
filtering with a standard deviation of 12, or applying a graph-cut alpha-expansion algo-
rithm, (Boykov et al., 2001; Kolmogorov and Zabih, 2004), based on a classical Potts
model with an 8-neighborhood system. The cost associated with a patch x and a class Si
is 0 if x has been classified as part of Si, and 1 otherwise. A constant regularization cost
between two adjacent patches of 1.75 has proven to be appropriate. Table 5.1 reports
the results.

139

5. Modeling the Local Appearance of Image Patches

From these experiments, we observe that our method significantly outperforms those
reported by Lillo et al. (2007); Mäenpää et al. (2000); Randen and Husoy (1999); Skret-
ting and Husoy (2006), regardless of the selected regularization method, and performs
best for all but two of the images. Moreover, while the purely reconstructive frame-
work already provides good results, we observe that the discriminative one noticeably
improves the classification rate except for examples 5 and 12. In these two particular
cases, it has proven to be an artefact from the image smoothing. The classification
rate before and after smoothing are indeed not fully correlated. Smoothing will better
remove isolated misclassified patches and sometimes the misclassified patches from the
reconstructive approach are more isolated than with the discriminative one. Note that
our model under-performs at image 2, where the size of the patches we had chosen has
proven to be particularly not adapted, which is a motivation for developing a multiscale
framework. Some qualitative results are presented in Figure 5.3.

5.3.3 Learning Discriminant Images Patches of Objects

To assess the promise of our local appearance model, we verify its ability to learn discrim-
inative patches for object categories from a very general database with a high variability.
To that effect, we have chosen some classes from the Pascal VOC’06 database (Evering-
ham et al., 2007) and conducted the following qualitative experiment: Given one object
class A (e.g., bicycle, sheep, car, cow), we build two sets of patches S1 and S2. The first
one is composed of 200 000 12×12 patches, extracted from bounding boxes that contain
one object of class A. The second one was composed of 200 000 12 × 12 background
patches from an image that contains one object of class A. This way, classification at
the patch level is difficult since the overlap between S1 and S2 is important: (i) many
small patches from an object look like some patches from the background and vice-versa;
(ii) some patches from an object’s bounding boxes do not necessarily fully overlap with
the object.

Analyzing globally the patches as a whole, or using a multiscale framework like in
(Agarwal and Triggs, 2006; Tuytelaars and Schmid, 2007), to capture global appearance
of objects, are among the possibilities that could make this problem more tractable,
but these are beyond the scope of this paper. Instead, we want to show here that our
purely local model can deal with this overlap between classes and learn the local parts
of objects from class A that are discriminative, when observed at the patch level. The
experiment we did consists of learning two discriminative dictionaries, D1 for S1 and D2

for S2, with p = 128, λ = 4 and 15 iterations of our algorithm, and then to pursue
the discriminative learning during 15 additional iterations, but at each new iteration,
pruning the set S1 by keeping the 90% “best classified patches." This way, one hopes to
remove the overlap between S1 and S2 and to enforce the learning on the key-patches
of the objects. Examples with various classes of the Pascal dataset are presented in
Figures 5.4 and 5.5. All the images we used in our test procedure are from the official
validation set and are not used during the training. The test images are rescaled so that
the maximum between the height and the width of the image is less than 256 pixels. The
same prefiltering as for the texture segmentation is applied and the average color of each

140

5.3. Modeling Texture and Local Appearance of Objects

Figure 5.3: Subset of the Brodatz dataset with various number of classes: From top
to bottom, images 4, 7, 9 and 12. The ground-truth segmentation is displayed in the
middle and the resulting segmentation on the right side with a graph-cut regularization.
Note that the segmentation is in general very precise but fails at separating two classes
on image 7.

patch is taken into account. The learned key-patches focus on parts of the object that
stand as locally discriminative compared to the background. These eventually could be
used as inputs to other algorithms of the “bags-of-words" type.

Figure 5.6 shows examples of the learned dictionaries obtained with the discrimina-
tive and the reconstructive approaches.

141

5. Modeling the Local Appearance of Image Patches

Figure 5.4: Learning of key-patches from the Pascal VOC’06 dataset. Column 1 presents
the test image. Columns 2,3,4 present the raw pixelwise classification results obtained
respectively at iterations 20,25 and 30 of the procedure, during the pruning of the dataset.
Interestingly, the vertical and horizontal edges of the bicycles are not considered as locally
discriminative in an urban environment.

142

5.3. Modeling Texture and Local Appearance of Objects

Figure 5.5: Learning of key-patches from the Pascal VOC’06 dataset. Column 1 presents
the test image. Columns 2,3,4 present the raw pixelwise classification results obtained
respectively at iterations 20,25 and 30 of the procedure, during the pruning of the dataset.
Interestingly, the vertical and horizontal edges of the bicycles are not considered as locally
discriminative in an urban environment.

5.3.4 Weakly-Supervised Feature Selection

Using the same methodology as Pantofaru et al. (2006) and Tuytelaars and Schmid
(2007), we evaluate quantitatively our pixelwise classification on the “bike” category
from the Graz02 dataset (Opelt and Pinz, 2005), in a weakly supervised fashion (with-
out using any ground truth information or bounding box during the training), with the
same parameters, pre-processing and algorithm as in the previous subsection (which
prunes iteratively the training set after iteration 15), except that we use a patch size of
m = 15× 15 and process the images at half resolution to capture more context around
each pixel. We use the first 300 images of the classes “bike” and “background” and use
odd images for training, keeping the even images for testing. To produce a confidence
value per pixel we have chosen to measure the reconstruction errors of the tested patches
with different sparsity factors λ = 1, . . . , 15 and use these values as feature vectors in a
logistic linear classifier. A Gaussian regularization similar to that used in our texture

143

5. Modeling the Local Appearance of Image Patches

(a) Reconstructive, bicycle (b) Reconstructive, background

(c) Discriminative, bicycle (d) Discriminative, background

Figure 5.6: Parts of the dictionaries, learned on the class ‘bicycle’ from the Pascal VOC06
dataset. The left part has been learned on bounding boxes containing a bicycle, the
right part on background regions. The resulting dictionaries from the two approaches,
reconstructive and discriminative, are presented. Visually, the dictionaries produced by
the discriminative approach are less similar to each other than with the reconstructive
one.

segmentation experiments is applied and has proven to improve noticeably the classifi-
cation performance. Corresponding precision-recall curves are presented in Figure 5.7
and compared with (Pantofaru et al., 2006; Tuytelaars and Schmid, 2007). As one can
see, our algorithm produces the best results. Nevertheless, a more exhaustive study with
different classes and datasets with a more precise ground truth would be needed to draw
general conclusions about the relative performance of these three methods.

5.4 Combining Geometry and Local Appearance of Edges

We show in this section how to use our dictionary learning framework to model the local
appearance of edges. We first evaluate the performance of the framework for an edge
detection task, and then move to category-based edge detection and object recognition.

144

5.4. Combining Geometry and Local Appearance of Edges

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

Figure 5.7: Precision-recall curve obtained by our framework for the bikes, without
pruning of the training dataset (green, continuous), and after 5 pruning iterations (red,
continuous), compared with the one from Pantofaru et al. (2006) (blue, dashed) and
Tuytelaars and Schmid (2007) (black, dotted).

5.4.1 Edge Detection

We have chosen to train and evaluate our multiscale discriminative framework on the
Berkeley segmentation dataset (Martin et al., 2001). To accelerate the procedure and
obtain thin edges, we first process all the images with a Canny edge detector (Canny,
1986) without thresholding. Then, we use the manually segmented images from the
training set to classify the pixels from these Canny edges into two classes : S1 for
the ones that are close to a human edges, and S2 for the others (bad Canny edges).
RGB patches are concatenated into vectors. The size p of all of our dictionaries are
256. 14 local classifiers using 7 different sizes of patches’ edges e = 5, 7, 9, 11, 15, 19, 23,
and 2 resolutions (full and half) are trained independently and J = 25 iterations with a
sparsity constraint of L = 6, on a sample of 150 000 random patches from S1 and 150 000
patches from S2. This maximum size of patches associated with the half-resolution
version of the images allows us to capture sufficient neighborhood context around each
pixel, which has proven to be crucial (Dollar et al., 2006). Then, a new sample of the
training set is encoded using each trained dictionary and the curves of the reconstruction
error as function of the sparsity constraint (λ = 1, 2, . . . , 15 for the ℓ0 case), (λ =
0.1, 0.2, . . . , 2.0 for the ℓ1 case) are computed. All the curves corresponding to a given
patch are concatenated into a single feature vector. A linear logistic classifier is trained.
During the test phase, we have chosen to compute independently a confidence value per

145

5. Modeling the Local Appearance of Image Patches

pixel on the Canny edges without doing any post-processing or spatial regularization,
which by itself is also a difficult problem. We have therefore chosen to evaluate our
raw and noisy results but we believe these can be further improved by applying post-
processing methods like Ren et al. (2005). Precision-recall curves obtained using the
Berkeley segmentation benchmark are presented in Figure 5.8 and are compared with
Pb (Martin et al., 2004), BEL (Dollar et al., 2006) and UCM (Arbelaez, 2006). Note
that without any post-processing, our generic method achieves similar performance as
(Dollar et al., 2006) just behind (Arbelaez, 2006) in terms of F-measure (see Martin
et al., 2001, 2004, for its definition), although it was not specifically designed for this
task. Note that our method performs the best for high recalls, but is slightly behind for
lower recalls, where our edges map contain many small nonmeaningful edges (noise).

Interestingly, our formulation with the ℓ0 constraint (F=0.66) gives slightly better
results than when using the ℓ1 one (F = 0.64) in our multiscale framework. Nevertheless,
in the single scale case, we have observed an opposite phenomenon.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

Pb, F=0.65

BEL, F=0.66

UCM, F=0.67

Ours, F=0.66

Figure 5.8: Precision-recall curve for our edge detection task.

146

5.4. Combining Geometry and Local Appearance of Edges

5.4.2 Combining Shape with Local Appearance for Object
Recognition

We now show how to use our edge detector for object recognition by combining it with
the shape-based method for category recognition from Leordeanu et al. (2007). Their
algorithm learns the shape of a specific category in a discriminative fashion by selecting
from training images the pieces of contours that are most relevant for a specific category.
The method exploits the pairwise geometric relationships between simple features that
include relative angle and distance information. Thus, features are selected based on
how discriminative they are together, as a group, and not on an individual basis (for
more details on learning these models, see Leordeanu et al., 2007). After the models are
learned, they are matched against contours extracted from novel images by formulating
the task as a graph matching problem, where the focus is on pairwise relationships
between features and not their local appearance. While Leordeanu et al. (2007) make
the point that shape is stronger than local appearance for category recognition we want
to demonstrate that there is a natural way of combining shape and local appearance
that produces a significant increase in the recognition performance.

While shape is indeed important for category recognition, the toughest challenge for
such shape-based algorithms on difficult databases is the change in view point, which
makes the use of 2D shape less powerful. Therefore, it is important to be able to help
the shape recognizer by local appearance methods that are geometry independent and
thus less sensitive to such changes in viewpoint. Our proposed approach of combining
local appearance with shape is to first learn a class specific edge detector on pieces of
contours. Next this class specific edge detector is used to filter out the irrelevant edges
while learning the shape-based classifier based on (Leordeanu et al., 2007). Similarly,
at testing time, the shape-based algorithm is applied to the contours that survive after
filtering them with our class dependent edge detector. The outputs of both the shape-
based classifier and the real values given by our detector are later combined for the
final recognition score. This framework provides a natural way of combining the lower-
level, appearance based edge detection and contour filtering with the more higher level,
shape-based approach. The algorithm can be described in more detail as follows:

• Contour Training: learn a category based edge classifier using our proposed
method. For each image, we apply our general edge detector, then obtain pieces of
contours obtained as Leordeanu et al. (2007). Next, we train class specific detectors
on such contours belonging to the positive class vs. all other classes.

• Shape Training: the output of the class specific edge detector on each training
image (contours with average scores less than 0.5 are removed) is given to the
shape-based algorithm from Leordeanu et al. (2007). Thus the shape classifier is
trained on images that were first preprocessed with our class dependent contour
classification.

• Testing: each testing image is first preprocessed at the individual contours level
in the same way as it is done at training time. The edge classifier it is used to

147

5. Modeling the Local Appearance of Image Patches

filter out contours that had an average score less than 0.5 (over all pixels belonging
to that contour). The contours that survived are then used by the shape-based
classifier, to obtain the final recognition score.

We now use our edge detector on all the images from Pascal VOC’05 and VOC’07
(Everingham et al., 2007) and postprocess them to remove nonmeaningful edges using the
same grouping method as Leordeanu et al. (2007). Then, we train our class-specific edge
detector on the training set of each dataset, using the same training set as Leordeanu
et al. (2007) for VOC’05 and the training set of VOC’07. For each class (4 in VOC’05
and 20 in VOC’07) a one-vs-all classifier is trained using the exact same parameters as
for the edge detection, which allows us to give a confidence value for each edge as being
part of a specific object type. Some examples of filtered edges maps are presented in
Figure 5.9.

Figure 5.9: Examples of filtered edges. Each column shows the edges that survive (score
≥ 0.5) after applying different class specific edge detectors.

In our first set of recognition experiments we want to quantify the benefit of using
our class-specific edge detector for object category recognition (shown in Table 5.2).
Thus, we perform the same sets of experiments as Leordeanu et al. (2007) and Winn
et al. (2005), on the same training and testing image sets from Pascal 2005 dataset, on

148

5.4. Combining Geometry and Local Appearance of Edges

a multiclass classification task. Following the works we compare against, we also use
bounding boxes (for more details on the the experiments set up see Leordeanu et al.,
2007 and Winn et al., 2005). Notice (Tables 5.2, 5.3 and 5.4) that by using our algorithm
we are able to reduce the error rate more than 3-fold as compared with the shape alone
classifier (3.2% vs. 10.6%) and more then 7-fold when compared to the appearance based
method of Winn et al. (2005). We believe that these results are very encouraging and
that they demonstrate the promise of our edge classifier for higher level tasks such as
object recognition.

Table 5.2: Average multiclass recognition rates on the Pascal 2005 Dataset

Algorithm Ours + Leordeanu Leordeanu Winn

Pascal 05 Dataset 96.8% 89.4% 76.9%

In the second sets of experiments we apply the same appearance-shape combination
algorithm to the two-class classification task of recognizing object categories from the
Pascal 2007 dataset (is the category present or not?). We believe that for this very chal-
lenging dataset, class-based contour classification can help the shape recognizer greatly,
since the objects are undergoing significant changes in viewpoint and scale making their
2D shape representation less powerful. We have experimented with 8 object classes
(Tables 5.3 and 5.4). For each class we use the training set with bounding boxes (as
provided in the Pascal 2007 challenge) for learning both the class specific edge detector
and the shape models (in the same fashion as we did for the Pascal 2005 experiment).
The test set consisted of the full images (no bounding boxes were used) given as valida-
tion set in the Pascal 07 challenge (only the images containing one of the eight classes
were kept for both testing and training). Given the difficulty of this dataset we believe
that our results are very promising and demonstrate the benefit of combining lower level
appearance with higher level, shape based information for object category recognition.
More experiments and a full comparison are of course needed.

Category Bikes Cars Motorbikes People
Bikes 93.0% 3.5% 1.7% 1.8%
Cars 1.2% 97.7% 0.0% 1.1%

Motorbikes 1.9% 1.8% 96.3% 0%
People 0% 0% 0% 100%

Table 5.3: Confusion matrix for Pascal 2005 Dataset (using the bounding boxes). Com-
pare this with the confusion matrix obtained when shape alone is used by Leordeanu
et al. (2007), on the exact same set of experiments.

149

5. Modeling the Local Appearance of Image Patches

Category Ours+Leordeanu et al. (2007) Leordeanu et al. (2007)
Aeroplane 71.9% 61.9%

Boat 67.1% 56.4%
Cat 82.6% 53.4%
Cow 68.7% 59.22%

Horse 76.0% 67%
Motorbike 80.6% 73.6%

Sheep 72.9% 58.4%
Tvmonitor 87.7% 83.8%

Table 5.4: Classification results (recognition performance) at equal error rate for 8 classes
from the Pascal 07 dataset. Our filtering method reduces the average error rate by 33%.

5.5 Conclusion

We have introduced a novel framework for using learned sparse image representations in
local classification tasks. Using a local sparsity prior on images, our algorithm learns the
local appearance of object categories in a discriminative framework. This is achieved via
an efficient optimization of an energy function, leading to the learning of over-complete
and non-parametric dictionaries that are explicitly optimized to be both representative
and discriminative. We have shown that the proposed approach leads to state-of-the-art
segmentation results on the Brodatz dataset, with significant improvements over previ-
ously published methods for most examples. Applied to more general image datasets,
mainly of natural images, it permits to learn some key-patches of objects and to perform
local discrimination/segmentation.

We present a multiscale discriminative framework based on these learned sparse
representations, and apply it to the problem of edge detection, and class-specific edge
detection, which proves to greatly improve the results obtained with a contour-based
classifier (Leordeanu et al., 2007). Our current efforts are devoted to find a way to use
our local appearance model as a preprocessing step for a global recognition framework
using bags of words, as we have done for a contour-based classifier. Clustering methods of
locally selected patches to define interest regions is an option we are considering, which
could eventually allow us to get rid of expensive sliding windows analysis for object
detection (Dalal and Triggs, 2005). Another direction we are pursuing is to use directly
the coefficients α of the sparse decompositions as features. Developing a discriminative
optimization framework which can use the robust ℓ1 regularization instead of the ℓ0 one
was a first step, which should make this possible.

150

6

Task-Driven Dictionary Learning

Chapter abstract: Modeling data with linear combinations of a few elements from a learned
dictionary has been the focus of much recent research in machine learning, neuroscience and
signal processing. For signals such as natural images that admit such sparse representations, it
is now well established that these models are well suited to restoration tasks. In this context,
learning the dictionary amounts to solving a large-scale matrix factorization problem, which can
be done efficiently with classical optimization tools. The same approach has also been used for
learning features from data for other purposes, e.g., image classification, but tuning the dictionary
in a supervised way for these tasks has proven to be more difficult. In this chapter, we present
a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and
present an efficient algorithm for solving the corresponding optimization problem. Experiments
on handwritten digit classification, digital art identification, nonlinear inverse image problems,
and compressed sensing demonstrate that our approach is effective in large-scale settings, and is
well suited to supervised and semi-supervised classification, as well as regression tasks for data
that admit sparse representations.

The concept of learning dictionaries in a supervised way was presented in

J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman. Supervised Dictionary
Learning. In Advances Neural Information Processing Systems (NIPS). 2008

However, the material of the chapter is essentially based on a more recent work:

J. Mairal, F. Bach and J. Ponce. Task-Driven Dictionary Learning. submitted.
arXiv:1009.5358v1, 2010

6.1 Introduction

The classical dictionary learning for reconstructing signals is well adapted to restoration
tasks, such as restoring a noisy signal. These dictionaries, which are good at reconstruct-
ing clean signals, but bad at reconstructing noise, have indeed led to state-of-the-art
denoising algorithms (Elad and Aharon, 2006; Mairal et al., 2008b, 2009c). This “data-
driven” unsupervised dictionary learning has also been used for other purposes than

151

6. Task-Driven Dictionary Learning

pure signal reconstruction, such as classification, (Grosse et al., 2007; Raina et al., 2007;
Kavukcuoglu et al., 2009; Yang et al., 2009; Wright et al., 2009a), but recent works have
shown that better results can be obtained when the dictionary is tuned to the specific
task (and not just data) it is intended for. Duarte-Carvajalino and Sapiro (2009) have for
instance proposed to learn dictionaries for compressed sensing, and Mairal et al. (2008a,
2009b) and Bradley and Bagnell (2009) have learned dictionaries for signal classification.
In this chapter, we will refer to this general approach as task-driven dictionary learning.

Whereas purely data-driven dictionary learning has been shown to be equivalent to
a large-scale matrix factorization problem that can be effectively addressed with several
methods (Olshausen and Field, 1997; Engan et al., 1999; Lewicki and Sejnowski, 2000;
Aharon et al., 2006; Lee et al., 2007; Mairal et al., 2010b), its task-driven counterpart has
proven to be much more difficult to optimize. Presenting a general efficient framework for
various task-driven dictionary learning problems is the main topic of this chapter. Even
though it is different from existing machine learning approaches, it shares similarities
with many of them.

For instance, Blei et al. (2003) have proposed to learn a latent topic model intended
for document classification, and in fact Bradley and Bagnell (2009); Jenatton et al.
(2010a) have shown that classical dictionary learning techniques could also be used to
model text documents. In a different context, Argyriou et al. (2008) have introduced
a convex formulation for multi-task classification problems where an orthogonal linear
transform of input features is jointly learned with a classifier. Learning compact features
has also been addressed in the literature of neural networks, with restricted Boltzmann
machines (RBM’s) and convolutional neural networks for example (see Lee et al., 2009;
Ranzato et al., 2007b,a; LeCun et al., 2006; Larochelle and Bengio, 2008, and references
therein). Interestingly, the question of learning the data representation in an unsuper-
vised or supervised way has also been investigated for these approaches. For instance,
Blei and McAuliffe (2008) have proposed a supervised topic model and tuning latent data
representations for minimizing a cost function is often achieved with backpropagation in
neural networks (LeCun et al., 1998b).

6.1.1 Contributions

This work makes three main contributions:

• It introduces a supervised formulation for learning dictionaries adapted to various
tasks instead of dictionaries only adapted to data reconstruction.

• It shows that the resulting optimization problem is smooth under mild assump-
tions, and empirically that stochastic gradient descent addresses it efficiently.

• It shows that the proposed formulation is well adapted to semi-supervised learn-
ing and can exploit unlabeled data when they admit sparse representations, and
leads to state-of-the-art results for various machine learning and signal processing
problems.

152

6.2. Related Work: Data-Driven Dictionary Learning

The rest of this chapter is organized as follows: Section 6.2 briefly recalls the classical
data-driven dictionary learning framework. Section 6.3 is devoted to our new task-
driven framework, and Section 6.4 to efficient algorithms addressing the corresponding
optimization problems. Section 6.5 presents several dictionary learning experiments for
signal classification, signal regression, and compressed sensing.

6.2 Related Work: Data-Driven Dictionary Learning

The classical dictionary learning framework having already been introduced in details
in the previous chapters, we just briefly recalls the formulation here to fix the notations.
Classical dictionary learning techniques for sparse coding (Olshausen and Field, 1997,
1996; Engan et al., 1999; Lewicki and Sejnowski, 2000; Aharon et al., 2006; Lee et al.,
2007) consider a finite training set of signals X = [x1, . . . ,xn] in R

m×n and minimize
the empirical cost function

fn(D) ,
1
n

n∑

i=1

ℓu(xi,D),

with respect to a dictionary D in R
m×p, each column representing a dictionary element.

Here ℓu is a loss function such that ℓu(x,D) should be small if D is “good” at representing
the signal x in a sparse fashion. As emphasized by the index u of ℓu, this optimization
problem is unsupervised. Note that, in this setting, overcomplete dictionaries with p >
m are allowed. As others (see Lee et al., 2007, for example), we define ℓu(x,D) as
the optimal value of a sparse coding problem. In this work, we choose the elastic-net
formulation of Zou and Hastie (2005):

ℓu(x,D) , min
α∈Rp

1
2
‖x−Dα‖22 + λ1‖α‖1 +

λ2

2
‖α‖22, (6.1)

where λ1 and λ2 are regularization parameters. When λ2 = 0, this leads to the ℓ1 sparse
decomposition problem, also known as basis pursuit (Chen et al., 1998), or Lasso (Tib-
shirani, 1996). Here, our choice of the elastic-net formulation over the Lasso is mainly
for stability reasons. Using a parameter λ2 > 0 makes the problem of Eq. (6.1) strongly
convex and, as shown later in this chapter, ensures its solution to be unique and Lips-
chitz with respect to x and D with a constant depending on λ2. Whereas the stability of
this solution is not necessarily an issue when learning a dictionary for a reconstruction
task, it can be important for other tasks, as shown in the experimental section.

To prevent the ℓ2-norm of D from being arbitrarily large, which would lead to ar-
bitrarily small values of α, it is common to constrain its columns d1, . . . ,dp to have ℓ2
norms less than or equal to one. We will call D the convex set of matrices satisfying this
constraint:

D , {D ∈ R
m×p s.t. ∀j ∈ {1, . . . , p}, ‖dj‖2 ≤ 1}. (6.2)

As pointed out by Bottou and Bousquet (2008), one is usually not interested in a perfect
minimization of the empirical cost fn(D), but instead in the minimization with respect

153

6. Task-Driven Dictionary Learning

to D of the expected cost

f(D) , Ex[ℓu(x,D)] = lim
n→∞ fn(D) a.s., (6.3)

where the expectation is taken relative to the (unknown) probability distribution p(x)
of the data, and is supposed to be finite (see more details in Chapter 2).1 In practice,
dictionary learning problems often involve a large amount of data. For instance when
the vectors x represent image patches, n can be up to several millions in a single image.
In this context, online learning techniques have shown to be very efficient for obtaining a
stationary point of this optimization problem (Mairal et al., 2010b). Our method exploits
this stochastic setting as well, by proposing to minimize an expected cost corresponding
to a supervised dictionary learning formulation, which we now present.

6.3 Proposed Formulation

We introduce in this section a general framework for learning dictionaries adapted to
specific supervised tasks, e.g., classification, as opposed to the unsupervised formulation
of the previous section, and present different extensions along with possible applications.
We call this approach task-driven dictionary learning.

6.3.1 Basic Formulation

Obtaining a good performance in classification tasks is often related to the problem of
finding a good data representation (for instance finding a feature space where classes of
signals are linearly separable). Sparse decompositions obtained with data-driven learned
dictionaries have been used for that purpose by Grosse et al. (2007) and Raina et al.
(2007), showing promising results for audio data and natural images. We present in this
section a formulation for learning a dictionary in a supervised way for prediction tasks
(regression or classification).

Concretely, given a learned dictionary D, a vector x in X ⊆ R
m can be represented

as α⋆(x,D), where

α⋆(x,D) , arg min
α∈Rp

1
2
‖x−Dα‖22 + λ1‖α‖1 +

λ2

2
‖α‖22, (6.4)

is the elastic-net solution (Zou and Hastie, 2005).
Now suppose that we are interested in predicting a variable y in Y from an observa-

tion x, where Y is either a finite set of labels for classification tasks, or a subset of R
q for

some integer q for regression tasks. After learning D with the unsupervised formulation
of Eq. (6.3), and using α⋆(x,D) as features for predicting the variable y, we can learn
model parameters W by solving the following optimization problem

min
W∈W

f(W) +
ν

2
‖W‖2F, (6.5)

1We use “a.s.” (almost sure) to denote convergence with probability one.

154

6.3. Proposed Formulation

where W is a convex set, ν is a regularization parameter, and f is defined as

f(W) , Ey,x[ℓs
(
y,W,α⋆(x,D)

)
], (6.6)

where ℓs is a convex loss function, the index s of ℓs indicating that the loss is adapted
to a supervised learning problem. The expectation is taken with respect to the unknown
probability distribution p(y,x) of the data. Depending on the setting (classification
or regression), several loss functions can be used such as square, logistic, or hinge loss
from support vector machines (see Shawe-Taylor and Cristianini, 2004, and references
therein), possibly with a particular kernel as done by Raina et al. (2007). Note that
we do not specifiy yet the size of the matrix W since it will depend on the chosen
application, as illustrated later in this chapter.

The formulation of Eq. (6.5) exploits features α⋆(x,D), where D is learned with
the unsupervised formulation from Section 6.2. However, Mairal et al. (2009b) and
Bradley and Bagnell (2009) have shown that better results can be achieved when the
dictionary is obtained in a fully supervised setting, tuned for the prediction task. We
now introduce the task-driven dictionary learning formulation, that consists of jointly
learning W and D by solving

min
D∈D,W∈W

f(D,W) +
ν

2
‖W‖2F, (6.7)

where D is a set of constraints defined in Eq. (6.2), and f has the form

f(D,W) , Ey,x[ℓs
(
y,W,α⋆(x,D)

)
]. (6.8)

The main difficulty of this optimization problem comes from the non-differentiability
of α⋆, which is the solution of a nonsmooth optimization problem (6.4). Bradley and
Bagnell (2009) have tackled this difficulty by introducing a smooth approximation of
the sparse regularization which leads to smooth solutions, allowing the use of implicit
differentiation to compute the gradient of the cost function they have considered. This
approximation encourages some coefficients in α⋆ to be small, and does not produce true
zeros. It can be used when “true” sparsity is not required. In a different formulation,
Mairal et al. (2009b) have used nonsmooth sparse regularization, but used heuristics
to tackle the optimization problem. We show in Section 6.4 that better optimization
tools than these heuristics can be used, while keeping a nonsmooth regularization for
computing α⋆.

Small variants of this formulation can also be considered: Non-negativity constraints
may be added on α⋆ and D, leading to a supervised version of nonnegative matrix
factorization (Lee and Seung, 2001), regularized with a sparsity-inducing penalty (Hoyer,
2004). ℓs could also be a function of D and x instead of just y,W,α⋆. For simplicity,
we have omitted these possibilities, but the formulations and algorithms we present in
this work can be easily extended to these cases.

Before presenting extensions and applications of the formulation we have introduced,
let us first discuss the assumptions under which our analysis will hold.

155

6. Task-Driven Dictionary Learning

Assumptions

From now on, we suppose that:

(A) The data (y,x) admits a probability density p with a compact support KY×KX ⊆
Y × X . This is a reasonable assumption in audio, image, and video processing
applications, where it is imposed by the data acquisition process, where values
returned by sensors are bounded. To simplify the notations later in the chapter,
we suppose from now on that X and Y are compact.2

(B) When Y is a subset of a finite-dimensional real vector space, p is continuous and ℓs
is twice continuously differentiable.

(C) When Y is a finite set of labels, for all y in Y, p(y, .) is continuous and ℓs(y, .) is
twice continuously differentiable.3

Assumptions (B) and (C) allow us to use several loss functions such as the square,
logistic, or softmax losses.

6.3.2 Extensions

We now present two extensions of the previous formulations. The first one includes
a linear transform of the input data, and the second one exploits unlabeled data in a
semi-supervised setting.

Learning a Linear Transform of the Input Data

In this section, we add to our basic formulation a linear transform of the input features,
represented by a matrix Z. Our motivation for this is twofold: It can be appealing to
reduce the dimension of the feature space via such a linear transform, and/or it can
make the model richer by increasing the numbers of free parameters. The resulting
formulation is the following:

min
D∈D,W∈W,Z∈Z

f(D,W,Z) +
ν1

2
‖W‖2F +

ν2

2
‖Z‖2F, (6.9)

where ν1 and ν2 are two regularization parameters, Z is a convex set and

f(D,W,Z) , Ey,x[ℓs
(
y,W,α⋆(Zx,D)

)
]. (6.10)

It is worth noticing that the formulations of Eq. (6.7) and Eq. (6.9) can also be extended
to the case of a cost function depending on several dictionaries involving several sparse
coding problems, such as the one used by Mairal et al. (2008a) for signal classification.
Such a formulation is not developed here for simplicity reasons, but algorithms to address
it can be easily derived from this chapter.

2Even though images are acquired in practice after a quantization process, it is a common assumption
in image processing to consider pixel values in a continuous space.

3For a given value of y and function g, g(y, .) denotes the function which associates to a vector x
the value g(y,x).

156

6.3. Proposed Formulation

Semi-supervised Learning

As shown by Raina et al. (2007), sparse coding techniques can be effective for learning
good features from unlabeled data. The extension of our task-driven formulation to the
semi-supervised learning setting is quite natural and takes the form

min
D∈D,W∈W

(1− µ)Ey,x[ℓs
(
y,W,α⋆(x,D)

)
] + µEx[ℓu(x,D)] +

ν

2
‖W‖2F, (6.11)

where the second expectation is taken with respect to the marginal distribution of x.
The function ℓu is the loss function defined in Eq. (6.1), and µ in [0, 1] is a new param-
eter for controlling the trade-off between the unsupervised learning cost function and
the supervised learning one. As shown in the experimental section, this parameter is
important for classification experiments when only a few labeled training samples are
available. Note that this formulation is also compatible with the one of Eq. (6.9).

6.3.3 Applications

For illustration purposes, we present four possible applications of our task-driven dictio-
nary learning formulations. Our approach is of course not limited to these examples.

Regression

In this setting, Y is a subset of a q-dimensional real vector space, and the task is to pre-
dict variables y in Y from the observation of vectors x in X . A typical application is for
instance the restoration of clean signals y from observed corrupted signals x. Classical
signal restoration techniques often focus on removing additive noise or solving inverse
linear problems (Daubechies et al., 2004). When the corruption results from an unknown
nonlinear transformation, we formulate the restoration task as a general regression prob-
lem. This is the case for example in the experiment presented in Section 6.5.3.

We define the task-driven dictionary learning formulation for regression as follows:

min
W∈W,D∈D

Ey,x

[1
2
‖y−Wα⋆(x,D)‖22

]

+
ν

2
‖W‖2F. (6.12)

At test time, when a new signal x is observed, the estimate of the corresponding vari-
able y provided by this model is Wα⋆(x,D) (plus possibly an intercept which we have
omitted here for simplicity reasons). Note that we here propose to use the square loss for
estimating the difference between y and its estimate Wα⋆(x,D), but any other twice
differentiable loss can be used.

Binary Classification

In this section and in the next one, we propose to learn dictionaries adapted to classifi-
cation tasks. Our approach follows the formulation presented by Mairal et al. (2009b),
but is slightly different and falls into our task-driven dictionary learning framework. In
this setting, the set Y is equal to {−1; +1}. Given a vector x, we want to learn the

157

6. Task-Driven Dictionary Learning

parameters w in R
p of a linear model to predict y in Y, using the sparse representation

α⋆(x,D) as features, and jointly optimize D and w. For instance, using the logistic
regression loss, our formulation becomes

min
w∈Rp,D∈D

Ey,x

[

log
(
1 + e−yw

⊤α⋆(x,D))
]

+
ν

2
‖w‖22, (6.13)

Once D and w have been learned, a new signal x is classified according to the sign
of w⊤α⋆(x,D). For simplicity reasons, we have omitted the intercept in the linear
model, but it can easily be included in the formulation. Note that instead of the logistic
regression loss, any other twice differentiable loss can be used as well.

As suggested by Mairal et al. (2009b), it is possible to extend this approach with a
bilinear model by learning a matrix W so that a new vector x is classified according to
the sign of x⊤Wα⋆(x,D). In this setting, our formulation becomes

min
W∈Rm×p,D∈D

Ey,x

[

log
(
1 + e−yx

⊤Wα⋆(x,D))
]

+
ν

2
‖W‖2F. (6.14)

This bilinear model requires learning pm parameters as opposed to the p parameters
of the linear one. It is therefore richer and can sometimes offer a better classification
performance when the linear model is not rich enough to explain the data, but it might
be more subject to overfitting.

Note that we have naturally presented the binary classification task using the logis-
tic regression loss, but as we have experimentally observed, the square loss is also an
appropriate choice in many situations.

Multi-class Classification

When Y is a finite set of labels in {1, . . . , q} with q > 2, extending the previous formu-
lation to the multi-class setting can be done in several ways, which we briefly describe
here. The simplest possibility is to use a set of binary classifiers presented in Eq. (6.13)
in a “one-vs-all” or “one-vs-one” scheme. Another possibility is to use a multi-class cost
function such as the soft-max function, to find linear predictors wk, k in {1, . . . , q} such
that for a vector x in X , the quantities w⊤y α

⋆(x,D) are encouraged to be greater than
w⊤k α

⋆(x,D) for all k 6= y.
Another possibility is to turn the multi-class classification problem into a regression

one and consider that Y is a set of q binary vectors of dimension q such that the k−th
vector has 1 on its k-th coordinate, and 0 elsewhere. This allows using the regression
formulation of Eq. (6.12) to solve the classification problem.

Learning Compressed sensing

Let us consider a signal x in R
m, the theory of compressed sensing (Candes, 2006;

Donoho, 2006) tells us that under certain assumptions, the vector x can be recovered
exactly from a few measurements Zx, where Z in R

r×m is called a “sensing” matrix
with r ≪ m. Unlike classical signal processing methods, such a linear transformation is

158

6.3. Proposed Formulation

sometimes physically included in the data acquisition process itself (Duarte et al., 2008),
meaning that a sensor can provide measurements Zx without directly measuring x at
any moment.

In a nutshell, the recovery of x has been proven to be possible when x admits a
sparse representation on a dictionary D, and the sensing matrix Z is incoherent with D,
meaning that the rows of Z are sufficiently uncorrelated with the columns of D (see Can-
des, 2006; Donoho, 2006 for more details).4 To ensure this condition to be satisfied, Z is
often chosen to be a random matrix, which is incoherent with any dictionary with high
probability.

The choice of a random matrix is appealing for many reasons. In addition to the
fact that it provides theoretical guarantees of incoherence, it is well suited to the case
where it impossible to store a deterministic matrix Z into memory (when m is large for
instance), whereas it is sufficient to store the seed of a random process to generate a
random matrix. On the other hand, large signals can often be cut into smaller parts
that still admit sparse decompositions, e.g., image patches, which can be treated inde-
pendently with a deterministic smaller matrix Z. When this is the case or when m has
a reasonable size, the question of whether to use a deterministic matrix Z or a random
one arises, and it has been empirically observed that learned matrices Z can outper-
form classical random projections: For example, Weiss et al. (2007) have shown that
dimensionality reduction techniques such as principal component analysis (PCA) or in-
dependent component analysis (ICA) could do better than random projections in noisy
settings, and Duarte-Carvajalino and Sapiro (2009) have shown that jointly learning
sensing matrices and dictionaries can do even better in certain cases. Seeger (2008) has
also proposed a bayesian framework for learning sensing matrices in compressed sensing
applications.

Following the latter authors, we study the case where Z is not random but learned
at the same time as the dictionary, and introduce a formulation which falls into out
task-driven dictionary learning framework:

min
D∈D,W∈Rm×p,Z∈Rr×m

Ey,x

[1
2
‖y−Wα⋆(Zx,D)‖22

]

+
ν1

2
‖W‖2F +

ν2

2
‖Z‖2F, (6.15)

where we learn D, W and Z so that the variable y should be well reconstructed when
encoding the “sensed” signal Zx with a dictionary D. In a noiseless setting, y is naturally
set to the same value as x. In a noisy setting, it can be a corrupted version of x.

After having presented our general task-driven dictionary learning formulation, we
present next a strategy to address the corresponding nonconvex optimization problem.

4The assumption of “incoherence” between D and Z can be replaced with a different but related
hypothesis called restricted isometry property. Again the reader should refer to (Candes, 2006; Donoho,
2006) for more details.

159

6. Task-Driven Dictionary Learning

6.4 Optimization

We first show that the cost function f of our basic formulation (6.7) is differentiable and
compute its gradient. Then, we refine the analysis for the different variations presented
in the previous section, and describe an efficient online learning algorithm to address
them.

6.4.1 Differentiability of f

We analyse the differentiability of f as defined in Eq. (6.7) with respect to its two
arguments D and W. We consider here the case where Y is a compact subset of a
finite dimensional real vector space, but all formulas and proofs are similar when Y is a
finite set of labels. The purpose of this section is to show that even though the sparse
coefficients α⋆ are obtained by solving a non-differentiable optimization problem, f is
differentiable on W ×D, and one can compute its gradient.

The main argument in the proof of Propositions 12 and 13 below is that, although
the function α⋆(x,D) is not differentiable, it is uniform Lipschitz continuous, and differ-
entiable almost everywhere. The only points where α⋆ is not differentiable correspond
to points where the set of nonzero coefficients of α⋆, which we always denote by Λ in
this chapter, change. Considering optimality conditions of the elastic-net formulation of
Eq. (6.1), these points are easy to characterize:

Lemma 12 (Optimality conditions of the elastic net)
α⋆ is a solution of Eq. (6.4) if and only if for all j in {1, . . . , p},

dj⊤(x−Dα⋆)− λ2αj = λ1 sign(α⋆j) if α⋆j 6= 0,

|dj⊤(x−Dα⋆)− λ2α
⋆
j | ≤ λ1 otherwise.

(6.16)

Denoting by Λ , {j ∈ {1, . . . , p} s.t. α⋆j 6= 0} the active set, we also have

α⋆Λ = (D⊤ΛDΛ + λ2I)−1(D⊤Λx− λ1sΛ), (6.17)

where sΛ in {−1; +1}|Λ| carries the signs of α⋆Λ.

The proof of this lemmas directly comes from the optimality conditions we have
presented in Section 1.4.1. The next proposition exploits these optimality conditions to
characterize the regularity of α⋆.

Proposition 11 (Regularity of the elastic net solution)
Assume λ2 > 0 and (A). Then,

1. The function α⋆ is uniformly Lipschitz on X ×D.

2. Let D be in D, ε be a positive scalar and s be a vector in {−1, 0,+1}p, and
define Ks(D, ε) ⊆ X as: x is in Ks(D, ε) if and only if

∀j ∈ {1, . . . , p},
{

|dj⊤(x−Dα⋆)− λ2α
⋆
j | ≤ λ1 − ε if sj = 0,

sjα
⋆
j ≥ ε if sj 6= 0.

(6.18)

160

6.4. Optimization

where α⋆ is shorthand for α⋆(x,D).

Then, there exists κ > 0 independent of s, D and ε so that for all x in Ks(D, ε),
the function α⋆ is twice continuously differentiable on Bκε(x) × Bκε(D), where
Bκε(x) and Bκε(D) denote the open balls of radius κε respectively centered on x

and D.

With these results in hand, we then show that f admits a first-order Taylor expansion
meaning that it is differentiable. Indeed, the sets where α⋆ is not differentiable being
negligible in the expectation from the definition of f in Eq. (6.8). We can now state our
main result:

Proposition 12 (Differentiability and gradients of f)
Assume λ2 > 0, (A), (B) and (C). Then, the function f defined in Eq. (6.7) is differ-
entiable, and

{∇Wf(D,W) = Ey,x[∇Wℓs(y,W,α⋆)],

∇Df(D,W) = Ey,x[−Dβ⋆α⋆⊤ + (x−Dα⋆)β⋆⊤],
(6.19)

where α⋆ is short for α⋆(x,D), and β⋆ is a vector in R
p that depends on y,x,W,D

with
β⋆ΛC = 0 and β⋆Λ = (D⊤ΛDΛ + λ2I)−1∇αΛ

ℓs(y,W,α⋆), (6.20)

where Λ denotes the indices of the nonzero coefficients of α⋆(x,D).

The proof of this proposition is given in Appendix B. We have shown that the
function defined in Eq. (6.7) is smooth, and computed its gradients. The same can be
done for the more general formulation defined by Eq. (6.10):

Proposition 13 (Differentiability and gradients for the extended formulation)
Assume λ2 > 0, (A), (B) and (C). Then, the function f defined in Eq. (6.10) is
differentiable. The gradients of f are







∇Wf(D,W,Z) = Ey,x[∇Wℓs(y,W,α⋆)],

∇Df(D,W,Z) = Ey,x[−Dβ⋆α⋆⊤ + (Zx−Dα⋆)β⋆⊤],

∇Zf(D,W,Z) = Ey,x[Dβ⋆x⊤],

(6.21)

where α⋆ is short for α⋆(Zx,D), and β⋆ is defined in Eq. (6.20).

The proof is similar to the one of Proposition 12 in Appendix B, and uses similar
arguments.

6.4.2 Algorithm

Stochastic gradient descent algorithms are typically designed to minimize functions
whose gradients have the form of an expectation as in Eq. (6.19). They have been
shown to converge to stationary points of (possibly nonconvex) optimization problems
under a few assumptions that are a bit stricter than the ones satisfied in this chapter (see

161

6. Task-Driven Dictionary Learning

Bottou and Bousquet, 2008, and references therein).5 As we have noted in Chapter 2,
these algorithms are generally well suited to unsupervised dictionary learning when their
learning rate is well tuned.

The method we propose here is a projected first-order stochastic gradient algo-
rithm (see Kushner and Yin, 2003), and it is given in Algorithm 8. It sequentially
draws i.i.d samples (yt,xt) from the probability distribution p(y,x). Obtaining such
i.i.d. samples may be difficult since the density p(y,x) is unknown. At first approxima-
tion, the vectors (yt,xt) are obtained in practice by cycling over a randomly permuted
training set, which is often done in similar machine learning settings (Bottou, 1998).

Algorithm 8 Stochastic gradient descent algorithm for task-driven dictionary learning.
Require: p(y,x) (a way to draw i.i.d samples of p), λ1, λ2, ν ∈ R (regularization pa-

rameters), D ∈ D (initial dictionary), W ∈ W (initial parameters), T (number of
iterations), t0, ρ (learning rate parameters).

1: for t = 1 to T do
2: Draw (yt,xt) from p(y,x).
3: Sparse coding: compute α⋆ using a modified LARS (Efron et al., 2004).

α⋆ ← arg min
α∈Rp

1
2
‖xt −Dα‖22 + λ1‖α‖1 +

λ2

2
‖α‖22.

4: Compute the active set: Λ← {j ∈ {1, . . . , p} : α⋆j 6= 0}.
5: Compute β⋆:

β⋆ΛC = 0 and β⋆Λ = (D⊤ΛDΛ + λ2I)−1∇αΛ
ℓs(yt,W,α⋆).

6: Choose the learning rate ρt ← min
(
ρ, ρ t0t

)
.

7: Update the parameters by a projected gradient step

W← ΠW
[

W− ρt
(∇Wℓs(yt,W,α⋆) + νW

)]

,

D← ΠD
[

D− ρt
(−Dβ⋆α⋆⊤ + (xt −Dα⋆)β⋆⊤

)]

,

where ΠW and ΠD are respectively orthogonal projections on the sets W and D.
8: end for
9: return D (learned dictionary).

At each iteration, the sparse code α⋆(xt,D) is computed by solving the elastic-net
formulation of Zou and Hastie (2005). We have chosen to use the LARS algorithm,

5As often done in machine learning, we use stochastic gradient descent in a setting where it is
not guaranteed to converge in theory, but is has proven to behave well in practice, as shown in our
experiments. The convergence proof of Bottou and Bousquet (2008) for non-convex problems indeed
assumes three times differentiable cost functions.

162

6.4. Optimization

a homotopy method (Osborne et al., 2000b; Efron et al., 2004), which was originally
developed to solve the Lasso formulation—that is, λ2 = 0, but which can be modified to
solve the elastic-net problem. Interestingly, it admits an efficient implementation that
provides a Cholesky decomposition of the matrix (D⊤ΛDΛ+λ2I)−1 (see Efron et al., 2004;
Zou and Hastie, 2005) as well as the solution α⋆. In this setting, β⋆ can be obtained
without having to solve from scratch a new linear system.

The learning rate ρt is chosen according to a heuristic rule. Several strategies have
been presented in the literature (see LeCun et al., 1998b; Murata, 1999, and references
therein). A classical setting uses a learning rate of the form ρ/t, where ρ is a constant.6

However, such a learning rate is known to decrease too quickly in many practical cases,
and one sometimes prefers a learning rate of the form ρ/(t+t0), which requires tuning two
parameters. In this chapter, we have chosen a learning rate of the form min(ρ, ρt0/t)—
that is, a constant learning rate ρ during t0 iterations, and a 1/t annealing strategy
when t > t0, a strategy used by Murata (1999) for instance. Finding good parameters ρ
and t0 also requires in practice a good heuristic. The one we have used successfully in
all our experiments is t0 = T/10, where T is the total number of iterations. Then, we
try several values of ρ during a few hundreds of iterations and keep the one that gives
the lowest error on a small validation set.

In practice, one can also improve the convergence speed of our algorithm with a
mini-batch strategy—that is, by drawing η > 1 samples at each iteration instead of a
single one. This is a classical heuristic in stochastic gradient descent algorithms and, in
our case, this is further motivated by the fact that solving η elastic-net problems with
the same dictionary D can be accelerated by the precomputation of the matrix D⊤D

when η is large enough. Such a strategy is also used by Mairal et al. (2010b) for the
classical data-driven dictionary learning approach. In practice, we use the value η = 200
in all our experiments (a value found to be good for the unsupervised setting as well).

As many algorithms tackling non-convex optimization problems, our method for
learning supervised dictionaries can lead to poor results if is not well initialized. The
classical unsupervised approach of dictionary learning presented in Eq. (6.3) has been
found empirically to be better behaved than the supervised one, and easy to initial-
ize (Mairal et al., 2010b). We therefore have chosen to initialize our dictionary D by
addressing the unsupervised formulation of Eq. (6.3) using the SPAMS toolbox (Mairal
et al., 2010b).7 With this initial dictionary D in hand, we optimize with respect to W

the cost function of Eq (6.5), which is convex. This procedure gives us a pair (D,W) of
parameters which are used to initialize Algorithm 8.

6.4.3 Extensions

We here present the slight modifications to Algorithm 8 necessary to address the two
extensions discussed in Section 6.3.2.

6A O(1/t) asymptotic learning rate is usually used for proving the convergence of stochastic gradient
descent algorithms (Bottou and Bousquet, 2008).

7http://www.di.ens.fr/willow/SPAMS/

163

http://www.di.ens.fr/willow/SPAMS/

6. Task-Driven Dictionary Learning

The last step of Algorithm 8 updates the parameters D and W according to the
gradients presented in Eq. (6.21). Modifying the algorithm to address the formulation
of Eq. (6.13) also requires updating the parameters Z according to the gradient from
Proposition 13:

Z← ΠZ
[

Z− ρt(Dβ⋆x⊤ + ν2Z)
]

,

where ΠZ denotes the orthogonal projection on the set Z.
The extension to the semi-supervised formulation of Eq. (6.11) assumes that one can

draw samples from the marginal distribution p(x). This is done in practice by cycling
over a randomly permuted set of unlabeled vectors. Extending Algorithm 8 to this setting
requires the following modifications: At every iteration, we draw one pair (yt,xt) from
p(y,x) and one sample x′t from p(x). We proceed exactly as in Algorithm 8, except
that we also compute α⋆′ , α⋆(x′t,D), and replace the update of the dictionary D by

D← ΠD
[

D− ρt
(

(1− µ)
(−Dβ⋆α⋆⊤ + (xt −Dα⋆)β⋆⊤

)
+ µ

(− (x′t −Dα⋆′)α⋆′⊤
))]

,

where the term−(x′t−Dα⋆′)α⋆′⊤ is in fact the gradient∇Dℓu(x′t,D) as shown in (Mairal
et al., 2010b, Proposition 1).

6.5 Experimental Validation

Before presenting our experiments, we briefly discuss the important question of choosing
the parameters of our approach.

6.5.1 Choosing the Parameters

Performing cross-validation on the parameters λ1, λ2 (elastic-net parameters), ν (regu-
larization parameter) and p (size of the dictionary) would of course be cumbersome, and
we use a few simple heuristics to either reduce the search space for these parameters or
fix arbitrarily some of them. We have proceeded in the following way:

• Since we want to exploit sparsity, we often set λ2 to 0, even though λ2 > 0
is necessary in our analysis for proving the differentiability of our cost function.
This has proven to give satisfactory results in most experiments, except for the
experiment of Section 6.5.5, where choosing a small positive value for λ2 was
necessary for our algorithm to converge.

• We have empirically observed that natural image patches (that are preprocessed
to have zero-mean and unit ℓ2-norm) are usually well reconstructed with values
of λ1 around 0.15 (a value used by Mairal et al. (2009b) for instance), and that
one only needs to test a few different values, for instance λ1 = 0.15 + 0.025k, with
k ∈ {−3, . . . , 3}.

• When there is a lot of training data, which is often the case for natural image
patches, the regularization with ν becomes unnecessary and this parameter can

164

6.5. Experimental Validation

arbitrarily set to a small value, e.g., ν = 10−9 for normalized input data. When
there are not many training points, this parameter is set up by cross-validation.

• We have also observed that a larger dictionary usually means a better performance,
but a higher computational cost. Setting the size of the dictionary is therefore often
a trade-off between results quality and efficiency. In our experiments, we often try
the values p in {50, 100, 200, 400}.

We show in this section several applications of our method to real problems, starting
with handwritten digits classification, then moving to the restoration of images that
are damaged by an unknown nonlinear transformation, digital art authentification, and
compressed sensing.

6.5.2 Handwritten Digits Classification

We choose in this section a discriminative task that consists of classifying digits from
the MNIST (LeCun et al., 1998a) and USPS (LeCun et al., 1990) handwritten datasets.
MNIST is made of 70 000 28× 28 images, 60 000 for training, 10 000 for testing, each of
them containing one handwritten digit. USPS is composed of 7291 training images and
2007 test images of size 16× 16.

We choose to address this multiclass classification problem with a one-vs-all strategy,
learning independently 10 dictionaries and classifiers per class, using the formulation of
Eq. (6.13). This approach has proven in our case to be more scalable than learning a
single large dictionary with a multi-class loss, while providing very good results. We
use the Lasso formulation for encoding the digits—that is, we set λ2 = 0. All the digits
are preprocessed to have zero-mean and are normalized to have unit ℓ2-norm. We try
the parameters λ1 = 0.15 + 0.025k, with k ∈ {−3, . . . , 3}, for the reasons mentioned in
the previous section, and ν in {10−1, . . . , 10−6}. For choosing the parameters, we use
for MNIST the last 10 000 digits of the training set for validation, and train on the first
50 000 ones. For USPS, we proceed in a similar way, keeping 10% of the training set for
validation. Note that a full cross-validation scheme may give better results, but it would
be computationally more expensive.

Most effective digit recognition techniques in the literature use features with shift
invariance properties (Haasdonk and Keysers, 2002; Ranzato et al., 2007a). Since our
formulation is less sophisticated than for instance the convolutional network architecture
of Ranzato et al. (2007a) and does not enjoy such properties, we have chosen to artificially
augment the size of our training set by considering versions of the digits that are shifted
by one pixel in every direction. This is of course not an optimal way of introducing shift
invariance in our framework, but it is fairly simple.

After choosing the parameters using the validation set (and of course none of the
testing set), we retrain our model on the full training set. Each experiment is performed
with 40 000 iterations of our algorithm with a mini-batch of size 200. To study the
influence of the dictionary size, we report on Table 6.1 the performance on the test set
achieved for different dictionary sizes, with p in {50, 100, 200, 300} for the two datasets.

165

6. Task-Driven Dictionary Learning

D unsupervised supervised
p 50 100 200 300 50 100 200 300

MNIST 5.27 3.92 2.95 2.36 .96 .73 .57 .54
USPS 8.02 6.03 5.13 4.58 3.64 3.09 2.88 2.84

Table 6.1: Test error in percent of our method for the digit recognition task for different
dictionary sizes p.

We observe that learning D in a supervised way significantly improves the performance of
the classification. Moreover our method achieves state-of-the-art results on MNIST with
a 0.54% error rate, which is similar to the 0.60% error rate of Ranzato et al. (2007a).8

Our 2.84% error rate on USPS is slightly behind the 2.4% error rate of Haasdonk and
Keysers (2002).

Our second experiment follows Ranzato et al. (2007a), where only a small percentage
of the training samples are actually labelled. We use the semi-supervised formulation
of Eq. (6.11) which exploits unlabeled data. Unlike the first experiment where the
parameters are chosen using a validation set, and following Ranzato et al. (2007a),
we make a few arbitrary choices. Indeed, we use p = 300, λ1 = 0.075, λ2 = 0 and
ν = 10−5, which were the parameters chosen by the validation procedure in the previous
experiment. The dictionaries associated with each digit class are initialized using the
unsupervised formulation of Section 6.2. To measure the performance of our algorithm
for different values of µ, we use a continuation strategy: Starting with µ = 1.0, we
sequentially decrease its value by 0.1 until we have µ = 0, learning with 10 000 iterations
for each new value of µ. We report the corresponding error rates in Figure 6.1, showing
that our approach offers a competitive performance similar to Ranzato et al. (2007a).
Indeed, the best error rates of our method for n = 300, 1000, 5000 unlabeled data are
respectively 5.81, 3.55 and 1.81%, which is similar to Ranzato et al. (2007a) who has
reported 7.18, 3.21 and 1.52% with the same sets of labeled data.

6.5.3 Learning a Nonlinear Image Mapping

To illustrate our method in the context of regression, we consider a classical image pro-
cessing task called “inverse halftoning”. With the development of several binary display
technologies in the 70s (including, for example, printers and PC screens), the problem of
converting a grayscale continuous-tone image into a binary one that looks perceptually
similar to the original one (“halftoning”) was posed to the image processing community.
Examples of halftoned images obtained with the classical algorithm of Floyd and Stein-
berg (1976) are presented in the second column of Figure 6.2, with original images in the
first column. Restoring these binary images to continuous-tone ones (“inverse halfton-
ing”) has become a classical problem (see Dabov et al., 2006, and references therein).

8It is also shown by Ranzato et al. (2007a) that better results can be achieved by considering
deformations of the training set.

166

6.5. Experimental Validation

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0

0.02

0.04

0.06

0.08

0.1

0.12

Digit recognition with unlabeled data

µ

E
rr

o
r

ra
te

n=300

n=1000
n=5000

Figure 6.1: Error rates on MNIST when using n labeled data, for various values of µ.

Unlike most image processing approaches that address this second problem by ex-
plicitly modeling the halftoning process, we formulate it as a signal regression problem,
without exploiting any prior on the task. We use a database of 36 images; 24 are high-
quality images from the Kodak PhotoCD dataset9 and are used for training, and 12
are classical images often used for evaluating image processing algorithms, which can
be found in Chapter 1; the first four (house, peppers, cameraman, lena) are used for
validation and the remaining eight for testing.

We apply the Floyd-Steinberg algorithm implemented in the LASIP Matlab toolbox10

to the grayscale continuous-tone images in order to build our training / validation /
testing set. We extract all pairs of patches from the original/halftoned images in the
training set, which provides us with a database of approximately 9 millions of patches.
We then use the “signal regression” formulation of Eq. (6.12) to learn a dictionary D

and model parameters W, by performing two passes of our algorithm over the 9 million
training pairs.

At this point, we have learned how to restore a small patch from an image, but
not yet how to restore a full image. Following other patch-based approaches to image
restoration (Elad and Aharon, 2006), we extract from a test image all patches including
overlaps, and restore each patch independently so that we get different estimates for
each pixel (one estimate for each patch the pixel belongs to). The estimates are then
averaged to reconstruct the full image. Estimating each patch independently and then
averaging the estimates is of course not optimal, but it gives very good results in many
image restoration tasks (see Elad and Aharon, 2006; Mairal et al., 2009c, and references
therein). The final image is then post-processed using the denoising algorithm of Mairal
et al. (2009c) to remove possible artefacts.

To evaluate our method qualitatively, we measure how well it reconstructs the conti-

9http://r0k.us/graphics/kodak/
10http://www.cs.tut.fi/~lasip/

167

http://r0k.us/graphics/kodak/
http://www.cs.tut.fi/~lasip/

6. Task-Driven Dictionary Learning

nuous-tone images of the test set from the halftoned ones. To reduce a bit the number of
hyperparameters of our model, we have made a few arbitrary choices: In this experiment,
the Lasso of Tibshirani (1996) is also preferred to the elastic-net formulation of Zou and
Hastie (2005), and λ2 is set to 0. Even though λ2 > 0 is necessary in our analysis,
λ2 = 0 has proven to give satisfactory results in this experiment (this is, however, not
true in general: For example, the experiments of Section 6.5.5 require λ2 > 0 for our
algorithm to converge). Thus, with millions of training samples, our model is unlikely
to overfit and the regularization parameter ν is set to 0 as well. The remaining free
parameters of our approach are the size m of the patches, the size p of the dictionary
and the regularization parameter λ1. We have optimized these parameters by measuring
the mean-squared error reconstruction on the validation set. We have tried patches of
size m = l × l, with l ∈ {6, 8, 10, 12, 14, 16}, dictionaries of sizes p = 100, 250 and 500 ,
and determined λ1 by first trying values on the logarithmic scale 10i, i = −3, . . . , 2, then
refining this parameter on the scale 0.1, 0.2, 0.3, . . . , 1.0. The best parameters found are
m = 10 × 10, p = 500 and λ1 = 0.6. Since the test procedure is slightly different from
the training one (the test includes an averaging step to restore a full image whereas the
training one does not), we have refined the value of λ1, trying different values one an
additive scale {0.4, 0.45, . . . , 0.75, 0.8}, and selected the value λ1 = 0.55, which has given
the best result on the validation set.

Note that the largest dictionary has been chosen, and better results could potentially
be obtained using an even larger dictionary, but this would imply a higher computational
cost. Examples of results are presented in Figure 6.2. Halftoned images are binary but
look perceptually similar to the original image. Reconstructed images have very few
artefacts and most details are well preserved. We report in Table 6.2 a quantitative
comparison between our approach and various ones from the literature, including the
state-of-the-art algorithm of (Dabov et al., 2006), which had until now the best results
on this dataset. Even though our method does not explicitly model the transformation,
it leads to better results in terms of PSNR.11 We also present in Figure 6.3 the results
obtained by applying our algorithm to various binary images found on the web, from
which we do not know the ground truth, and which have not necessarily been obtained
with the Floyd-Steinberg algorithm. The results are qualitatively rather good.

From this experiment, we conclude that our method is well suited to (at least, some)
nonlinear regression problems on natural images, paving the way to new applications of
sparse image coding.

6.5.4 Digital Art Identification

Recognizing authentic paintings from imitations using statistical techniques has been the
topic of a few recent works (Lyu et al., 2004; Johnson et al., 2008; Hugues et al., 2009).
Classical methods compare, for example, the kurtosis of wavelet coefficients between a

11Denoting by MSE the mean-squared-error for images whose intensities are between 0 and 255, the
PSNR is defined as PSNR = 10 log10(2552/MSE) and is measured in dB. A gain of 1dB reduces the
MSE by approximately 20%.

168

6.5. Experimental Validation

Figure 6.2: From left to right: Original images, halftoned images, reconstructed images.
The top image is lena, middle image is boat and bottom image is hill. Even though
the halftoned images (center column) perceptually look relatively close to the original
images (left column), they are binary. Reconstructed images (right column) are obtained
by restoring the halftoned binary images. Best viewed by zooming on a computer screen.

169

6. Task-Driven Dictionary Learning

Figure 6.3: Results obtained by our method on various binary images publicly available
on the Internet. No ground truth is available for these images from old computer games,
and the algorithm that has generated these images is unknown. Input images are on the
left. Restored images are on the right. Best viewed by zooming on a computer screen.

170

6.5. Experimental Validation

Image FIHT2 WInHD LPA-ICI SA-DCT Ours

Val.

house 30.8 31.2 31.4 32.4 33.0
peppers 25.3 26.9 27.7 28.6 29.6

cameraman 25.8 26.8 26.5 27.8 28.1
lena 31.4 31.9 32.5 33.0 33.0

Test

barbara 24.5 25.7 25.6 27.0 26.6
boat 28.6 29.2 29.7 30.1 30.2
hill 29.5 29.4 30.0 30.2 30.5

couple 28.2 28.7 29.2 29.8 29.9
man 29.3 29.4 30.1 30.3 30.4

fingerprint 26.0 28.1 28.3 28.5 29.0
bridge 25.2 25.6 26.0 26.2 26.2

flintstones 24.7 26.4 27.2 27.6 28.0

Table 6.2: Quantitative experiments for the inverse halftoning experiments. Results are
reported in PSNR (higher is better). SA-DCT refers to (Dabov et al., 2006), LPA-ICI to
(Foi et al., 2004), FIHT2 to (Kite et al., 2000) and WInHD to (Neelamani et al., 2009).
Best results for each image are in bold.

set of authentic paintings and imitations (Lyu et al., 2004), or involve more sophisticated
features (Johnson et al., 2008). Recently, Hugues et al. (2009) have considered a dataset
of 8 authentic paintings from Pieter Bruegel the Elder, and 5 imitations.12 They have
proposed to learn dictionaries for sparse coding, and use the kurtosis of the sparse
coefficients as discriminative features. We use their dataset, which they kindly provided
to us.

The supervised dictionary learning approach we have presented is designed for clas-
sifying relatively small signals, and should not be directly applicable to the classification
of large images, for which classical computer vision approaches based on bags of words
may be better adapted (see Yang et al., 2009; Boureau et al., 2010, for such approaches).
However, we show that, for this particular dataset, a simple voting scheme based on the
classification of small image patches with our method leads to good results.

The experiment we carry out consists of finding which painting is authentic, and
which one is fake, in a pair known to containt one of each.13 We proceed in a leave-one-
out fashion, where we remove for testing one authentic and one imitation paintings from
the dataset, and learn on the remaining ones. Since the dataset is small and does not
have an official training/test set, we measure a cross-validation score, testing all possible
pairs. We consider 12×12 color image patches, without any pre-processing, and classify
each patch from the test images independently. Then, we use a simple majority vote
among the test patches to decide which image is the authentic one in the pair test, and

12The origin of these paintings is assessed by art historians.
13This task is of course considerably easier than classifying each painting as authentic or fake. We do

not claim to propose a method that readily applies to forgery detection.

171

6. Task-Driven Dictionary Learning

which one is the imitation.14

For each pair of authentic/imitation paintings, we build a dataset containing 200 000
patches from the authentic images and 200 000 from the imitations. We use the formula-
tion from Eq. (6.13) for binary classification, and arbitrarily choose dictionaries contain-
ing p = 100 dictionary elements. Since the training set is large, we set the parameter ν
to 0, also choose the Lasso formulation for decomposing the patches by setting λ2 = 0,
and cross-validate on the parameter λ1, trying values on a grid {10−4, 10−3, . . . , 100},
and then refining the result on a grid with a logarithmic scale of 2. We also compare
Eq. (6.13) with the logistic regression loss and the basic formulation of Eq. (6.5) where D

is learned unsupervised.
For classifying individual patches, the cross-validation score of the supervised for-

mulation is a classification rate of 54.04 ± 2.26%, which slightly improves upon the
“unsupervised” one that achieves 51.94 ± 1.92%. The task of classifying independently
small image patches is difficult since there is significant overlap between the two classes.
On the other hand, finding the imitation in a pair of (authentic,imitation) paintings with
the voting scheme is easier and the “unsupervised formulation” only fails for one pair,
whereas the supervised one has always given the right answer in our experiments.

6.5.5 Compressed Sensing

In this experiment, we apply our method to the problem of learning dictionaries and pro-
jection matrices for compressed sensing. As explained in Section 6.3.3, our formulation
and the conclusions of this section hold for relatively small signals, where the sensing ma-
trix can be stored into memory and learned. Thus, we consider here small image patches
of natural images of size m = 10× 10 pixels. To build our training/validation/test set,
we have chosen the Pascal VOC 2006 database of natural images (Everingham et al.,
2006): Images 1 to 3000 are used for training; images 3001 to 4000 are used for valida-
tion, and the remaining 1304 images are kept for testing. Images are downsampled by a
factor 2 so that the JPEG compression artefacts present in this dataset become visually
imperceptible, thereby improving its quality for our experiment.

We compare different settings where the task is to reconstruct the patches y of size
m = 10× 10, from an observation Zx of size r ≪ m (for instance r = 20 linear measure-
ments), where Z in R

r×m is a sensing matrix. For simplicity reasons, we only consider
here the noiseless case, where y = x. At test time, as explained in Section (6.3.3), our
estimate of y is Wα⋆(Zx,D), where D in R

r×p is a dictionary for representing Zx,
and W in R

m×p can be interpreted here as a dictionary for representing y. We evaluate
several strategies for obtaining (Z,D,W):

• We consider the case, which we call RANDOM, where the entries of Z are i.i.d. sam-
ples of the Gaussian distribution N (0, 1/

√
m). Since the purpose of Z is to reduce

the dimensionality of the input data, it is also natural to consider the case where Z

14Note that this experimental setting is different from Hugues et al. (2009), who used only authentic
paintings for training (and not imitations). We therefore do not make quantitive comparison with this
work.

172

6.6. Conclusion

is obtained by principal component analysis on natural image patches (PCA). Fi-
nally, we also learn Z with the supervised learning formulation of Eq. (6.15), (SL),
but consider the case where it is initialized randomly (SL1) or by PCA (SL2).

• The matrix D can either be fixed or learned. A typical setting would be to set
D = ZD′, where D′ is discrete-cosine-transform matrix (DCT), often used in signal
processing applications (Elad and Aharon, 2006). It can also be learned with an
unsupervised learning formulation (UL), or a supervised one (SL).

• W is always learned in a supervised way.

Since our training set is very large (several millions of patches), we arbitrarily set the
regularization parameters ν1 and ν2 to 0. We measure reconstruction errors with dictio-
naries of various levels of overcompleteness by choosing a size p in {100, 200, 400}. The
remaining free parameters are the regularization parameters λ1 and λ2 for obtaining the
coefficients α⋆. We try the values λ1 = 10i, with i in {−5, . . . , 0}. Unlike what we
have done in the experiments of Section 6.5.3, it is absolutely necessary in this setting
to use λ2 > 0 (according to the theory), since using a zero value for this parameter
has led to instabilities and prevented our algorithm from converging. We have tried the
values λ2 = 10iλ1, with i in {−2,−1, 0}. Each learning procedure is performed by our
algorithm in one pass on 10 millions of patches randomly extracted from our training
images. The pair of parameters (λ1, λ2) that gives the lowest reconstruction error on the
validation set is selected, and we report in Table 6.3 the result obtained on a test set of
500 000 patches randomly extracted from the 1304 test images. The conclusions of this
compressed sensing experiment on natural image patches are the following:

• When Z is initialized as a Gaussian random matrix (case RANDOM), learning
D and Z significantly improves the reconstruction error (case SL1). A similar
observation was made by Duarte-Carvajalino and Sapiro (2009) with a different
formulation.

• Results obtained with PCA are in general much better than those obtained with
random projections, which is consistent with the conclusions of Weiss et al. (2007).

• However, PCA does better than SL1. When PCA is used for initializing our su-
pervised formulation, results can be slightly improved (case SL2). This illustrates
either the limits of the non-convex optimization procedure, or that PCA seem to
be particularly well adapted to this problem.

• Learned dictionaries (cases UL and SL) outperform classical DCT dictionaries.

6.6 Conclusion

We have presented in this chapter a general formulation for learning sparse data rep-
resentations tuned to specific tasks. Unlike classical approaches that learn a dictionary

173

6. Task-Driven Dictionary Learning

adapted to the reconstruction of the input data, our method learns features in a su-
pervised way. We have shown that this approach is effective for solving classification
and regression tasks in a large-scale setting, allowing the use of millions of training
samples, and is able of exploiting successfully unlabeled data, when only a few labeled
samples are available. Experiments on handwritten digits classification, non-linear in-
verse image mapping, digital art authentification, and compressed sensing have shown
that our method leads to state-of-the-art results for several real problems. Future work
will include adapting our method to various image processing problems such as image
deblurring and image super-resolution, and other inverse problems.

174

6.6. Conclusion

Z RANDOM SL1

D DCT UL SL SL

r = 5 77.3± 4.0 76.9± 4.0 76.7 ± 4.0 54.1± 1.3
r = 10 57.8± 1.5 56.5± 1.5 55.7 ± 1.4 36.5± 0.7
r = 20 37.1± 1.2 35.4± 1.0 34.5± 0.9 21.4± 0.1
r = 40 19.3± 0.8 18.5± 0.7 18.0± 0.6 10.0± 0.3

Z PCA SL2

D DCT UL SL SL

r = 5 49.9± 0.0 47.6± 0.0 47.5± 0.1 47.3± 0.3
r = 10 33.7 ± 0.0 32.3± 0.0 32.3± 0.1 31.9± 0.2
r = 20 20.4± 0.0 19.7 ± 0.0 19.6± 0.1 19.4± 0.2
r = 40 9.2± 0.0 9.1± 0.0 9.0± 0.0 9.0± 0.0

Table 6.3: Compressed sensing experiment on small natural image patches. The mean
squared error (MSE) measured on a test set is reported for each scenario, as well as
standard deviations, which are obtained by reproducing 5 times each experiment, ran-
domizing the algorithm initializations and the sampling of the training images. Each
patch is normalized to have unit ℓ2 norm, and the mean squared reconstruction error is
multiplied by 100 for readability purposes (such that a value of 100 corresponds to no
reconstruction of the signal). Here, r is the number of rows of the matrix Z and repre-
sents the dimension of the observations Zx. In the setting RANDOM, Z is a Gaussian
random matrix; in PCA, Z is obtained by principal component analysis on natural image
patches; in SL1, Z is learned with our supervised formulation but initialized with a Gaus-
sian random matrix; in SL2, Z is learned with the supervised formulation but initialized
with PCA. The settings DCT, UL, SL for D respectively correspond to a discrete-cosine-
transform, a dictionary learned in an unsupervised way, and a dictionary learned with
our supervised formulation.

175

7

Conclusion

We have addressed in this thesis several questions related to sparse problems and dic-
tionary learning, borrowing tools from several communities, including machine learning,
convex, stochastic and network flow optimization, signal and image processing, computer
vision and computer science.

First, we have introduced a new online algorithm for learning dictionaries and solving
various matrix factorization problems such as non negative matrix factorization, and
sparse principal component analysis. We have proven its convergence and demonstrated
experimentally that it is significantly faster than batch alternatives.

In our second contribution, we introduce optimization tools for solving sparse struc-
tured problems involving any (overlapping) groups of variables, which shed new light on
connections between sparse methods and the literature of network flow optimization. We
experimentally demonstrate that this method can be applied to a wide class of learning
problems, which have not been addressed efficiently before.

We then present image processing applications combining dictionary learning and
the idea that images admit self-similarities. By imposing that similar image patches
should admit similar sparsity patterns, we stabilize the decomposition of the patches
and improve the quality of recosntruction, leading to state-of-the-art results for image
denoising and image demosaicking.

Finally, unlike classical approaches learning dictionaries adapted to the reconstruc-
tion of input data, we present a method to learn dictionaries in a supervised way for
different prediction tasks. We apply this approach to classification and regression prob-
lems, such as digit recognition or nonlinear image inverse problems. We also apply this
idea to computer vision tasks, by learning local appearance models of objects, textures
and edges in images. We show that the performance of contour-based classifiers can sig-
nificantly be improved using the category-based edge detector which we have developed
based on this principle.

There are also other questions, which we are currently investigating and which have
not been presented in this thesis. The first one consists of adapting the task-driven
dictionary learning framework of Chapter 6, for image deblurring and super-resolution
from a single image. Preliminary results show that it significantly improves upon the
generative approach of Yang et al. (2010) and competes favorably for non-blind image
deblurring with state-of-the-art methods such as Foi et al. (2006); Dabov et al. (2008);

177

7. Conclusion

Guerrero-Colon et al. (2008). Another interesting question is how to extend the formu-
lation for solving blind deblurring problems. This work is primarily done by Florent
Couzinié-Devy, with the collaboration of Jean Ponce, Francis Bach and myself. Another
line of research is primarily undertaken by Louise Benoit, with the collaboration of the
same people listed above, and consists of studying a class of structured dictionaries that
are generated based on the principle of the epitome of Jojic et al. (2003), extending the
work on image-signature dictionaries of Aharon and Elad (2008). Open questions in-
clude incorporating spatial consistency in the patches decompositions of images, better
formalize this framework and find fast algorithms that are adapted to it.

There are machine learning applications and extensions of the methods we have in-
troduced that might be interesting to consider. In Chapter 3, we show preliminary but
promising results when using structured sparsity for a background subtraction applica-
tion. More precisely, this is achieved by representing new frames from a video stream
containing foreground objects as a linear combination of background images plus an
error term. To the best of our knowledge, this idea was introduced by Wright et al.
(2009a) in the context of robust face recognition, where a partly occluded test image
was represented in such a way, with the hope that the error term will be able to capture
the occluded part. To achieve robustness, the latter authors have proposed to regularize
the error term with the ℓ1-norm, whereas we have proposed to use a structured sparse
regularization norm to encode spatial consistency among neighboring pixels. The idea of
penalizing an error term by the ℓ1-norm has then been used by Candès et al. (2010) in a
robust PCA formulation. Using the structured sparsity-inducing norm instead, and the
algorithms we have proposed to solve structured sparse problems, should allow a natural
extension of this framework to a robust structured PCA formulation. More generally,
the same idea could be used in the context of matrix factorization.

Moreover, the use of structured sparsity to enforce spatial consistency in the back-
ground subtraction task suggests that such regularization norms could be useful in other
computer vision applications such as image segmentation. Interestingly, these tasks are
often addressed using min-cut/max-flow (or graph-cut) algorithms (Boykov et al., 2001),
which makes an interesting connection with the optimization method we have introduced
in Chapter 3.

During this thesis, we have tried to make bridges between several fields, and we
believe that there are other connections to make with sparse problems. For instance, to
the best of our knowledge, sparse methods are not yet able to correctly handle binary
or quantized data. To address this issue, we are interested in discrete optimization and
coding theory, where we hope to find tools to propose more general formulations.

Another important direction we consider is to apply our tools to experimental sci-
ences, where we wish our methods eventually to be useful. This would go through
collaborations with scientists from bio-informatics, neuroscience, which are two fields
where matrix factorization techniques and sparse methods have already been applied,
but also possibly physicists, who could provide us real-life problems.

178

A

Theorems and Useful Lemmas

We provide in this section a few theorems and lemmas from the optimization and prob-
ability literature, which are used in this thesis.

Theorem 2 (Corollary of Theorem 4.1 from Bonnans and Shapiro (1998), due
to Danskin (1967).)
Let f : R

p × R
q → R. Suppose that for all x ∈ R

p the function f(x, .) is differentiable,
and that f and ∇uf(x,u) the derivative of f(x, .) are continuous on R

p×R
q. Let v(u) be

the optimal value function v(u) = minx∈C f(x,u), where C is a compact subset of R
p.

Then v(u) is directionally differentiable. Furthermore, if for u0 ∈ R
q, f(.,u0) has a

unique minimizer x0 then v(u) is differentiable in u0 and ∇uv(u0) = ∇uf(x0,u0).

Theorem 3 (Sufficient condition of convergence for a stochastic process, see
Bottou (1998) and references therein (Métivier, 1983; Fisk, 1965).)
Let (Ω,F ,P) be a measurable probability space, ut, for t ≥ 0, be the realization of a
stochastic process and Ft be the filtration determined by the past information at time t.
Let

δt =

{

1 if E[ut+1 − ut|Ft] > 0,
0 otherwise.

If for all t, ut ≥ 0 and
∑∞
t=1 E[δt(ut+1 − ut)] < ∞, then ut is a quasi-martingale and

converges almost surely. Moreover,

∞∑

t=1

|E[ut+1 − ut|Ft]| < +∞ a.s.

Lemma 13 (A corollary of Donsker theorem (see chap. 19.2, lemma 19.36
and example 19.7, Van der Vaart, 1998)
Let F = {fθ : χ → R, θ ∈ Θ} be a set of measurable functions indexed by a bounded
subset Θ of R

d. Suppose that there exists a constant K such that

|fθ1(x)− fθ2(x)| ≤ K‖θ1 − θ2‖2,
for every θ1 and θ2 in Θ and x in χ. Then, F is P-Donsker (see Van der Vaart, 1998,
chap. 19.2). For any f in F , Let us define Pnf , Pf and Gnf as

Pnf =
1
n

n∑

i=1

f(Xi), Pf = EX [f(X)], Gnf =
√
n(Pnf − Pf).

179

A. Theorems and Useful Lemmas

Let us also suppose that for all f , Pf2 < δ2 and ‖f‖∞ < M and that the random
elements X1, X2, . . . are Borel-measurable. Then, we have

EP ‖Gn‖F = O(1),

where ‖Gn‖F = supf∈F |Gnf |. For a more general variant of this lemma and additional
explanations and examples, see Van der Vaart (1998).

Lemma 14 (A simple lemma on positive converging sums.)
Let an, bn be two real sequences such that for all n, an ≥ 0, bn ≥ 0,

∑∞
n=1 an = ∞,

∑∞
n=1 anbn <∞, ∃K > 0 s.t. |bn+1 − bn| < Kan. Then, limn→+∞ bn = 0.

Proof. The proof is similar to Bertsekas (1999, prop 1.2.4).

180

B

Proofs

B.1 Proofs of Lemmas

B.1.1 Proof of Lemma 2

Proof. This proof is inspired by Prop 4.32 of Bonnans and Shapiro (2000) on the Lips-
chitz regularity of solutions of optimization problems. Using assumption (B), for all t,
the surrogate f̂t is strictly convex with a Hessian lower-bounded by κ1. Then, a short
calculation shows that it verifies the second-order growth condition

f̂t(Dt+1)− f̂t(Dt) ≥ κ1‖Dt+1 −Dt‖2F. (B.1)

Moreover,

f̂t(Dt+1)−f̂t(Dt)= f̂t(Dt+1)−f̂t+1(Dt+1) + f̂t+1(Dt+1)− f̂t+1(Dt) + f̂t+1(Dt)− f̂t(Dt)
≤ f̂t(Dt+1)− f̂t+1(Dt+1) + f̂t+1(Dt)− f̂t(Dt),

where we have used that f̂t+1(Dt+1)− f̂t+1(Dt) ≤ 0 because Dt+1 minimizes f̂t+1 on D.
Since f̂t(D) = 1

t

(
1
2 Tr(D⊤DBt) − Tr(D⊤Ct)

)
, and ‖D‖F ≤

√
p, it is possible to show

that f̂t− f̂t+1 is Lipschitz with constant ct = 1
t

(‖Ct+1−Ct‖F +
√
p‖Bt+1−Bt‖F

)
, which

gives
f̂t(Dt+1)− f̂t(Dt) ≤ ct‖Dt+1 −Dt‖F. (B.2)

From Eq. (B.1) and (B.2), we obtain

‖Dt+1 −Dt‖F ≤
ct
κ1
.

Assumptions (A), (C) and Eq. (2.9) ensure that the vectors αi and xi are bounded
with probability one and therefore ct = O(1/t) a.s.

B.1.2 Proof of Lemma 3

Proof. The proof relies on tools from conic duality (Boyd and Vandenberghe, 2004). We
can equivalently rewrite problem (3.3) as

min
v∈Rp,z∈R|G|

1
2
‖u− v‖22 + λ

∑

g∈G
ηgzg, such that ‖v|g‖ ≤ zg, ∀g ∈ G,

181

B. Proofs

by introducing the primal variables z = (zg)g∈G ∈ R
|G|, with the additional |G| conic

constraints ‖v|g‖ ≤ zg, g ∈ G.
This primal problem is convex and satisfies Slater’s conditions for generalized conic

inequalities (i.e., existence of a feasible point in the interior of the domain), which im-
plies that strong duality holds (Boyd and Vandenberghe, 2004). We now consider the
Lagrangian L defined as

L(v, z, τ , ξ) =
1
2
‖u− v‖22 + λ

∑

g∈G
ηgzg −

∑

g∈G

(

zg
v|g

)⊤(
τg
ξg

)

,

with the dual variables τ = (τg)g∈G in R
|G|, and ξ = (ξg)g∈G in Rp×|G|, such that for all

g ∈ G, ξgj = 0 if j /∈ g and ‖ξg‖∗ ≤ τg.
The dual function is obtained by taking the derivatives of L with respect to the

primal variables v and z and equating them to zero, which leads to

v− u−∑g∈G ξg = 0,

∀g ∈ G, ληg − τg = 0.

After simplifying the Lagrangian and flipping the sign of ξ, we obtain the dual prob-
lem in Eq. (3.6). As far as the optimality conditions are concerned, they are derived
from the Karush–Kuhn–Tucker conditions for generalized conic inequalities (Boyd and
Vandenberghe, 2004). We have that {v, z, τ , ξ} are optimal if and only if

v− u +
∑

g∈G ξ
g = 0,

∀g ∈ G, ληg − τg = 0,

∀g ∈ G, zgτg − v⊤|gξ
g = 0, (Complementary slackness)

∀g ∈ G, ‖v|g‖ ≤ zg,
∀g ∈ G, ‖ξg‖∗ ≤ τg.

Combining the complementary slackness with the definition of the dual norm, we have

∀g ∈ G, zgτg = v⊤|gξ
g ≤ ‖v|g‖‖ξg‖∗.

Furthermore, using the fact that ∀g ∈ G, ‖v|g‖ ≤ zg and ‖ξg‖∗ ≤ τg = ληg, we obtain
the following chain of inequalities

∀g ∈ G, λzgηg = v⊤|gξ
g ≤ ‖v|g‖‖ξg‖∗ ≤ zg‖ξg‖∗ ≤ λzgηg,

for which equality must hold. We notably have
{

v⊤|gξ
g = ‖v|g‖‖ξg‖∗,

zg‖ξg‖∗ = λzgηg.

If v|g 6= 0, then zg cannot be equal to zero, which implies in turn that ‖ξg‖∗ = ληg.

182

B.1. Proofs of Lemmas

Reciprocally, starting from the optimality conditions of Lemma 3, we can derive
the Karush–Kuhn–Tucker conditions displayed above. More precisely, we define for all
g ∈ G,

τg , ληg and zg , ‖v|g‖.

The only condition that needs to be discussed is the complementary slackness. If v|g = 0,
then it is easily satisfied. Otherwise, combining the definitions of τg, zg and the fact
that

v⊤|gξ
g = ‖v|g‖‖ξg‖∗ and ‖ξg‖∗ = ληg,

we end up with the desired complementary slackness.

B.1.3 Proof of Lemma 4

Proof. When the vector v is already in the ball of ‖.‖∗ with radius t, i.e., ‖v‖∗ ≤ t,
the situation is simple, since the projection Π∗t (v) obviously gives v itself. On the other
hand, a necessary and sufficient optimality condition for having

κ = Π∗t (v) = arg min
‖y‖∗≤t

‖v− y‖2

is that the residual v−κ lies in the normal cone of the constraint set (Borwein and Lewis,
2006), that is, for all y such that ‖y‖∗ ≤ t, (v − κ)⊤(y − κ) ≤ 0. The displayed result
then follows from the definition of the dual norm, namely ‖κ‖∗ = max‖z‖≤1 z⊤κ.

B.1.4 Proof of Lemma 5

Proof. The proof mostly relies on the optimality condition derived in Lemma 4. We thus
have to prove that either

κg = v|g − κh|g, if ‖v|g − κh|g‖∗ ≤ tg,

or
‖κg‖∗ = tg and κg⊤(v|g − κh|g − κg) = ‖κg‖∗‖v|g − κh|g − κg‖.

Note that the feasibility of κg, i.e., ‖κg‖∗ ≤ tg, is one of the hypothesis in the Lemma.
Let us first assume that ‖κg‖∗ < tg. We necessarily have that v|g also lies in the

interior of the ball of ‖.‖∗ with radius tg, and it holds that κg = v|g. Since g ⊆ h, we
have that the vector v|h −κg = v|h − v|g has only zero entries on g. As a result, κhg = 0
and we obtain

κg = v|g = v|g − κh|g,

which is the desired conclusion. From now on, we assume that ‖κg‖∗ = tg. It then
remains to show that

κg⊤(v|g − κh|g − κg) = ‖κg‖∗‖v|g − κh|g − κg‖.

183

B. Proofs

We now distinguish the proof, depending on the used norm.

ℓ2 norm: in the particular case of the ℓ2 norm, the optimality condition for the
projection amounts to check when equality holds in the Cauchy-Schwartz inequality,
i.e., when the vectors have same signs and are linearly dependent. Thus, there exists
ρg, ρh > 0 such that ρgκg = v|g − κg and ρhκ

h = v|h − κg − κh.
Note that the case ρh = 0 leads to v|h−κg−κh = 0, and therefore v|g−κg−κh|g = 0

since g ⊆ h, which directly gives the result. The case ρg = 0 implies v|g − κg = 0 and
therefore κh|g = 0, giving the result as well. We can therefore assume now ρh > 0 and
ρg > 0. Some algebra leads to

κg =
ρh + 1
ρgρh

(v|g − κg − κh|g),

and consequently

κg⊤(v|g − κg − κh|g) = ‖κg‖2‖v|g − κg − κh|g‖2.

ℓ∞ norm: here, the optimality condition comes down to analyzing when equality
holds in the ℓ∞-ℓ1 Hölder inequality. Specifically, κg = Π∗tg(v|g) holds if and only if for
all κgj 6= 0, j ∈ g, we have

vj − κgj = ‖v|g − κg‖∞ sign(κgj).

Looking at the same condition for κh, we have that κh = Π∗th
(
v|h−κg

)
holds if and only

if for all κhj 6= 0, j ∈ h, we have

vj − κgj − κhj = ‖v|h − κg − κh‖∞ sign(κhj).

From those relationships we notably deduce that for all j ∈ g such that κgj 6= 0,
sign(κgj) = sign(vj) = sign(κhj) = sign(vj − κgj) = sign(vj − κgj − κhj). Let j ∈ g
such that κgj 6= 0. At this point, using the equalities we have just presented,

|vj − κgj − κhj | =
{

‖v|g − κg‖∞ if κhj = 0
‖v|h − κg − κh‖∞ if κhj 6= 0

Since ‖v|g − κg‖∞ ≥ ‖v|g − κg − κh|g‖∞ (which can be shown using the sign equalities
above), and ‖v|h − κg − κh‖∞ ≥ ‖v|g − κg − κh|g‖∞ (since g ⊆ h), we have

‖v|g − κg − κh|g‖∞ ≥ |vj − κgj − κhj | ≥ ‖v|g − κg − κh|g‖∞
and therefore for all κgj 6= 0, j ∈ g,

vj − κgj − κhj = ‖v|g − κg − κh|g‖∞ sign(κgj),

which gives the result.

184

B.1. Proofs of Lemmas

B.1.5 Proof of Lemma 6

Proof. One notices first that the procedure computeNorm is called one time for each
group g in G, computing a set of scalars (ρg)g∈G in an order which is compatible with
the convergence in one pass of Algorithm 3—that is, the children of a node are processed
prior to the node itself. Following such an order, the update of the group g in the original
Algorithm 3 computes the variable ξg which updates implicitly the primal variable as
follows

v|g ← max
(
0, 1− ληg

‖v|g‖2
)
v|g.

It is now possible to show by induction that for all group g in G, after a call to the
procedure computeNorm(g), the auxiliary variable ηg takes the value ‖v|g‖22 where v has
the same value as during the iteration g of Algorithm 3. Therefore, after calling the
procedure computeNorm(g0), where g0 is the root of the tree, the values ρg correspond
to the successive scaling factors of the variable v|g obtained during the execution of
Algorithm 3. After having computed all the scaling factors ρg, g ∈ G, the procedure
recursiveScaling ensures that each variable j in {1, . . . , p} is scaled by the product of
all the ρh, where h is an ancestor of the variable j.

The complexity of the algorithm is easy to characterize: Each procedure computeNorm

and recursiveScaling is called p times, each call for a group g has a constant number
of operations plus as many operations as the number of children of p. Since each chil-
dren can be called at most one time, the total number of operation of the algorithm is
O(p).

B.1.6 Proof of Lemma 7

Proof. Again, we notice that the order of the projections in Algorithm 5 is compatible
with a convergence in one pass of Algorithm 3 with ‖.‖ = ℓ∞. Then, it is easy to show
that by computing a variable ξg = Π∗ληg(v|g), Algorithm 3 implicitly updates the primal
variable with the formula as in Algorithm 5. Both algorithm have therefore the same
output primal variable v.

To analyze the complexity of the procedure, one notice first that a projection on the
ℓ1-ball can be done in linear time (Brucker, 1984; Maculan and de Paula, 1989). The
algorithm performs g projection, each of them involving |g| variables. By noticing that
if g and h are two groups with the same depth in the tree, then g ∩ h = ∅, it is easy to
show that the number of variables involved in all the projections is less than or equal to
dp, where d is the depth of the tree. Since the projections are linear in the number of
variables, the total complexity is therefore O(dp).

B.1.7 Proof of Lemma 9

Proof. We first notice that on both G and G′, the cost of a flow on the graph only
depends on the flow on the arcs (j, t), j in Vu, which we have denoted by ξ̄ in E.

185

B. Proofs

We will prove that finding a feasible flow π on G with a cost c(π) is equivalent to
finding a feasible flow π′ on G′ with the same cost c(π) = c(π′). We now use the concept
of path flow, which is a flow vector in G carrying the same positive value on every arc of
a directed path between two nodes of G. It intuitively corresponds to sending a positive
amount of flow along a path of the graph.

According to the definition of graph equivalence introduced in the Lemma, it is easy
to show that there is a bĳection between the arcs in E, and the paths in E′ with positive
capacities on every arc. Given now a feasible flow π in G, we build a feasible flow π′ on
G′ which is a sum of path flows. More precisely, for every arc a in E, we consider its
equivalent path in E′, with a path flow carrying the same amount of flow as a. Therefore,
each arc a′ in E′ has a total amount of flow that is equal to the sum of the flows carried
by the path flows going over a′. It is also easy to show that this construction builds a
flow on G′ (capacity and conservation constraints are satisfied) and that this flow π′ has
the same cost as π, that is, c(π) = c(π′).

Conversely, given a flow π′ on G′, we use a classical path flow decomposition (see
Proposition 1.1 in (Bertsekas, 1991)), saying that there exists a decomposition of π′ as
a sum of path flows in E′. Using the bĳection described above, we know that each path
in the previous sums corresponds to a unique arc in E. We now build a flow π in G,
by associating with each path flow in the decomposition of π′, an arc in E carrying the
same amount of flow. The flow of every other arc in E is set to zero. It is also easy to
show that this builds a valid flow in G that has the same cost as π′.

B.1.8 Proof of Lemma 11

Proof. By definition of Ω∗(κ), we have

Ω∗(κ) , max
Ω(z)≤1

z⊤κ.

By introducing the primal variables (αg)g∈G ∈ R
|G|, we can rewrite the previous maxi-

mization problem as

Ω∗(κ) = max∑

g∈G
ηgαg≤1

κ⊤z, s.t. ∀ g ∈ G, ‖zg‖∞ ≤ αg,

with the additional |G| conic constraints ‖zg‖∞ ≤ αg. This primal problem is convex
and satisfies Slater’s conditions for generalized conic inequalities, which implies that
strong duality holds (Boyd and Vandenberghe, 2004). We now consider the Lagrangian
L defined as

L(z, αg, τ, γg, ξ) = κ⊤z + τ(1−
∑

g∈G
ηgαg) +

∑

g∈G

(

αg
zg

)⊤(
γg
ξgg

)

,

with the dual variables {τ, (γg)g∈G , ξ} ∈ R+×R
|G| × R

p×|G| such that for all g ∈ G,
ξ
g
j = 0 if j /∈ g and ‖ξg‖1 ≤ γg. The dual function is obtained by taking the derivatives

186

B.2. Proofs of Propositions

of L with respect to the primal variables z and (αg)g∈G and equating them to zero, which
leads to

∀j ∈ {1, . . . , p}, κj +
∑

g∈G ξ
g
j = 0

∀g ∈ G, τηg − γg = 0.

After simplifying the Lagrangian and flipping the sign of ξ, the dual problem then
reduces to

min
ξ∈Rp×|G|,τ

τ s.t.

{

∀j ∈ {1, . . . , p},κj =
∑

g∈G ξ
g
j and ξgj = 0 if j /∈ g,

∀g ∈ G, ‖ξg‖1 ≤ τηg,

which is the desired result.

B.2 Proofs of Propositions

B.2.1 Proof of Proposition 4

Proof. Assumption (A) ensures that the vectors α⋆ are bounded for x in K and D

in D. Therefore, one can restrict the optimization problem (2.10) to a compact subset
of R

p. Under assumption (C), the solution of Eq. (2.10) is unique and α⋆ is well-defined.
Theorem 2 in Appendix A from Bonnans and Shapiro (1998) can be applied and gives
us directly the first statement. Since K is compact, and ℓ is continuously differentiable,
the second statement follows immediately.

To prove the third claim, we will show that for all x in K, α⋆(x, .) is Lipschitz with
a constant independent of x,1 which is a sufficient condition for ∇f to be Lipschitz.
First, the function optimized in Eq. (2.10) is continuous in α, D, x and has a unique
minimum, implying that α⋆ is continuous in x and D.

Consider a matrix D in D and x in K and denote by α⋆ the vector α⋆(x,D), and
again by Λ the set of indices j such that |dj⊤(x −Dα⋆)| = λ. Since dj⊤(x −Dα⋆) is
continuous in D and x, there exists an open neighborhood V around (x,D) such that for
all (x′,D′) in V , and j /∈ Λ, |dj⊤′(x′−D′α⋆′)| < λ and α⋆′j = 0, where α⋆′ = α⋆(x′,D′).

Denoting by UΛ the matrix composed of the columns of a matrix U corresponding
to the index set Λ and similarly by uΛ the vector composed of the values of a vector u

corresponding to Λ, we consider the function ℓ̃

ℓ̃(x,DΛ,αΛ) ,
1
2
‖x−DΛαΛ‖22 + λ‖αΛ‖1,

Assumption (C) tells us that ℓ̃(x,DΛ, .) is strictly convex with a Hessian lower-bounded
by κ2. Let us consider (x′,D′) in V . A simple calculation shows that

ℓ̃(x,DΛ,α
⋆
Λ
′)− ℓ̃(x,DΛ,α

⋆
Λ) ≥ κ2‖α⋆Λ′ −α⋆Λ‖22.

1 From now on, for a vector x in R
m, α⋆(x, .) denotes the function that associates with a matrix

D verifying Assumption (C), the optimal solution α⋆(x,D). For simplicity, we will use these slightly
abusive notation in the rest of the work.

187

B. Proofs

Moreover, it is easy to show that ℓ̃(x,DΛ, .) − ℓ̃(x′,D′Λ, .) is Lipschitz with constant
e1‖DΛ−D′Λ‖F + e2‖x−x′‖2, where e1, e2 are constants independent of D,D′,x,x′ and
then, one can show that

‖α⋆′ −α⋆‖2 = ‖α⋆Λ′ −α⋆Λ‖2 ≤
1
κ2

(
e1‖D−D′‖F + e2‖x− x′‖2

)
.

Therefore, α⋆ is locally Lipschitz. Since K×D is compact, α⋆ is uniformly Lipschitz on
K ×D, which concludes the proof.

B.2.2 Proof of Proposition 5

Proof. Part of this proof is inspired by Bottou (1998). We prove the convergence of the
sequence f̂t(Dt) by showing that the stochastic positive process

ut , f̂t(Dt) ≥ 0,

is a quasi-martingale and use Theorem 3 from Fisk (1965) (see Appendix A), which
states that if the sum of the “positive” variations of ut are bounded, ut is a quasi-
martingale, which converges with probability one (see Theorem 3 for details). Computing
the variations of ut, we obtain

ut+1 − ut = f̂t+1(Dt+1)− f̂t(Dt)
= f̂t+1(Dt+1)− f̂t+1(Dt) + f̂t+1(Dt)− f̂t(Dt)

= f̂t+1(Dt+1)− f̂t+1(Dt) +
ℓ(xt+1,Dt)− ft(Dt)

t+ 1
+
ft(Dt)− f̂t(Dt)

t+ 1
,

(B.3)

using the fact that f̂t+1(Dt) = 1
t+1ℓ(xt+1,D

t) + t
t+1 f̂t(D

t). Since Dt+1 minimizes f̂t+1

on D and Dt is in D, f̂t+1(Dt+1)− f̂t+1(Dt) ≤ 0. Since the surrogate f̂t upperbounds the
empirical cost ft, we also have ft(Dt)− f̂t(Dt) ≤ 0. To use Theorem 3, we consider the
filtration of the past information Ft and take the expectation of Eq. (B.3) conditioned
on Ft, obtaining the following bound

E[ut+1 − ut|Ft] ≤
E[ℓ(xt+1,D

t)|Ft]− ft(Dt)
t+ 1

≤ f(Dt)− ft(Dt)
t+ 1

≤ ‖f − ft‖∞
t+ 1

,

For a specific matrix D, the central-limit theorem states that E[
√
t(f(Dt)− ft(Dt))] is

bounded. However, we need here a stronger result on empirical processes to show that
E[
√
t‖f − ft‖∞] is bounded. To do so, we use the Lemma 13 in Appendix A, which is a

corollary of Donsker theorem (see Van der Vaart, 1998, chap. 19.2). It is easy to show
that in our case, all the hypotheses are verified, namely, ℓ(x, .) is uniformly Lipschitz

188

B.2. Proofs of Propositions

and bounded since it is continuously differentiable on a compact set, the set D ⊂ R
m×p

is bounded, and Ex[ℓ(x,D)2] exists and is uniformly bounded. Therefore, Lemma 13
applies and there exists a constant κ > 0 such that

E[E[ut+1 − ut|Ft]+] ≤ κ

t
3
2

.

Therefore, defining δt as in Theorem 3, we have

∞∑

t=1

E[δt(ut+1 − ut)] =
∞∑

t=1

E[E[ut+1 − ut|Ft]+] < +∞.

Thus, we can apply Theorem 3, which proves that ut converges almost surely and that

∞∑

t=1

|E[ut+1 − ut|Ft]| < +∞ a.s.

Using Eq. (B.3) we can show that it implies the almost sure convergence of the positive
sum

∞∑

t=1

f̂t(Dt)− ft(Dt)
t+ 1

.

Using Lemma 2 and the fact that the functions ft and f̂t are bounded and Lipschitz,
with a constant independent of t, it is easy to show that the hypotheses of Lemma 14 in
Appendix A are satisfied. Therefore

ft(Dt)− f̂t(Dt) −→
t→+∞

0 a.s.

Since f̂t(Dt) converges almost surely, this shows that ft(Dt) converges in probability to
the same limit. Note that we have in addition ‖ft − f‖∞ →t→+∞ 0 a.s. (see Van der
Vaart, 1998, Theorem 19.4 (Glivenko-Cantelli)). Therefore,

f(Dt)− f̂t(Dt) −→
t→+∞

0 a.s.

and f(Dt) converges almost surely, which proves the second and third points.

B.2.3 Proof of Proposition 6

Proof. Since the sequences of matrices Bt,Ct are in a compact set, it is possible to
extract converging subsequences. Let us assume for a moment that these sequences
converge respectively to two matrices B∞ and C∞. In that case, Dt converges to a
matrix D∞ in D. Let U be a matrix in R

m×p. Since f̂t upperbounds ft on R
m×p, for

all t,
f̂t(Dt + U) ≥ ft(Dt + U).

Taking the limit when t tends to infinity,

f̂∞(D∞ + U) ≥ f(D∞ + U).

189

B. Proofs

Let ht > 0 be a sequence that converges to 0. Using a first order Taylor expansion, and
using the fact that ∇f is Lipschitz and f̂∞(D∞) = f(D∞) a.s., we have

f(D∞) + Tr(htU⊤∇f̂∞(D∞)) + o(htU) ≥ f(D∞) + Tr(htU⊤∇f(D∞)) + o(htU),

and it follows that

Tr
(1
‖U‖F

U⊤∇f̂∞(D∞)
)

≥ Tr
(1
‖U‖F

U⊤∇f(D∞)
)

,

Since this inequality is true for all U, ∇f̂∞(D∞) = ∇f(D∞). A first-order necessary
optimality condition for D∞ being an optimum of f̂∞ is that −∇f̂∞ is in the normal
cone of the set D at D∞ (Borwein and Lewis, 2006). Therefore, this first-order necessary
conditions is verified for f at D∞ as well. Since Bt,Ct are asymptotically close to their
accumulation points, −∇f(Dt) is asymptotically close the normal cone at Dt and these
first-order optimality conditions are verified asymptotically with probability one.

B.2.4 Proof of Proposition 7

Proof. The proof largely relies on 5. We proceed by induction, by showing that we keep
the optimality conditions of 3.6 satisfied after each update in Algorithm 3. By definition
of Algorithm 3, note that the feasibility of ξ is always guaranteed. We consider the
following induction hypothesis

H(h) ,
{∀g � h, it holds that ξg = Π∗ληg([u−

∑

g′ 6=gξ
g′]|g)

}
.

Since the dual variables ξ are initially equal to zero, the summation over g′ 6= g in the
definition of H can be instead taken over g′ � h, g′ 6= g, leading to

H(h) =
{∀g � h, it holds that ξg = Π∗ληg([u−

∑

g′�h, g′ 6=gξ
g′]|g)

}
.

We initialize the induction with the first group in G, that, by definition of �, does not
contain any other group. The first step of Algorithm 3 easily shows that the induction
hypothesis H is satisfied for this first group.

We now assume that H(h) is true and consider the next group h′, h � h′, in order
to prove that H(h′) is also satisfied. We have for each group g ⊆ h,

ξg = Π∗ληg([u−
∑

g′�h, g′ 6=gξ
g′]|g).

Following the update of the group h′, we have

ξh
′

= Π∗ληh′ ([u−
∑

g′�hξ
g′]|h′)

= Π∗ληh′ ([u−
∑

g′�h′, g′ 6=h′ξ
g′]|h′).

At this point, we can apply 5 for each group g ⊆ h, which proves

ξg = Π∗ληg([u−
∑

g′�h, g′ 6=gξ
g′ − ξh′]|g)

= Π∗ληg([u−
∑

g′�h′, g′ 6=gξ
g′]|g).

190

B.2. Proofs of Propositions

As a result, the induction hypothesis H(h′) is true.
Therefore, after one complete pass over g ∈ G, the dual variable ξ satisfies the

optimality conditions for 3.6, which implies that the pair {v, ξ} is optimal. Since strong
duality holds, v is the solution of 3.3.

B.2.5 Proof of Proposition 8

Proof. Our algorithm splits recursively the graph into disjoints parts and processes each
part recursively. The processing of one part requires an orthogonal projection onto an
ℓ1-ball and a max-flow algorithm, which can both be computed in polynomial time. To
prove that the procedure converges, it is sufficient to show that when the procedure
computeFlow is called for a graph (V,E, s, t) and computes a cut (V +, V −), then the
components V + and V − are both non-empty.

Suppose for instance that V −= ∅. In this case, the capacity of the min-cut is equal to
∑

j∈Vu γj , and the value of the max-flow is
∑

j∈Vu ξ̄j . Using the classical max-flow/min-
cut theorem (Ford and Fulkerson, 1956), we have equality between these two terms.
Since, by definition of both γ and ξ̄, we have for all j in Vu, ξ̄j ≤ γj , we obtain a
contradiction with the existence of j in Vu such that ξ̄j 6= γj .

Conversely, suppose now that V + = ∅. Then, the value of the max-flow is still
∑

j∈Vu ξ̄j , and the value of the min-cut is λ
∑

g∈Vgr ηg. Using again the max-flow/min-
cut theorem, we have that

∑

j∈Vu ξ̄j = λ
∑

g∈Vgr ηg. Moreover, by definition of γ, we also
have

∑

j∈Vu ξ̄j ≤
∑

j∈Vu γj ≤ λ
∑

g∈Vgr ηg, leading to a contradiction with the existence
of j in Vu such that ξ̄j 6= γj . This proof holds for any graph that is equivalent to the
canonical one.

B.2.6 Proof of Proposition 9

Proof. For a group structure G, we first prove the correctness of our algorithm if the
graph used is its associated canonical graph that we denote G0 = (V0, E0, s, t). We
proceed by induction on the number of nodes of the graph. The induction hypothesis
H(k) is the following:

For all canonical graphs G = (V = Vu ∪ Vgr, E, s, t) associated with a group structure
GV with weights (ηg)g∈GV such that |V | ≤ k, computeFlow(V,E) solves the following
optimization problem:

min
(ξg
j
)j∈Vu,g∈Vgr

∑

j∈Vu

1
2

(uj −
∑

g∈Vgr
ξ
g
j)

2 s.t. ∀g ∈ Vgr,
∑

j∈Vu
ξ
g
j ≤ ληg and ξgj = 0, ∀j /∈ g.

(B.4)
Since GV0

= G, it is sufficient to show that H(|V0|) to prove the proposition.
We initialize the induction by H(2), corresponding to the simplest canonical graph,

for which |Vgr| = |Vu| = 1). Simple algebra shows that H(2) is indeed correct.
We now suppose thatH(k′) is true for all k′ < k and consider a graph G = (V,E, s, t),

|V | = k. The first step of the algorithm computes the variable (γj)j∈Vu by a projection on

191

B. Proofs

the ℓ1-ball. This is itself an instance of the dual formulation of Eq. (3.6) in a simple case,
with one group containing all variables. We can therefore use Lemma 10 to characterize
the optimality of (γj)j∈Vu , which yields
{ ∑

j∈Vu(uj − γj)γj =
(

maxj∈Vu |uj − γj |
)∑

j∈Vu γj and
∑

j∈Vu γj = λ
∑

g∈Vgr ηg,
or uj − γj = 0, ∀j ∈ Vu.

(B.5)
The algorithm then computes a max-flow, using the scalars γj as capacities, and we now
have two possible situations:

1. If ξ̄j = γj for all j in Vu, the algorithm stops; we write wj = uj − ξ̄j for j in Vu,
and using Eq. (B.5), we obtain

{ ∑

j∈Vu wj ξ̄j = (maxj∈Vu |wj |)
∑

j∈Vu ξ̄j and
∑

j∈Vu ξ̄j = λ
∑

g∈Vgr ηg,
or wj = 0, ∀j ∈ Vu.

(B.6)
We can rewrite the condition above as

∑

g∈Vgr

∑

j∈g
wjξ

g
j =

∑

g∈Vgr
(max
j∈Vu
|wj |)

∑

j∈Vu
ξ
g
j .

Since all the quantities in the previous sum are positive, this can only hold if for
all g ∈ Vgr,

∑

j∈Vu
wjξ

g
j = (max

j∈Vu
|wj |)

∑

j∈Vu
ξ
g
j .

Moreover, by definition of the max flow and the optimality conditions, we have

∀g ∈ Vgr,
∑

j∈Vu
ξ
g
j ≤ ληg, and

∑

j∈Vu
ξ̄j = λ

∑

g∈Vgr
ηg,

which leads to
∀g ∈ Vgr,

∑

j∈Vu
ξ
g
j = ληg.

By Lemma 10, we have shown that the problem (B.4) is solved.

2. Let us now consider the case where there exists j in Vu such that ξ̄j 6= γj . The
algorithm splits the vertex set V into two parts V + and V −, which we have proven
to be non-empty in the proof of Proposition 8. The next step of the algorithm
removes all edges between V + and V − (see Figure 3.3). Processing (V +, E+) and
(V −, E−) independently, it updates the value of the flow matrix ξgj , j ∈ Vu, g ∈
Vgr, and the corresponding flow vector ξ̄j , j ∈ Vu. As for V , we denote by
V +
u , V + ∩ Vu, V −u , V − ∩ Vu and V +

gr , V + ∩ Vgr, V −gr , V − ∩ Vgr.
Then, we notice that (V +, E+, s, t) and (V −, E−, s, t) are respective canonical
graphs for the group structures GV + , {g ∩ V +

u | g ∈ Vgr}, and GV − , {g ∩ V −u |
g ∈ Vgr}.

192

B.2. Proofs of Propositions

Writing wj = uj− ξ̄j for j in Vu, and using the induction hypotheses H(|V +|) and
H(|V −|), we now have the following optimality conditions deriving from Lemma 10
applied on Eq. (B.4) respectively for the graphs (V +, E+) and (V −, E−):

∀g ∈ V +
gr , g

′ , g∩V +
u ,

{

w⊤g′ξ
g
g′ = ‖wg′‖∞

∑

j∈g′ξ
g
j and

∑

j∈g′ξ
g
j = ληg,

or wg′ = 0,
(B.7)

and

∀g ∈ V −gr , g′ , g ∩ V −u ,
{

w⊤g′ξ
g
g′ = ‖wg′‖∞

∑

j∈g′ξ
g
j and

∑

j∈g′ξ
g
j = ληg,

or wg′ = 0.
(B.8)

We will now combine Eq. (B.7) and Eq. (B.8) into optimality conditions for
Eq. (B.4). We first notice that g ∩ V +

u = g since there are no arcs between
V + and V − in E (see the properties of the cuts discussed before this proposition).
It is therefore possible to replace g′ by g in Eq. (B.7). We will show that it is
possible to do the same in Eq. (B.8), so that combining these two equations yield
the optimality conditions of Eq. (B.4).

More precisely, we will show that for all g ∈ V −gr and j ∈ g ∩ V +
u , |wj | ≤

maxl∈g∩V −u |wl|, in which case g′ can be replaced by g in Eq. (B.8). This re-
sult is relatively intuitive: (s, V +) and (V −, t) being an (s, t)-cut, all arcs between
s and V − are saturated, while there are unsaturated arcs between s and V +; one
therefore expects the residuals uj− ξ̄j to decrease on the V + side, while increasing
on the V − side. The proof is nonetheless a bit technical.

Let us show first that for all g in V +
gr , ‖wg‖∞ ≤ maxj∈Vu |uj − γj |. We split the

set V + into disjoint parts:

V ++
gr , {g ∈ V +

gr s.t. ‖wg‖∞ ≤ max
j∈Vu
|uj − γj |},

V ++
u , {j ∈ V +

u s.t. ∃g ∈ V ++
gr , j ∈ g},

V +−
gr , V +

gr \ V ++
gr = {g ∈ V +

gr s.t. ‖wg‖∞ > max
j∈Vu
|uj − γj |},

V +−
u , V +

u \ V ++
u .

As previously, we denote V +−, V +−
u ∪ V +−

gr and V ++ ,V ++
u ∪ V ++

gr . We want to
show that V +−

gr is necessarily empty. We reason by contradiction and assume that
V +−
gr 6= ∅.

According to the definition of the different sets above, we observe that no arcs are
going from V ++ to V +−, that is, for all g in V ++

gr , g ∩ V +−
u = ∅. We observe as

well that the flow from V +−
gr to V ++

u is the null flow, because optimality conditions
(B.7) imply that for a group g only nodes j ∈ g such that wj = ‖wg‖∞ receive
some flow, which excludes nodes in V ++

u provided V +−
gr 6= ∅; Combining this fact

and the inequality
∑

g∈V +
gr
ληg ≥

∑

j∈V +
u
γj (which is a direct consequence of the

193

B. Proofs

minimum (s, t)-cut), we have as well
∑

g∈V +−
gr

ληg ≥
∑

j∈V +−
u

γj .

Let j ∈ V +−
u , if ξ̄j 6= 0 then for some g ∈ V +−

gr such that j receives some flow from
g, which from the optimality conditions (B.7) implies wj = ‖wg‖∞; by definition
of V +−

gr , ‖wg‖∞ > uj − γj . But since at the optimum, wj = uj − ξ̄j , this implies
that ξ̄j < γj , and in turn that

∑

j∈V +−
u
ξ̄j = λ

∑

g∈V +−
gr

ηg. Finally,

λ
∑

g∈V +−
gr

ηg =
∑

j∈V +−
u , ξ̄j 6=0

ξ̄j <
∑

j∈V +−
u

γj

and this is a contradiction.

We now have that for all g in V +
gr , ‖wg‖∞ ≤ maxj∈Vu |uj−γj |. The proof showing

that for all g in V −gr , ‖wg‖∞ ≥ maxj∈Vu |uj − γj |, uses the same kind of decom-
position for V −, and follows along similar arguments. We will therefore not detail
it.

To recap, we have shown that for all g ∈ V −gr and j ∈ g∩V +
u , |wj | ≤ maxl∈g∩V −u |wl|.

Since there is no flow from V − to V +, i.e., ξgj = 0 for g in V −gr and j in V +
u , we

can now replace the definition of g′ in Eq. (B.8) by g′ , g ∩ Vu, the combination
of Eq. (B.7) and Eq. (B.8) gives us optimality conditions for Eq. (B.4).

The proposition being proved for the canonical graph, we extend it now for an equiv-
alent graph in the sense of Lemma 9. First, we observe that the algorithm gives the
same values of γ for two equivalent graphs. Then, it is easy to see that the value ξ̄ given
by the max-flow, and the chosen (s, t)-cut is the same, which is enough to conclude that
the algorithm performs the same steps for two equivalent graphs.

B.2.7 Proof of Proposition 10

Proof. The convergence of the algorithm only requires to show that the cardinality of V
in the different calls of the function computeFlow strictly decreases. Similar arguments
to those used in the proof of Proposition 8 can show that each part of the cuts (V +, V −)
are both non-empty. The algorithm thus requires a finite number of calls to a max-flow
algorithm and converges in a finite and polynomial number of operations.

Let us now prove that the algorithm is correct for a canonical graph. We proceed
again by induction on the number of nodes of the graph. More precisely, we consider
the induction hypothesis H′(k) defined as:

for all canonical graphs G = (V,E, s, t) associated with a group structure GV and such
that |V | ≤ k, dualNormAux(V = Vu ∪ Vgr, E) solves the following optimization problem:

min
ξ,τ

τ s.t. ∀j ∈ Vu,κj =
∑

g∈Vgr
ξ
g
j , and ∀g ∈ Vgr,

∑

j∈Vu
ξ
g
j ≤ τηg with ξ

g
j = 0 if j /∈ g.

(B.9)

194

B.2. Proofs of Propositions

We first initialize the induction by H(2) (i.e., with the simplest canonical graph, such
that |Vgr| = |Vu| = 1). Simple algebra shows that H(2) is indeed correct.

We next consider a canonical graph G = (V,E, s, t) such that |V | = k, and suppose
that H′(k − 1) is true. After the max-flow step, we have two possible cases to discuss:

1. If ξ̄j = γj for all j in Vu, the algorithm stops. We know that any scalar τ such
that the constraints of Eq. (B.9) are all satisfied necessarily verifies

∑

g∈Vgr τηg ≥∑

j∈Vu κj . We have indeed that
∑

g∈Vgr τηg is the value of an (s, t)-cut in the graph,
and

∑

j∈Vu κj is the value of the max-flow, and the inequality follows from the max-
flow/min-cut theorem (Ford and Fulkerson, 1956). This gives a lower-bound on τ .
Since this bound is reached, τ is necessarily optimal.

2. We now consider the case where there exists j in Vu such that ξ̄j 6= κj , meaning
that for the given value of τ , the constraint set of Eq. (B.9) is not feasible for ξ,
and that the value of τ should necessarily increase. The algorithm splits the vertex
set V into two non-empty parts V + and V − and we remark that there are no arcs
going from V + to V −, and no flow going from V − to V +. Since the arcs going
from s to V − are saturated, we have that

∑

g∈V −gr τηg ≤
∑

j∈V −u κj . Let us now

consider τ⋆ the solution of Eq. (B.9). Using the induction hypothesis H′(|V −|),
the algorithm computes a new value τ ′ that solves Eq. (B.9) when replacing V by
V − and this new value satisfies the following inequality

∑

g∈V −gr τ
′ηg ≥

∑

j∈V −u κj .
The value of τ ′ has therefore increased and the updated flow ξ now satisfies the
constraints of Eq. (B.9) and therefore τ ′ ≥ τ⋆. Since there are no arcs going from
V + to V −, τ⋆ is feasible for Eq. (B.9) when replacing V by V − and we have that
τ⋆ ≥ τ ′ and then τ ′ = τ⋆.

To prove that the result holds for any equivalent graph, similar arguments to those used
in the proof of Proposition 8 can be exploited, showing that the algorithm computes the
same values of τ and same (s, t)-cuts at each step.

B.2.8 Proof of Proposition 11

Proof. The first point is proven in the proof of Proposition 4. The proof uses the strong
convexity induced by the elastic-net term, when λ2 > 0, and the compactness of X from
Assumption (A).

For the second point, we study the differentiability of α⋆ on sets that satisfy condi-
tions which are more restrictive than the optimality conditions of Eq. (6.16). Concretely,
let D be in D, ε > 0 and s be in {−1, 0,+1}p. The set Ks(D, ε) characterizes the vec-
tors x so that α⋆(x,D) has the same signs as s (and same set of zero coefficients), and
α⋆(x,D) satisfies the conditions of Eq. (6.16), but with two additional constraints: (i)
The magnitude of the non-zero coefficients in α⋆ should be greater than ε. (ii) The in-
equalities in Eq. (6.16) should be strict with a margin ε. The reason for imposing these
assumptions is to restrict ourselves to points x in X that have a stable active set—that
is, the set of non-zero coefficients Λ of α⋆ should not change for small perturbations of
(x,D), when x is in Ks(D, ε).

195

B. Proofs

Proving that there exists a constant κ > 0 satisfying the second point is then easy
(if a bit technical): Let us suppose that Ks(D, ε) is not empty (the case when it is
empty is trivial). Since α⋆ is uniformly Lipschitz with respect to (x,D), so are the
quantities dj⊤(x − Dα⋆) − λ2α

⋆
j and sjα

⋆
j , for all j in {1, . . . , p}. Thus, there exists

κ > 0 independent of x and D such that for all (x′,D′) satisfying ‖x − x′‖2 ≤ κε and
‖D−D′‖F ≤ κε, we have

∀j ∈ {1, . . . , p},
{

|d′j⊤(x′ −D′α⋆′)− λ2α
⋆′
j | ≤ λ1 − ε2 if sj = 0,

sjα
⋆′
j ≥ ε2 if sj 6= 0.

where α⋆′ is short-hand for α⋆(x′,D′), and x′ is therefore in Ks(D′, ε/2). It is then easy
to show that the active set Λ of α⋆ and the signs of α⋆ are stable on Bκε(x)×Bκε(D),
and that α⋆Λ is given by the closed form of Eq. (6.17). α⋆ is therefore twice differentiable
on Bκε(x)×Bκε(D).

B.2.9 Proof of Proposition 12

Proof. The differentiability of f with respect to W is easy using only the compactness
of Y and X and the fact that ℓs is twice differentiable. We will therefore focus on
showing that f is differentiable with respect to D, which is more difficult since α⋆ is not
differentiable everywhere.

Given a small perturbation E in R
m×p of D, we have and compute

f(D+E,W)−f(D,W) = Ey,x

[

∇αℓs(y,W,α⋆)⊤
(
α⋆(x,D+E)−α⋆(x,D)

)]

+O(‖E‖2F),

(B.10)
where the term O(‖E‖2F) comes from the fact that α⋆ is uniformly Lipschitz and X ×D
is compact.

Let now choose W in W and D in D. We have characterized in Lemma 11 the
differentiability of α⋆ on some subsets of X ×D. We consider the set

K(D, ε) ,
⋃

s∈{−1,0,1}p
Ks(D, ε),

and denoting by P our probability measure, it is easy to show with a few calculations
that P(X \K(D, ε)) = O(ε). Using the constant κ defined in Lemma 11, we obtain that
P(X \K(D, ‖E‖F/κ)) = O(‖E‖F). Since ∇αℓs(y,W,α⋆)⊤

(
α⋆(x,D + E)−α⋆(x,D)

)
=

O(‖E‖F), the set X \K(D, ‖E‖F/κ) can be neglected (in the formal sense) when inte-
grating with respect to x in the expectation of Eq. (B.10), and it is possible to show
that

f(D + E,W)− f(D,W) = Tr
(
E⊤g(D,W)

)
+O(‖E‖2F),

where g has the form given by Eq. (6.19). This shows that f is differentiable with respect
to D, and its gradient ∇Df is g.

196

C

Efficient Projection Algorithms

In this section, we address the problem of efficiently projecting a vector onto two sets of
constraints, which allows us to extend our algorithm to various other formulations.

C.1 A Linear-time Projection Algorithm on the
Elastic-Net Constraint

Let u be a vector of R
m. We consider the problem of projecting this vector onto the

elastic-net constraint set:

min
v∈Rm

1
2
‖u− v‖22 s.t. ‖v‖1 +

γ

2
‖v‖22 ≤ τ. (C.1)

To solve efficiently the case γ > 0, we propose Algorithm 9, which extends Brucker
(1984); Maculan and de Paula (1989) and Duchi et al. (2008), and the following lemma
which shows that it solves our problem.

Lemma 15 (Projection onto the elastic-net constraint set.)
For u in R

m, γ ≥ 0 and τ > 0, Algorithm 9 solves Eq. (C.1).

Proof. First, if u is a feasible point of (C.1), then u is a solution. We suppose therefore
that it is not the case—that is, ‖u‖1 + γ2‖u‖22 > τ . Let us define the Lagrangian of (C.1)

L(v, λ) =
1
2
‖u− v‖22 + λ

(‖v‖1 +
γ

2
‖v‖22 − τ

)
.

For a fixed λ, minimizing the Lagrangian with respect to v admits a closed-form solu-
tion v⋆(λ), and a simple calculation shows that, for all j,

v⋆j (λ) =
sign(uj)(|uj | − λ)+

1 + λγ
.

Eq. (C.1) is a convex optimization problem. Since Slater’s conditions are verified and
strong duality holds, it is equivalent to the dual problem

max
λ≥0
L(v⋆(λ), λ).

197

C. Efficient Projection Algorithms

Since λ = 0 is not a solution, denoting by λ⋆ the solution, the complementary slackness
condition implies that

‖v⋆(λ⋆)‖1 +
γ

2
‖v⋆(λ⋆)‖22 = τ. (C.2)

Using the closed form of v⋆(λ) is possible to show that the function λ → ‖v⋆(λ)‖1 +
γ
2‖v⋆(λ)‖22, is strictly decreasing with λ and thus Eq. (C.2) is a necessary and sufficient
condition of optimality for λ. After a short calculation, one can show that this optimality
condition is equivalent to

1
(1 + λγ)2

∑

j∈S(λ)

(

|u[j]|+ γ

2
|uj |2 − λ

(
1 +

γλ

2
))

= τ,

where S(λ) = {j s.t. |uj | ≥ λ}. Suppose that S(λ⋆) is known, then λ⋆ can be
computed in closed-form. To find S(λ⋆), it is then sufficient to find the index k such
that S(λ⋆) = S(|uk|), which is the solution of

max
k∈{1,...,m}

|uk| s.t.
1

(1 + |uk|γ)2

∑

j∈S(|uk|)

(

|uj |+
γ

2
|uj |2 − |uk|

(
1 +

γ|uk|
2

))

< τ.

Lines 4 to 14 of Algorithm 9 are a modification of Duchi et al. (2008) to address this
problem. A similar proof as Duchi et al. (2008) shows the convergence to the solution of
this optimization problem in O(m) in the average case, and lines 15 to 18 of Algorithm 9)
compute λ⋆ after that S(λ⋆) has been identified. Note that setting γ to 0 leads exactly
to the algorithm of Duchi et al. (2008).

As for the dictionary learning problem, a simple modification to Algorithm 9 allows us
to handle the non-negative case, replacing the scalars |uj | by max(uj , 0) in the algorithm.

C.2 A Homotopy Method for Solving the Fused Lasso
Signal Approximation

Let u be a vector of R
m. We define, following Friedman et al. (2007), the fused lasso

signal approximation problem P(γ1, γ2, γ3):

min
v∈Rm

1
2
‖u− v‖22 + γ1‖v‖1 + γ2 FL(v) +

γ3

2
‖v‖22, (C.3)

the only difference with Friedman et al. (2007) being the addition of the last quadratic
term. The method we propose to this problem is a homotopy, which solves P(τγ1, τγ2, τγ3)
for all possible values of τ . In particular, for all ε, it provides the solution of the con-
strained problem

min
v∈Rm

1
2
‖u− v‖22 s.t. γ1‖v‖1 + γ2 FL(v) +

γ3

2
‖v‖22 ≤ ε. (C.4)

The algorithm relies on the following lemma

198

C.2. A Homotopy Method for Solving the Fused Lasso Signal Approximation

Algorithm 9 Efficient projection on the elastic-net constraint.
Require: τ ∈ R; γ ∈ R; u ∈ R

m;
1: if ‖u‖1 + γ

2‖u‖22 ≤ τ then
2: return v← u.
3: else
4: U ← {1, . . . ,m}; s← 0; ρ← 0.
5: while U 6= ∅ do
6: Pick k ∈ U at random.
7: Partition U :

G = {j ∈ U s.t. |uj | ≥ |uk|},
L = {j ∈ U s.t. |uj | < |uk|}.

8: ∆ρ← |G|; ∆s←∑

j∈G |uj |+ γ
2 |uj |2.

9: if s+ ∆s− (ρ+ ∆ρ)(1 + γ
2 |uk|)|uk| < τ(1 + γ|uk|)2 then

10: s← s+ ∆s; ρ← ∆ρ;U ← L.
11: else
12: U ← G \ {k}.
13: end if
14: end while
15: a← γ2τ + γ

2ρ,
16: b← 2γτ + ρ,
17: c← τ − s,
18: λ← −b+

√
b2−4ac

2a
19:

∀j = 1, . . . , n,vj ←
sign(uj)(|uj | − λ)+

1 + λγ

20: return v.
21: end if

Lemma 16
Let v⋆(γ1, γ2, γ3) be the solution of Eq. (C.3), for specific values of γ1, γ2, γ3. Then

• v⋆(γ1, γ2, γ3) = 1
1+γ3

v⋆(γ1, γ2, 0).

• For all i, v⋆i (γ1, γ2, 0) = sign(v⋆i (0, γ2, 0)) max(|v⋆i (0, γ2, 0)| − λ1, 0)—that is,
v⋆(γ1, γ2, 0) can be obtained by soft thresholding of v⋆(0, γ2, 0).

The first point can be shown by short calculation. The second one is proven in
Friedman et al. (2007) by considering subgradient optimality conditions. This lemma
shows that if one knows the solution of P(0, γ2, 0), then P(γ1, γ2, γ3) can be obtained in
linear time.

199

C. Efficient Projection Algorithms

It is therefore natural to consider the simplified problem

min
v∈Rm

1
2
‖u− v‖22 + γ2 FL(v). (C.5)

With the change of variable v1 = v1 and vi = vi − vi−1 for i > 1, this problem can be
recast as a weighted Lasso

min
v∈Rm

1
2
‖u−Dv‖22 +

m∑

i=1

wi|vi|, (C.6)

where w1 = 0 and wi = γ2 for i > 1, and Dij = 1 if i ≥ j and 0 otherwise. We propose
to use LARS (Efron et al., 2004) and exploit the specific structure of the matrix D to
make this approach efficient, by noticing that:

• For a vector w in R
m, computing e = Dw requires O(m) operations instead of

O(m2), by using the recursive formula e1 = w1, ei+1 = wi + ei.

• For a vector w in R
n, computing e = D⊤w requires O(m) operations instead of

O(m2), by using the recursive formula en = wn, ei−1 = wi−1 + ei.

• Let Γ = {a1, . . . , ap} be an active set and suppose a1 < . . . < ap. Then (D⊤ΓDΓ)−1

admits the closed form value

(D⊤ΓDΓ)−1 =













c1 −c1 0 . . . 0 0
−c1 c1 + c2 −c2 . . . 0 0

0 −c2 c2 + c3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . cp−2 + cp−1 −cp−1

0 0 0 . . . −cp−1 cp−1 + cp













,

where cp = 1
n+1−ap and ci = 1

ai+1−ai for i < p.

This allows the implementation of this homotopy method without using matrix inversion
or Cholesky factorization, solving Eq. (C.6) in O(ms) operations, where s is the number
of non-zero values of the optimal solution v.1

Adapting this method for solving Eq. (C.4) requires following the regularization path
of the problems P(0, τγ2, 0) for all values of τ , which provides as well the regulariza-
tion path of the problem P(τλ1, τλ2, τλ3) and stops whenever the constraint becomes
unsatisfied. This procedure still requires O(ms) operations.

Note that in the case γ1 = 0 and γ3 = 0, when only the fused-lasso term is present
in Eq (C.3), the same approach has been proposed in a previous work by Harchaoui and
Lévy-Leduc (2008), and Harchaoui (2008) to solve Eq. (C.5), with the same tricks for
improving the efficiency of the procedure.

1To be more precise, s is the number of kinks of the regularization path. In practice, s is roughly
the same as the number of non-zero values of the optimal solution v.

200

D

Software

D.1 SPAMS, a SParse Modeling Software

We present in this section a software package called SPAMS. It implements several
optimization methods for sparse methods, including our dictionary learning approach
presented in Chapter 2, the LARS algorithm (Efron et al., 2004), a coordinate de-
scent scheme for solving ℓ1-decomposition problems (Fu, 1998), a fast implementation
of orthogonal matching pursuit, the proximal method of Nesterov (2007), and efficient
projection algorithms that are presented in Appendix C. It is adapted for solving a large
number of small/medium-scale sparse regularization problems with the square loss.

The software package is coded in C++ with a Matlab interface, and is compatible
with Linux, Mac and Windows operating systems. It exploits multi-core CPUs when
available. We now present the main functionalities of the software.

D.1.1 Dictionary Learning and Matrix Factorization

The function mexTrainDL is the main component of the toolbox, implementing the learn-
ing algorithms of Chapter 2. It addresses the following optimization problem

min
D∈D

Ex

[

min
α∈A

1
2
‖x−Dα‖22 + λ1‖α‖1 +

λ2

2
‖α‖22

]

,

where x is drawn from a potentially infinite training set, D or A can be various convex
sets as explained in Chapter 2, encoding a priori knowledge on D and the coefficients α,
such as nonnegativity constraints. When only a finite training set X = [x1, . . . ,xn] in
R
m×n is available, the function addresses

min
D∈D

1
n

n∑

i=1

[

min
αi∈A

1
2
‖xi −Dαi‖22 + λ1‖αi‖1 +

λ2

2
‖αi‖22

]

,

which is a classical dictionary learning formulation. The function admits several comput-
ing modes, can use the parameter-free strategy proposed in Chapter 2, or use manually
selected parameters t0 and ρ. This function does not store the coefficients αi and does
not require the whole training set to be uploaded into memory at the same time. When
the problem is reasonably small, A variant of this function called mexTrainDL_memory

can be used instead. We present an example of usage below:

201

D. Software

>> I=im2double(imread(’lena.png’));

>> % extract all overlapping 8x8 patches

>> X=im2cols(I,[8 8],’sliding’);

>> param.lambda=0.15; % regularization parameter

>> param.K=256; % size of the dictionary

>> param.batchsize=200; % size of the minibatch

>> param.iter=1000; % 1000 iterations over minibatches

>> D=mexTrainDL(X,param);

This example (in Matlab) opens the image lena and learns a dictionary with 256 el-
ements, with λ1 = 0.15 and λ2 is implicitly set to 0. More details can be found in
the documentation of the software about the possibilities of this function and its ex-
tensions for solving various matrix factorization problems such as non-negative matrix
factorization or sparse principal component analysis.

D.1.2 Orthogonal Matching Pursuit

The function mexOMP is a fast implementation of the Orthogonal Matching Pursuit al-
gorithm (see Mallat, 1999). Given a matrix of signals X = [x1, . . . ,xn] in R

m×n and a
dictionary D in R

m×p, the algorithm returns a matrix of coefficients A = [α1, . . . ,αn]
in R

p×n which is an approximate solution of the following sequence of NP-hard problems

∀i ∈ J1;nK, min
αi∈Rp

‖xi −Dαi‖22 s.t. ‖αi‖0 ≤ L.

or
∀i ∈ J1;nK, min

αi∈Rp
‖αi‖0 s.t. ‖xi −Dαi‖22 ≤ ε.

For efficiency reasons, the method first computes the covariance matrix D⊤D, then for
each signal xi, it computes D⊤xi and performs the decomposition with a Cholesky-based
algorithm (see Cotter et al., 1999). We again present a Matlab example:

>> I=im2double(imread(’lena.png’));

>> % extract all overlapping 8x8 patches

>> X=im2cols(I,[8 8],’sliding’);

>> % remove the mean value of the patches and normalize them.

>> X=pre_process(X);

>> % upload a dictionary into memory

>> D=load(’dictionary.mat’);

>> param.eps=0;

>> param.L=10; % set the sparsity parameter to 10

>> alpha=mexOMP(X,D,param);

Such a decomposition of all patches from the image lena can in fact be done efficiently.
On a recent 8-cores 2.83Ghz computer, we have measured that our implementation is
able to solve 230 000 signals per seconds.

202

D.1. SPAMS, a SParse Modeling Software

D.1.3 LARS algorithm

The function mexLasso is a fast implementation of the LARS algorithm (Efron et al.,
2004) for solving the Lasso (Tibshirani, 1996) or the Elastic-net problems (Zou and
Hastie, 2005). As in the previous section, we are given a matrix of signals X =
[x1, . . . ,xn] in R

m×n and a dictionary D in R
m×p. The algorithm returns a matrix of

coefficients A = [α1, . . . ,αn] in R
p×n which is the exact solution of one of the following

convex problems

∀i ∈ J1;nK, min
αi∈Rp

1
2
‖xi −Dαi||22 + λ1‖αi‖1 +

λ2

2
‖αi‖22. (D.1)

or

∀i ∈ J1;nK, min
αi∈Rp

1
2
‖xi −Dαi‖22 +

λ2

2
‖αi‖22 s.t. ‖αi‖1 ≤ λ1,

or
∀i ∈ J1;nK, min

αi∈Rp
‖αi‖1 s.t.

1
2
‖xi −Dαi‖22 ≤ λ1, (D.2)

For efficiency reaons, this implementation uses the same tricks as mexOMP, and is based
on Cholesky decomposition. It also has an option to handle nonnegativity constraints.
When the solution is very sparse and the problem size is reasonable, this approach
can be very efficient. Moreover, it gives the solution with an exact precision, and its
performance does not depend on the correlation of the dictionary elements, except when
the solution is not unique. In such a case it is necessary to use a nonzero value for the
elastic-net parameter λ2. Here is an example in Matlab:

>> I=im2double(imread(’lena.png’));

>> % extract all overlapping 8x8 patches

>> X=im2cols(I,[8 8],’sliding’);

>> % remove the mean value of the patches and normalize them.

>> X=pre_process(X);

>> % upload a dictionary into memory

>> D=load(’dictionary.mat’);

>> param.lambda=0.15;

>> alpha=mexLasso(X,D,param);

On the same 8-cores computer used in the previous section, we have been able to solve
77 000 signal decompositions per second. This number can of course vary with the
problem size and the level of regularization (see the benchmark in Section 1.4.5 for
instance).

D.1.4 Coordinate Descent

The function mexCD is an implementation a coordinate-descent approach for solving
Eq. (D.1) and Eq. (D.2). For Eq. (D.2), the algorithm solves a sequence of problems of
the form (D.1) using simple heuristics. Coordinate descent is very simple and in practice

203

D. Software

very powerful. It performs well when the correlation between the dictionary elements is
small (see the benchmark in Section 1.4.5). Again, we give a simple example

>> I=im2double(imread(’lena.png’));

>> % extract all overlapping 8x8 patches

>> X=im2cols(I,[8 8],’sliding’);

>> % remove the mean value of the patches and normalize them.

>> X=pre_process(X);

>> % upload a dictionary into memory

>> D=load(’dictionary.mat’);

>> param.lambda=0.15; % regularization parameter

>> param.tol=1e-2; % tolerance parameter

>> param.itermax=100; % maximum number of cycles

>> alpha=mexCD(X,D,param);

On the same 8-core computer used in the previous section, we have been able to solve
93 000 signal decompositions per second. This number can of course vary with the prob-
lem size, the level of regularization and the amount of correlation among the dictionary
elements (see the benchmark in Section 1.4.5).

D.1.5 Miscellaneous

In addition to the main functions presented above, the toolbox offers other functions

• It implements matrix multiplications on sparse matrices that are sometimes sig-
nificantly faster than the Matlab ones.

• It implements a conjugate gradient solver.

• It implements the proximal method of Nesterov (2007). However, this function
will be removed in future release, since it becomes obsolete with the new software
package presented in Section D.2.

• It implements the fast algorithm for performing projections on some convex sets
which has been presented in Appendix C.

• Solvers for group-sparsity, (greedy approach for the non-convex setting, and block-
coordinate descent algorithm for the convex one), are also implemented, but not
yet freely available. They will be released in a next version of the toolbox.

In addition to that, we are planning to make the software open source, and we are
welcoming new contributors to develop interfaces for other languages, such as Python1

or R.2

1http://www.python.org
2http://www.r-project.org

204

http://www.python.org
http://www.r-project.org

D.2. Efficient Sparse Solvers with Proximal Methods

D.2 Efficient Sparse Solvers with Proximal Methods

The SPAMS software package we have presented in the previous section is well adapted
for solving a large number of small and medium-scale sparse decomposition problems
with the square loss, which is typical from the classical dictionary learning framework.
We now present a new software package that is adapted for solving a wide range of
possibly large-scale learning problems, with several combinations of losses and regular-
ization terms. The method implements the proximal methods of Beck and Teboulle
(2009), and includes the proximal solvers for the tree-structured regularization of Jenat-
ton et al. (2010a), and the solver of Mairal et al. (2010c) for general structured sparse
regularization, which is presented in Chapter 3.

As for SPAMS, the algorithms are implemented in C++ with a Matlab interface,
and will be made freely available. The solver for structured sparse regularization norms
includes a C++ max-flow implementation of the push-relabel algorithm of Goldberg and
Tarjan (1986), with heuristics proposed by Cherkassky and Goldberg (1997).

This implementation also provides robust stopping criteria based on duality gaps.
It can handle intercepts (unregularized variables). The general formulation that our
software can solve take the form

min
w∈Rp

[g(w) , f(w) + λψ(w)],

where f is a smooth loss function and ψ is a regularization function. When one optimizes
a matrix W in R

p×r instead of a vector w in R
p, we will write

min
W∈Rp×r

[g(W) , f(W) + λψ(W)].

Note that the software can possibly handle nonnegativity constraints.
We start by presenting the type of regularization implemented in the software

D.2.1 Regularization Functions

Our software can handle the following regularization functions ψ for vectors w in R
p:

• The Tikhonov regularization: ψ(w) , 1
2‖w‖22.

• The ℓ1-norm: ψ(w) , ‖w‖1.

• The tree-structured sum of ℓ2-norms: ψ(w) ,
∑

g∈G ηg‖wg‖2, where G is
a tree-structured set of groups, as defined in Chapter 3, and the ηg are positive
weights.

• The tree-structured sum of ℓ∞-norms: ψ(w) ,
∑

g∈G ηg‖wg‖∞. See also
Chapter 3 for the exact definition.

• General sum of ℓ∞-norms: ψ(w) ,
∑

g∈G ηg‖wg‖∞, where no assumption are
made on the groups G.

205

D. Software

Our software also handles regularization functions ψ on matrices W in R
p×r for multi-

task regression problems. In particular,

• The ℓ1/ℓ2-norm: ψ(W) ,
∑p
i=1 ‖Wi‖2, where Wi denotes the i-th row of W.

• The ℓ1/ℓ∞-norm: ψ(W) ,
∑p
i=1 ‖Wi‖∞,

• The multi-task tree-structured sum of ℓ∞-norms:

ψ(W) ,

r∑

i=1

∑

g∈G
ηg‖wig‖∞ + γ

∑

g∈G
ηgmax
j∈g
‖Wj‖∞, (D.3)

where the first double sums is in fact a sum of independent structured norms on
the columns wi of W, and the right term is a tree-structured regularization norm
applied to the ℓ∞-norm of the rows of W, thereby inducing the tree-structured
regularization at the row level. G is here a tree-structured set of groups.

• The multi-task general sum of ℓ∞-norms is the same as Eq. (D.3) except that
the groups G are general overlapping groups.

All of these regularization terms for vectors or matrices can be coupled with nonnegativ-
ity constraints. It is also possible to add an intercept, which one wishes not to regularize,
and we will include this possibility in the next section. After having presented the regu-
larization terms which our software can handle, we present the various formulations that
we address

D.2.2 Problems Addressed

We present here regression or classification formulations and their multi-task variants.

Regression Problems with the Square Loss

Given a training set {xi, yi}ni=1, with xi ∈ R
p and yi ∈ R for all i in J1;nK, we address

min
w∈Rp,b∈R

1
n

n∑

i=1

1
2

(yi −w⊤xi − b)2 + λψ(w),

where b is an optional variable acting as an “intercept”, which is not regularized, and ψ
can be any of the regularization functions presented above. Let us consider the vector y

in R
n that carries the entries yi. The problem without the intercept takes the following

form, which we have already encountered in this thesis, but with different notations:

min
w∈Rp

1
2n
‖y−X⊤w‖22 + λψ(w),

206

D.2. Efficient Sparse Solvers with Proximal Methods

Classification Problems with the Logistic Loss

The next formulation that our software can solve is the regularized logistic regression
formulation. We are again given a training set {xi, yi}ni=1, with xi ∈ R

p, but the vari-
ables yi are now in {−1,+1} for all i in J1;nK. The optimization problem we address
is

min
w∈Rp,b∈R

1
n

n∑

i=1

log(1 + e−yi(w
⊤xi+b) + λψ(w),

with again ψ taken to be one of the regularization function presented above.

Multi-class Classification Problems with the Softmax Loss

We have also implemented a multi-class logistic classifier (or softmax). For a classifica-
tion problem with r classes, we are given a training set {xi, yi}ni=1, where the variables xi

are still vectors in R
p, but the yi’s have integer values in {1, 2, . . . , r}. The formulation

we address is the following multi-class learning problem

min
W∈Rp×r,b∈Rr

1
n

n∑

i=1

log
(r∑

j=1

e(wj−wyi)⊤xi+bj−byi

)

+ λ
r∑

j=1

ψ(wj), (D.4)

where W = [w1, . . . ,wr] and the optional vector b in R
r carries intercepts for each class.

Multi-task Regression Problems with the Square Loss

We are now considering a problem with r tasks, and a training set {xi,yi}ni=1, where
the variables xi are still vectors in R

p, and yi is a vector in R
r. We are looking for

r regression vectors wj , for j ∈ J1; rK, or equivalently for a matrix W = [w1, . . . ,wr]
in R

p×r. The formulation we address is the following multi-task regression problem

min
W∈Rp×r,b∈Rr

1
r

r∑

j=1

1
n

n∑

i=1

1
2

(yij −w⊤xi − bj)2 + λψ(W),

where ψ is any of the regularization function on matrices we have presented in the
previous section. Note that by introducing the appropriate variables Y, the problem
without intercept could be equivalently rewritten

min
W∈Rp×r

1
2rn
‖Y−X⊤W‖2F + λψ(W).

Multi-task Classification Problems with the Logistic Loss

The multi-task version of the logistic regression follows the same principle. We consider
r tasks, and a training set {xi,yi}ni=1, with the xi’s in R

p, and the yi’s are vectors in
{−1,+1}r. We look for a matrix W = [w1, . . . ,wr] in R

p×r. The formulation is the
following multi-task regression problem

min
W∈Rp×r,b∈Rr

1
r

r∑

j=1

1
n

n∑

i=1

log
(

1 + e−yi
j
(w⊤xi+bj)

)

+ λψ(W).

207

D. Software

Multi-task and Multi-class Classification Problems with the Softmax Loss

The multi-task/multi-class version directly follows from the formulation of Eq. (D.4),
but associates with each class a task, and as a consequence, regularizes the matrix W

in a particular way:

min
W∈Rp×r,b∈Rr

1
n

n∑

i=1

log
(r∑

j=1

e(wj−wyi)⊤xi+bj−byi

)

+ λψ(W).

We now move to the computation of duality gaps, which is an important feature of our
software.

D.2.3 Duality Gaps with Fenchel Duality

We are going to use intensively Fenchel Duality, which has been presented in Sec-
tion 1.4.1. Let us consider again the problem

min
w∈Rp

[g(w) , f(w) + λψ(w)], (D.5)

We first notice that for all the formulations we have been interested in, g(w) can be
rewritten

g(w) = f̃(X⊤w) + λψ(w), (D.6)

where X = [x1, . . . ,xn] are training vectors, and f̃ is an appropriated smooth real-valued
function of R

n, and ψ one of the regularization functions we have introduced.
Given a primal variable w in R

p and a dual variable κ in R
n, we obtain using classical

Fenchel duality rules (Borwein and Lewis, 2006), that the following quantity is a duality
gap for problem (D.5):

δ(w,κ) , g(w) + f̃∗(κ) + λψ∗(−Xκ/λ),

where f̃∗ and ψ∗ are respectively the Fenchel conjugates of f̃ and ψ. Denoting by w⋆

the solution of Eq. (D.5), the duality gap is interesting in the sense that it upperbounds
the difference with the optimal value of the function:

δ(w,κ) ≥ g(w)− g(w⋆) ≥ 0.

Similarly, we will consider pairs of primal-dual variables (W,K) when dealing with
matrices.

During the optimization, sequences of primal variables w are available, and one
wishes to exploit duality gaps for estimating the difference g(w)− g(w⋆). This requires
the following components:

• being able to efficiently compute f̃∗ and ψ∗.

• being able to obtain a “good” dual variable κ given a primal variable w, such that
δ(w,κ) is close to g(w)− g(w⋆).

208

D.2. Efficient Sparse Solvers with Proximal Methods

We suppose that the first point is satisfied (we will detail these computations for
every loss and regularization functions in the sequel), and explain how to choose κ in
general (details will also be given in the sequel).

Let us first consider the choice that associates with a primal variable w, the dual
variable

κ(w) , ∇f̃(X⊤w), (D.7)

and let us compute δ(w,κ(w)). First, easy computations show that for all vectors z

in R
n, f̃∗

(∇f̃(z)
)

= z⊤∇f̃(z)− f̃(z), which gives

δ(w,κ(w)) = f̃(X⊤w) + λψ(w) + f̃∗(∇f̃(X⊤w)) + λψ∗(−X∇f̃(X⊤w)/λ),

= λψ(w) + w⊤X∇f̃(X⊤w) + λψ∗(−X∇f̃(X⊤w)/λ).

We now use the classical Fenchel-Young inequality (see Borwein and Lewis, 2006, Propo-
sition 3.3.4) on the function ψ, which gives

δ(w,κ(w)) ≥ w⊤X∇f̃(X⊤w)−w⊤X∇f̃(X⊤w) = 0,

with equality if and only if −X∇f̃(X⊤w) belongs to ∂ψ(w). Interestingly, we now that
first-order optimality conditions for Eq. (D.6) gives that −X∇f̃(X⊤w⋆) ∈ ∂ψ(w⋆). We
have now in hand a non-negative function w 7→ δ(w,κ(w)) of w, that upperbounds
g(w)− g(w⋆) and satisfying δ(w⋆,κ(w⋆)) = 0.

This is however not a sufficient property to make it a good measure of the quality of
the optimization, and further work is required, that will be dependent on f̃ and ψ. We
have indeed proven that δ(w⋆,κ(w⋆)) is always 0. However, for w different than w⋆,
δ(w⋆,κ(w⋆)) can be infinite, making it a non-informative duality-gap. The reasons for
this can be one of the following:

• The term ψ∗(−X∇f̃(X⊤w)/λ) might have an infinite value.

• Intercepts make the problem more complicated. One can write the formulation
with an intercept by adding a row to X filled with the value 1, add one dimension
to the vector w, and consider a regularization function ψ that does regularize the
last entry of w. This further complexifies the computation of ψ∗ and its definition,
as shown in the next section.

Let us now detail how we proceed to solve these problems, but first without consid-
ering the intercept. The analysis is similar when working with matrices W instead of
vectors w.

Duality Gaps without Intercepts

Let us show how to compute the Fenchel conjugate of the functions we have introduced.
We now present the Fenchel conjugate of the loss functions f̃ .

209

D. Software

• The square loss

f̃(z) = 1
2n‖y− z‖22,

f̃∗(κ) = n
2 ‖κ‖22 + κ⊤y.

• The logistic loss

f̃(z) = 1
n

∑n
i=1 log(1 + e−yizi)

f̃∗(κ) =

{

+∞ if ∃ i ∈ J1;nK s.t. yiκi /∈ [−1, 0],
∑n
i=1(1 + yiκi) log(1 + yiκi)− yiκi log(−yiκi) otherwise.

• The multiclass logistic loss (or softmax). The primal variable is now a matrix
Z, in R

n×r, which represents the product X⊤W. We denote by K the dual variable
in R

n×r.

f̃(Z) = 1
n

∑n
i=1 log

(
∑r
j=1 e

Zij−Ziyi

)

f̃∗(K) =







+∞ if ∃i ∈ J1;nK s.t. {Kij < 0 and j 6= yi} or Kiyi < −1,
∑n
i=1

[
∑

j 6=yi
Kij log(Kij) + (1 + Kiyi) log(1 + Kiyi)

]

.

Our first remark is that the choice Eq. (D.7) ensures that f̃(κ) is not infinite.
As for the regularization function, except for the Tikhonov regularization which is

self-conjugate (it is equal to its Fenchel conjugate), we have considered functions that
are norms. There exists therefore a norm ‖.‖ such that ψ(w) = ‖w‖, and we denote by
‖.‖∗ its dual-norm. In such a case, the Fenchel conjugate of ψ for a vector γ in R

p takes
the form

ψ∗(γ) =

{

0 if ‖γ‖∗ ≤ 1,

+∞ otherwise.

It turns out that for almost all the norms we have presented, there exists (i) either a
closed form for the dual-norm or (ii) there exists an efficient algorithm evaluating it.
The only one which does not conform to this statement is the tree-structured sum of
ℓ2-norms, for which we do not know how to evaluate it efficiently.

One can now slightly modify the definition of κ to ensure that ψ∗(−Xκ/λ) 6= +∞.
A natural choice is

κ(w) , min
(

1,
λ

‖X∇f̃(X⊤w)‖∗

)

∇f̃(X⊤w),

which is the one we have implemented. With this new choice, it is easy to see that for all
vectors w in R

p, we still have f̃∗(κ) 6= +∞, and finally, we also have δ(w,κ(w)) < +∞
and δ(w⋆,κ(w⋆)) = 0, making it potentially a good duality gap.

210

D.2. Efficient Sparse Solvers with Proximal Methods

Duality Gaps with Intercepts

Even though adding an intercept does seem a simple modification to the original problem,
it induces difficulties for finding good dual variables.

We recall that having an intercept is equivalent to having a problem of the type (D.6),
by adding a row to X filled with the value 1, adding one dimension to the vector w (or
one row for matrices W), and by using a regularization function that does not depend
on the last entry of w (or the last row of W).

Suppose that we are considering a problem of type (D.6) of dimension p + 1, but
we are using a regularization function ψ̃ : R

p+1 → R, such that for a vector w in R
p+1,

ψ̃(w) , ψ(wJ1;pK), where ψ : R
p → R is one of the regularization function we have

introduced. Then, considering a primal variable w, a dual variable κ, and writing
γ , −Xκ/λ, we are interested in computing

ψ̃∗(γ) =

{

+∞ if γp+1 6= 0

ψ∗(γJ1;pK) otherwise,

which means that in order the duality gap not to be infinite, one needs in addition to
ensure that γp+1 be zero. Since the last row of X is filled with ones, this writes down
∑p+1
i=1 κi = 0. For the formulation with matrices W and K, the constraint is similar but

for every column of K.
Let us now detail how we proceed for every loss function to find a “good” dual

variable κ satisfying this additional constraint, given a primal variable w in R
p+1, we

first define the auxiliary function

κ′(w) , ∇f̃(X⊤w),

(which becomes K′(W) , ∇f̃(X⊤W) for matrices), and then define another auxiliary
function κ′′(w) as follows, to take into account the additional constraint

∑p+1
i=1 κi = 0.

• For the square loss, we define another auxiliary function:

κ′′(w) , κ′(w)− 1
n

1⊤p+1κ
′(w)1p+1

where 1p+1 is a vector of size p + 1 filled with ones. This step, ensures that
∑p+1
i=1 κ

′′(w)i = 0.

• For the logistic loss, the situation is slightly more complicated since additional
constraints are involved in the definition of f̃∗.

κ′′(w) , arg min
κ∈Rn

‖κ− κ′(w)‖22 s.t.
n∑

i=1

κi = 0 and ∀i ∈ J1;nK, κi ∈ [−1, 0].

This problem can be solved in linear-time (see Brucker, 1984; Hochbaum and Hong,
1995) using a similar algorithm as for the projection onto the ℓ1-ball, since it is an
instance of a quadratic knapsack problem.

211

D. Software

• For the multi-class logistic loss, we proceed in a similar way, for every column
Kj of K, j ∈ J1; rK:

K′′j(w) , arg min
κ∈Rn

‖K′j − κ′(w)‖22 s.t.
n∑

i=1

κi = 0 and

∀i ∈ J1;nK, {κi ≥ 0 if j 6= yi} and {κi ≥ −1 if yi = j}.

When the function ψ is the Tykhonov regularization function, we end the process by
setting κ(w) = κ′′(w). When it is a norm, we choose, as before for taking into account
the constraint ‖Xκ‖∗ ≤ λ,

κ(w) , min
(

1,
λ

‖Xκ′′(w)‖∗
)

κ′′(w),

with a similar formulation for matrices W and K.
Even though finding dual variables while taking into account the intercept requires

quite a lot of engineering, notably implementing a quadratic knapsack solver, it can be
done efficiently.

D.2.4 Usage

We now present examples of problems that can be solved using our software. The toolbox
contains 9 functions, mexFista*, mexIsta* and mexProximal*, where * is either (i) Flat

for all regularization functions that do not involve structured sparsity, (ii) Tree for tree-
structured regularization functions, including its multi-task version or (iii) Graph for a
general sum of ℓ∞-norms. mexFista* implements the algorithm FISTA of Beck and
Teboulle (2009), mexIsta* its basic version ISTA, and mexProximal* solves a single
instance of the proximal problem.

Let us now give three simple examples. First, a Lasso with intercept

>> % generate data

>> m=50; p=200;

>> y=randn(m,1);

>> Xt=randn(m,p);

>>

>> param.lambda=0.15; % regularization parameter

>> param.loss=0; % square loss

>> param.regul=0; % lasso

>> param.tol=1e-3; % stopping criterion on relative duality gap

>>

>> % add intercept

>> param.intercept=true;

>> Xt=[Xt ones(m,1)];

>>

212

D.2. Efficient Sparse Solvers with Proximal Methods

>> w0=zeros(p+1,1);

>> w=mexFistaFlat(y,Xt,w0,param);

Then, a more complicated example, with a multi-task ℓ1/ℓ2 norm on matrices, with-
out intercept

>> % generate data

>> m=50; p=200; r=10;

>> Y=randn(m,r);

>> Xt=randn(m,p);

>>

>> param.lambda=0.15; % regularization parameter

>> param.loss=0; % square loss

>> param.regul=4; % l1/l2 norm

>> param.tol=1e-3; % stopping criterion on relative duality gap

>>

>> W0=zeros(p,r);

>> W=mexFistaFlat(Y,Xt,W0,param);

Our last example involves solving the proximal operator corresponding to a tree-
structured sparse regularization with sums of ℓ∞-norms.

>> % generate data

>> m=50; p=200;

>> y=randn(m,1);

>>

>> param.lambda=0.15; % regularization parameter

>> param.loss=0; % square loss

>> param.regul=2; % tree-structured regularization

>> tree=load(’tree.mat’); % load a tree structure

>>

>> u=mexProximalTree(y,tree,param);

For other possibilities, especially structured-sparsity solvers or the use of other loss
functions, more details will be included in the official documentation of the software
package.

213

Bibliography

A. Agarwal and B. Triggs. Hyperfeatures - multilevel local coding for visual recogni-
tion. In Proceedings of the European Conference on Computer Vision (ECCV), Graz,
Austria, May 2006.

M. Aharon and M. Elad. Sparse and redundant modeling of image content using an
image-signature-dictionary. SIAM Journal on Imaging Sciences, 1(3):228–247, July
2008.

M. Aharon, M. Elad, and A. M. Bruckstein. The K-SVD: An algorithm for designing
of overcomplete dictionaries for sparse representations. IEEE Transactions on Signal
Processing, 54(11):4311–4322, November 2006.

N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE Transcations
on Computers, C-23(1):90–93, 1974.

R. K. Ahuja, T. L. Magnanti, and J. Orlin. Network Flows. Prentice Hall, 1993.

P. Arbelaez. Boundary extraction in natural images using ultrametric contour maps. In
Proceedings POCV, 2006.

A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine
Learning, 73(3):243–272, 2008.

S. P. Awate and R. T. Whitaker. Unsupervised, information-theoretic, adaptive image
filtering for image restoration. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 364–376, 2006.

M. Babenko and A. V. Goldberg. Experimental evaluation of a parametric flow algo-
rithm. Technical report, Microsoft Research, 2006. MSR-TR-2006-77.

F. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of
Machine Learning Research, 9:1179–1224, 2008.

F. Bach. High-dimensional non-linear variable selection through hierarchical kernel learn-
ing. Technical report, arXiv:0909.0844, 2009.

215

Bibliography

F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. Technical report,
2008. Preprint arXiv:0812.1869.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with sparsity-
inducing norms. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for
Machine Learning. The MIT Press, 2011. to appear.

R. G. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compressive sensing.
IEEE Transactions on Information Theory, 2010. to appear.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine
Learning, 2(1), 2009.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In Proc.
Comp. Graph. and Interact. Tech., pages 417–424, 2000.

D. P. Bertsekas. Nonlinear programming. Athena Scientific Belmont, 1999.

D. P. Bertsekas. Linear Network Optimization. MIT Press, 1991.

P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig
selector. Annals of statistics, 37(4):1705–1732, 2009.

D. Blei and J. McAuliffe. Supervised topic models. In J.C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20,
pages 121–128. MIT Press, 2008.

D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, January 2003.

D. Blei, T. Griffiths, and M. Jordan. The nested chinese restaurant process and bayesian
nonparametric inference of topic hierarchies. Journal of the ACM, 57(2):1–30, 2010.

J. F. Bonnans and A. Shapiro. Optimization problems with perturbations: A guided
tour. SIAM Review, 40(2):202–227, 1998.

J. F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer,
2000.

J. M. Borwein and A. S. Lewis. Convex analysis and nonlinear optimization: Theory
and examples. Springer, 2006.

L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor,
Online Learning and Neural Networks. 1998.

216

Bibliography

L. Bottou and O. Bousquet. The trade-offs of large scale learning. In J.C. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems,
volume 20, pages 161–168. MIT Press, 2008.

Y-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features for recogni-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2010.

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

Y. Boykov, O. Veksler, and R. Zabih. Efficient approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):
1222–1239, November 2001.

D. M. Bradley and J. A. Bagnell. Differentiable sparse coding. In D. Koller, D. Schuur-
mans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing
Systems, volume 21, pages 113–120. 2009.

P. Brucker. An O(n) algorithm for quadratic knapsack problems. Oper. Res. Lett., 3:
163–166, 1984.

A. Buades, B. Coll, and J.M. Morel. A review of image denoising algorithms, with a
new one. SIAM Multiscale Modelling and Simulation, 4(2):490, 2005.

A. Buades, B. Coll, J-M. Morel, and C. Sbert. Self-similarity driven demosaicking. IEEE
Transactions on Image Processing, 18(6):1192–1202, 2009.

W. L. Buntine. Variational extensions to em and multinomial pca. In Proceedings of the
European Conference on Machine Learning (ECML), 2002.

E. Candes. Compressive sampling. In Proceedings of the International Congress of
Mathematicians, volume 3, 2006.

E. Candes and D. L. Donoho. New tight frames of curvelets and the problem of approx-
imating piecewise C2 images with piecewise C2 edges. Comm. Pure Appl. Math., 57:
219–266, February 2004.

E. Candes and D. L. Donoho. Recovering edges in ill-posed inverse problems: Optimality
of curvelet frames. Annals of statistics, 30(3):784–842, June 2002.

E. J. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted l1 minimization.
Journal of Fourier Analysis and Applications, 14:877–905, 2008.

E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal
of the ACM, 2010.

J. F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–698, November 1986.

217

Bibliography

V. Cevher, M. F. Duarte, C. Hegde, and R. Baraniuk. Sparse signal recovery using
markov random fields. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, Advances in Neural Information Processing Systems 21, pages 257–264. 2009.

S. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresholding for image denoising
and compression. IEEE Transactions on Image Processing, 9(9):1532–1546, 2000.

P. Chatterjee and P. Milanfar. Clustering-based denoising with locally learned dictio-
naries. IEEE Transactions on Image Processing, 18(7):1438–1451, 2009.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM Journal on Scientific Computing, 20(1):33–61, 1998.

B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method for
the maximum flow problem. Algorithmica, 19(4):390–410, 1997.

K. Chin, S. DeVries, J. Fridlyand, P.T. Spellman, R. Roydasgupta, W. L. Kuo, A. Lapuk,
R. M. Neve, Z. Qian, T. Ryder, et al. Genomic and transcriptional aberrations linked
to breast cancer pathophysiologies. Cancer Cell, 10(6):529–541, 2006.

R. R. Coifman and D. L. Donoho. Translation-invariant de-noising. Lectures notes in
statistics, pages 125–125, 1995.

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In
Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer,
2010.

S. F. Cotter, J. Adler, B. Rao, and K. Kreutz-Delgado. Forward sequential algorithms
for best basis selection. In IEEE Proceedings of Vision Image and Signal Processing,
pages 235–244, 1999.

S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado. Sparse solutions to linear
inverse problems with multiple measurement vectors. IEEE Transactions on Signal
Processing, 53(7):2477–2488, 2005.

A. Criminisi, P. Pérez, and K. Toyama. Region filling and object removal by exemplar-
based inpainting. IEEE Transactions on Image Processing, 13(9):1200–1212, 2004.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Inverse halftoning by pointwise
shape-adaptive DCT regularized deconvolution. In Proceedings of the International
TICSP Workshop on Spectral Methods Multirate Signal Processing (SMMSP), 2006.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image Denoising by Sparse 3-D
Transform-Domain Collaborative Filtering. IEEE Transactions on Image Processing,
16(8):2080–2095, 2007.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image restoration by sparse 3d
transform-domain collaborative filtering. In Proceedings of SPIE Electronic Imaging,
2008.

218

Bibliography

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 886–893, 2005.

J. M. Danskin. The theory of max-min, and its application to weapons allocation prob-
lems. Ökonometrie und Unternehmensforschung, 1967.

A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A direct formu-
lation for sparse PCA using semidefinite programming. SIAM Review, 49(3):434–448,
2007.

A. d’Aspremont, F. Bach, and L. El Ghaoui. Optimal solutions for sparse principal
component analysis. Journal of Machine Learning Research, 9:1269–1294, 2008.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint. Comm. Pure Appl. Math, 57:1413–1457,
2004.

M. Do and M. Vetterli. Framing pyramids. IEEE Transactions on Signal Processing, 51
(9):2329–2342, 2003a.

M. Do and M. Vetterli. Contourlets, Beyond Wavelets. Academic Press, New York,
2003b.

P. Dollar, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2006.

D. L. Donoho. Wedgelets: Nearly minimax estimation of edges. Annals of statistics, 27
(3):859–897, June 1998.

D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):
1289–1306, April 2006.

D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet
shrinkage. Journal of the American Statistical Association, 90(432):1200–1224, 1995.

M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K.F. Kelly, and R.G.
Baraniuk. Single-pixel imaging via compressive sampling. IEEE Signal Processing
Magazine, 25(2):83–91, 2008.

M. Duarte-Carvajalino and G. Sapiro. Learning to sense sparse signals: Simultaneous
sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image
Processing, 18(7):1395–1408, 2009.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the
ℓ1-ball for learning in high dimensions. In Proceedings of the International Conference
on Machine Learning (ICML), 2008.

219

Bibliography

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of
statistics, 32(2):407–499, 2004.

A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV), 1999.

M. Elad and M. Aharon. Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Transactions on Image Processing, 54(12):3736–3745,
December 2006.

M. Elad, J-L Starck, P. Querre, and D. L. Donoho. Simultaneous cartoon and tex-
ture image inpainting using morphological component analysis (mca). Applied and
Computational Harmonic Analysis, 19:340–358, November 2005.

K. Engan, S. O. Aase, and J. H. Husoy. Frame based signal compression using method
of optimal directions (MOD). In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 1999.

R. Eslami and H. Radha. Translation-invariant contourlet transform and its application
to image denoising. IEEE Transactions on Image Processing, 15(11):3362–3374, 2006.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2006 (VOC2006) Results, 2006.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results, 2007.

C. Févotte, N. Bertin, and J. L. Durrieu. Nonnegative matrix factorization with the
itakura-saito divergence: With application to music analysis. Neural Computation, 21
(3):793–830, 2009.

D. L. Fisk. Quasi-martingales. Transactions of the American Mathematical Society, 120
(3):359–388, 1965.

R. W. Floyd and L. Steinberg. An adaptive algorithm for spatial grey scale. In Proceed-
ings of the Society of Information Display, volume 17, pages 75–77, 1976.

A. Foi, V. Katkovnik, K. Egiazarian, and J. Astola. Inverse halftoning based on the
anisotropic lpa-ici deconvolution. In Proceedings of Int. TICSP Workshop Spectral
Meth. Multirate Signal Process., 2004.

A. Foi, K. Dabov, V. Katkovnik, and K. Egiazarian. Shape-adaptive DCT for denoising
and image reconstruction. In Proceedings of SPIE Electronic Imaging, 2006.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian J. Math.,
8(3):399–404, 1956.

W. T. Freeman and E. H. Adelson. The design and the use of steerable filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–906, 1991.

220

Bibliography

J. Friedman, T. Hastie, H. Hölfling, and R. Tibshirani. Pathwise coordinate optimization.
Annals of Applied Statistics, 1(2):302–332, 2007.

W. J. Fu. Penalized regressions: The bridge versus the Lasso. Journal of Computational
and Graphical Statistics, 7:397–416, 1998.

J. J. Fuchs. Recovery of exact sparse representations in the presence of bounded noise.
IEEE Transactions on Information Theory, 51(10):3601–3608, 2005.

G. Gallo, M. E. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algo-
rithm and applications. SIAM Journal of Computing, 18:30–55, 1989.

P. Garrigues and B. Olshausen. Learning horizontal connections in a sparse coding
model of natural images. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors,
Advances in Neural Information Processing Systems 20, pages 505–512. MIT Press,
Cambridge, MA, 2008.

G. Gasso, A. Rakotomamonjy, and S. Canu. Recovering sparse signals with non-convex
penalties and dc programming. IEEE Transactions on Signal Processing, 57(12):4686–
4698, 2009.

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illu-
mination cone models for face recognition under variable lighting and pose. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(6):643–660, 2001.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. In
Proc. of ACM Symposium on Theory of Computing, pages 136–146, 1986.

G. H. Golub and C. F. Van Loan. Matrix computations. John Hopkins University Press,
1996.

R. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shift-invariant sparse coding for au-
dio classification. In Proceedings of the Twenty-third Conference on Uncertainty in
Artificial Intelligence (UAI), 2007.

J. A. Guerrero-Colon, L. Mancera, and J. Portilla. Image restoration using space-variant
gaussian scale mixtures in overcomplete pyramids. IEEE Transactions on Image Pro-
cessing, 17(1):27–41, 2008.

B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau. Color plane interpolation using
alternating projections. IEEE Transactions on Image Processing, 11(9):997–1013,
2002.

B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau.
Demosaicking: color filter array interpolation. IEEE Sig. Proc. Mag., 22(1):44–54,
2005.

221

Bibliography

B. Haasdonk and D. Keysers. Tangent distance kernels for support vector machines. In
Proceedings of the International Conference on Pattern Recognition (ICPR), 2002.

E. T. Hale, W. Yin, and Y. Zhang. A fixed-point continuation method for l1-regularized
minimization with applications to compressed sensing. Technical report, Rice Univer-
sity„ 2007. CAAM Technical Report TR07-07.

Z. Harchaoui. Méthodes à Noyaux pour la Détection. PhD thesis, Télécom ParisTech,
2008.

Z. Harchaoui and C. Lévy-Leduc. Catching change-points with Lasso. In J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Process-
ing Systems, volume 20, pages 161–168. MIT Press, 2008.

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of statistical
learning: data mining, inference and prediction. Springer, 2009. 2nd Edition.

D. S. Hochbaum and S. P. Hong. About strongly polynomial time algorithms for
quadratic optimization over submodular constraints. Math. Program., 69(1):269–309,
1995.

A. E. Hoerl and R. Kennard. Ridge regression: biased estimation for nonorthogonal
problems. Technometrics, 12:55–67, 1970.

H. Hotelling. Relations between two sets of variates. Biometrika, 28:321–377, 1936.

P. O. Hoyer. Non-negative sparse coding. In Proceedings of the IEEE Workshop on
Neural Networks for Signal Processing, 2002.

P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of
Machine Learning Research, 5:1457–1469, 2004.

P. O. Hoyer and A. Hyvärinen. Independent component analysis applied to feature
extraction from colour and stereo images. Network: Computation in Neural Systems,
11(3):191–210, 2000.

J. Huang, Z. Zhang, and D. Metaxas. Learning with structured sparsity. In Proceedings
of the International Conference on Machine Learning (ICML), 2009.

K. Huang and S. Aviyente. Sparse representation for signal classification. In Advances
in Neural Information Processing Systems, 2006.

J. M. Hugues, D. J. Graham, and D. N. Rockmore. Quantification of artistic style
through sparse coding analysis in the drawings of Pieter Bruegel the Elder. Proceedings
of the National Academy of Science, 107(4):1279–1283, 2009.

L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlap and graph Lasso. In
Proceedings of the International Conference on Machine Learning (ICML), 2009.

222

Bibliography

R. Jenatton, J-Y. Audibert, and F. Bach. Structured variable selection with sparsity-
inducing norms. Technical report, 2009. Preprint arXiv:0904.3523v2.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierar-
chical dictionary learning. In Proceedings of the International Conference on Machine
Learning (ICML), 2010a.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical
sparse coding. Technical report, 2010b. submitted, arXiv:1009.2139v2.

R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis.
In Proceedings of the Conference on AI and Statistics (AISTATS), 2010c.

C. R. Johnson, E. H. Hendriks, I. J. Berezhnoy, E. Brevdo, S. M. Hugues, I. Daubechies,
J. Li, E. Postma, and J. Z. Want. Image processing for artist identification. IEEE
Signal Processing Magazine, (37), July 2008.

N. Jojic, B. Frey, and A. Kannan. Epitomic analysis of appearance and shape. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2003.

I. T. Jolliffe, N. T. Trendafilov, and M. Uddin. A modified principal component technique
based on the Lasso. Journal of Computational and Graphical Statistics, 12(3):531–547,
2003.

K. Kavukcuoglu, M. Ranzato, and Y. LeCun. Fast inference in sparse coding algo-
rithms with applications to object recognition. Technical report, Computational and
Biological Learning Lab, Courant Institute, NYU, 2008.

K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features
through topographic filter maps. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

C. Kervrann and J. Boulanger. Local adaptivity to variable smoothness for exemplar-
based image denoising and representation. International Journal of Computer Vision,
79(1):45–69, 2008.

S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with structured
sparsity. In Proceedings of the International Conference on Machine Learning (ICML),
2010.

T. D. Kite, N. Damera-Venkata, B. L. Evans, and A. C. Bovik. A fast, high-quality
inverse halftoning algorithm for error diffused halftones. IEEE Transactions on Image
Processing, 9(9):1583–1592, 2000.

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–
159, February 2004.

223

Bibliography

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. IEEE Computer, 42(8):30–37, 2009.

LSG Kovasznay and HM Joseph. Image processing. Proceedings of the IRE, 43(5):
560–570, 1955.

H. J. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and
Applications. Springer, 2003.

H. Larochelle and Y. Bengio. Classification using discriminative restricted boltzmann
machines. In Proceedings of the International Conference on Machine Learning
(ICML), 2008.

S. Lazebnik and M. Raginsky. Supervised learning of quantizer codebooks by information
loss minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2007. submitted.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid match-
ing for recognizing natural scene categories. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2006.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Handwritten digit recognition with a back-propagation network. In David
Touretzky, editor, Advances in Neural Information Processing Systems, volume 2.
Morgan Kaufman, 1990.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998a.

Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr and Muller
K., editors, Neural Networks: Tricks of the trade. Springer, 1998b.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F-J. Huang. A tutorial on energy-
based learning. In G. Bakir, T. Hofman, B. Schölkopf, A. Smola, and B. Taskar,
editors, Predicting Structured Data. MIT Press, 2006.

D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances
in Neural Information Processing Systems, pages 556–562, 2001.

H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems, volume 19, pages 801–808. MIT Press, 2007.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations. In Proceedings of the
International Conference on Machine Learning (ICML), 2009.

224

Bibliography

K. C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under
variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(5):684–698, 2005.

T. W. Lee and M. S. Lewicki. Unsupervised image classification, segmentation, and
enhancement using ica mixture models. IEEE Transactions on Image Processing, 11
(3), 2002.

M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local appearance: Category
recognition from pairwise interactions of simple features. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural
Computation, 12(2):337–365, 2000.

Y. Li and D. P. Huttenlocher. Sparse long-range random field and its application to
image denoising. In Proceedings of the European Conference on Computer Vision
(ECCV), 2008.

A. Di Lillo, G. Motta, and J. A. Storer. Texture classification based on discriminative
features extracted in the frequency domain. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), 2007.

C. J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural
Computation, 19(10):2756–2779, 2007.

J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient ℓ2,1-norm minimization.
In Uncertainty in Artificial Intelligence, 2009.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, 2004.

A. C. Lozano, G. Świrszcz, and N. Abe. Group orthogonal matching pursuit for variable
selection and prediction. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams,
and A. Culotta, editors, Advances in Neural Information Processing Systems, pages
1150–1158. 2009.

S Lyu, D. N Rockmore, and H. Farid. A digital technique for art authentication. Pro-
ceedings of the National Academy of Science, 101(49):17006–17010, 2004.

N. Maculan and J. R. G. Galdino de Paula. A linear-time median-finding algorithm for
projecting a vector on the simplex of Rn. Operations Research Letters, 8(4):219–222,
1989.

T. M. Mäenpää, M. Pietikäinen, and T. Ojala. Texture classification by multi-predicate
local binary pattern operators. In Proceedings of the International Conference on
Pattern Recognition (ICPR), 2000.

225

Bibliography

J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statis-
tics and Econometrics, revised edition. John Wiley, Chichester, 1999.

J. Mairal, G. Sapiro, and M. Elad. Multiscale sparse image representation with learned
dictionaries. In Proceedings of the IEEE International Conference on Image Processing
(ICIP), 2007.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictio-
naries for local image analysis. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2008a.

J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration.
IEEE Transactions on Image Processing, 17(1):53–69, January 2008b.

J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce. Discriminative sparse image
models for class-specific edge detection and image interpretation. In Proceedings of
the European Conference on Computer Vision (ECCV), 2008c.

J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representations for image
and video restoration. SIAM Multiscale Modelling and Simulation, 7(1):214–241, April
2008d.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding.
In Proceedings of the International Conference on Machine Learning (ICML), 2009a.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learn-
ing. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neu-
ral Information Processing Systems, volume 21, pages 1033–1040. MIT Press, 2009b.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for
image restoration. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2009c.

J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. Technical report,
2010a. submitted, arXiv:1009.5359v1.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization
and sparse coding. Journal of Machine Learning Research, 11:19–60, 2010b.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for struc-
tured sparsity. In Advances in Neural Information Processing Systems, 2010c.

S. Mallat. A Wavelet Tour of Signal Processing, Second Edition. Academic Press, New
York, September 1999.

S. Mallat and E. Le Pennec. Sparse geometric image representation with bandelets.
IEEE Transactions on Image Processing, 14(4):423–438, 2005a.

226

Bibliography

S. Mallat and E. Le Pennec. Bandelet image approximation and compression. SIAM
Multiscale Modelling and Simulation, 4(3):992–1039, 2005b.

S. Mallat and G. Peyré. Orthogonal bandlet bases for geometric images approximation.
Communication on Pure and Applied Mathematics, 61(9):1173–1212, 2008.

S. Mallat and Z. Zhang. Matching pursuit in a time-frequency dictionary. IEEE Trans-
actions on Signal Processing, 41(12):3397–3415, 1993.

H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring eco-
logical statistics. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2001.

D. R. Martin, C. C Fowlkes, and J. Malik. Learning to detect natural image boundaries
using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(1), january 2004.

B. Matalon, M. Elad, and M. Zibulevsky. Improved denoising of images using modeling
of the redundant contourlet transform. In Proceedings of the SPIE conference wavelets,
2005.

M. Métivier. Semi-martingales. Walter de Gruyter, 1983.

J. J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien.
C. R. Acad. Sci. Paris Sér. A Math., 255:2897–2899, 1962.

N. Murata. Statistical study on on-line learning. On-line learning in neural networks,
pages 63–92, 1999.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. Learning in graphical models, 89:355–368, 1998.

R. Neelamani, R.D. Nowak, and R.G. Baraniuk. WInHD: Wavelet-based inverse halfton-
ing via deconvolution. Rejecta Mathematica, 1(1):84–103, 2009.

S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-
dimensional analysis of M-estimators with decomposable regularizers. In Advances in
Neural Information Processing Systems, 2009.

Y. Nesterov. Gradient methods for minimizing composite objective function. Technical
report, Center for Operations Research and Econometrics (CORE), Catholic Univer-
sity of Louvain, 2007.

Y. Nesterov. A method for solving the convex programming problem with convergence
rate o(1/k2). Dokl. Akad. Nauk SSSR, 269:543–547, 1983. in russian.

227

Bibliography

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

G. Obozinski, M. J. Wainwright, and M. I. Jordan. Union support recovery in high-
dimensional multivariate regression. UC Berkeley Technical Report 761, August 2008.

G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint sub-
space selection for multiple classification problems. Statistics and Computing, 2009.
Published online.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision Research, 37:3311–3325, 1997.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381:607–609, 1996.

A. Opelt and A. Pinz. Object localization with boosting and weak supervision for generic
object recognition. In Proceedings of the Scandinavian Conference on Image Analysis
(SCIA), 2005.

M. R. Osborne, B. Presnell, and B. A. Turlach. On the Lasso and its dual. Journal of
Computational and Graphical Statistics, 9(2):319–37, 2000a.

M. R. Osborne, B. Presnell, and B. A. Turlach. A new approach to variable selection in
least squares problems. IMA Journal of Numerical Analysis, 20(3):389–403, 2000b.

D. Paliy, V. Katkovnik, R. Bilcu, S. Alenius, and K. Egiazarian. Spatially adaptive color
filter array interpolation for noiseless and noisy data. Intern. J. of Imaging Sys. and
Tech., 17(3), 2007.

C. Pantofaru, G. Dorkó, C. Schmid, and M. Hebert. Combining regions and patches for
object class localization. In Proceedings of the “Beyond Patches workshop”, CVPR,
2006.

P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990.

G. Peyré. Sparse modeling of textures. Journal of Mathematical Imaging and Vision,
34(1):17–31, May 2009.

J. Portilla, V. Strela, MJ Wainwright, and EP Simoncelli. Image denoising using scale
mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing,
12(11):1338–1351, 2003.

M. Prasad, A. Zisserman, A. Fitzgibbon, M. Pawan Kumar, and P.H.S. Torr. Learning
class-specifc edges for object detection and segmentation. In Proceedings ICVGIP,
2006.

M. Protter and M. Elad. Image sequence denoising via sparse and redundant represen-
tations. IEEE Transactions on Image Processing, 18(1):27–36, 2009.

228

Bibliography

R. C. Puetter, T. R. Gosnell, and A. Yahil. Digital image reconstruction: deblurring
and denoising. Annu. Rev. Astron. Astrophys., 43, 2005.

A. Quattoni, X. Carreras, M. Collins, and T. Darrell. An efficient projection for ℓ1,∞
regularization. In Proceedings of the International Conference on Machine Learning
(ICML), 2009.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: trans-
fer learning from unlabeled data. In Proceedings of the International Conference on
Machine Learning (ICML), 2007.

T. Randen and J. H. Husoy. Filtering for texture classification: A comparative study.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4), April 1999.

M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsupervised learning of invariant
feature hierarchies with applications to object recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2007a.

M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse repre-
sentations with an energy-based model. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems, volume 19, pages 1137–
1144. MIT Press, 2007b.

X. Ren, C. Fowlkes, and J. Malik. Scale-invariant contour completion using conditional
random fields. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2005.

S. Roth and M. J. Black. Fields of experts: A framework for learning image priors.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2005.

V. Roth and B. Fischer. The Group-Lasso for generalized linear models: uniqueness of
solutions and efficient algorithms. In Proceedings of the International Conference on
Machine Learning (ICML), 2008.

L. I. Rudin and S. Osher. Total variation based image restoration with free local con-
straints. In Proceedings of the IEEE International Conference on Image Processing
(ICIP), 1994.

J. Salmon and E. Le Pennec. Nl-means and aggregation procedures. In Proceedings of
the IEEE International Conference on Image Processing (ICIP), 2009.

M. W. Seeger. Bayesian inference and optimal design for the sparse linear model. Journal
of Machine Learning Research, 9:759–813, 2008.

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimiza-
tion. In 22nd Annual Conference on Learning Theory (COLT), 2009.

229

Bibliography

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. 2004.

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger. Shiftable multi-scale
transforms. IEEE Transactions on Information Theory, 38(2):587–607, September
1992.

K. Skretting and J. H. Husoy. Texture classification using sparse frame-based represen-
tations. EURASIP J. Appl. Signal Process., (1), 2006.

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar. Collaborative hierarchical sparse
modeling. Technical report, 2010. Preprint arXiv:1003.0400v1.

J-L. Starck, E. Candes, and D. L. Donoho. The curvelet transform for image denoising.
IEEE Transactions on Image Processing, 11(6):670–684, 2002.

K.-K. Sung. Learning and Example Selection for Object and Pattern Recognition. PhD
thesis, MIT, Artificial Intelligence Laboratory and Center for Biological and Compu-
tational Learning, 1996.

A. Szlam, M. Maggioni, and R. R. Coifman. Regularization on graphs with function-
adapted diffusion processes. Journal of Machine Learning Research, 2007.

H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for image processing and
reconstruction. IEEE Transactions on Image Processing, 16(2):349–366, 2007.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society. Series B, 58(1):267–288, 1996.

R. Tibshirani and P. Wang. Spatial smoothing and hot spot detection for CGH data
using the fused Lasso. Biostatistics, 9(1):18–29, 2008.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness
via the fused lasso. Journal of the Royal Statistical Society Series B, 67(1):91–108,
2005.

A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems. V. H. Winston and
Sons, 1977.

J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans-
actions on Information Theory, 50(10):2231–2242, October 2004.

J. A. Tropp. Algorithms for simultaneous sparse approximation. part ii: Convex re-
laxation. Signal Processing, special issue "Sparse approximations in signal and image
processing", 86:589–602, April 2006.

J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultaneous sparse
approximation. part i: Greedy pursuit. Signal Processing, special issue "sparse ap-
proximations in signal and image processing", 86:572–588, April 2006.

230

Bibliography

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable mini-
mization. Journal of Optimization Theory and Applications, 109(3):475–494, 2001.

B. A. Turlach, W. N. Venables, and S. J. Wright. Simultaneous variable selection.
Technometrics, 47(3):349–363, 2005.

T. Tuytelaars and C. Schmid. Vector quantizing feature space with a regular lattice. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2007.

A. W. Van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998.

C. Wallraven, B. Caputo, and A. Graf. Recognition with local features: the kernel
recipe. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Nice, France, 2003.

S. Weisberg. Applied Linear Regression. Wiley, 1980.

Y. Weiss and W. T. Freeman. What makes a good model of natural images ? In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Minneapolis, MN, USA, June 2007.

Y. Weiss, H. Chang, and W. Freeman. Learning compressed sensing. In Snowbird
Learning Workshop, Allerton, CA, 2007.

J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual
dictionary. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2005.

D. M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with
applications to sparse principal components and canonical correlation analysis. Bio-
statistics, 10(3):515–534, 2009.

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via
sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 31(2):210–227, 2009a.

J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, and S. Yan. Sparse representation
for computer vision and pattern recognition. Proceedings of the IEEE, 2010.

S. J. Wright, R. D. Nowak, and M. Figueiredo. Sparse reconstruction by separable
approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009b.

T. T. Wu and K. Lange. Coordinate descent algorithms for Lasso penalized regression.
Annals of Applied Statistics, 2(1):224–244, 2008.

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse
coding for image classification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

231

Bibliography

J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution via sparse represen-
tation. IEEE Transactions on Image Processing, 2010. to appear.

G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise linear estima-
tors: From gaussian mixture models to structured sparsity. Technical report, 2010.
preprint arXiv:1006.3056v1.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society Series B, 68:49–67, 2006.

R. Zass and A. Shashua. Nonnegative sparse PCA. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Advances in Neural Information Processing Systems, volume 19,
pages 1561–1568. MIT Press, 2007.

H. H. Zhang, Y. Liu, Y. Wu, and J. Zhu. Selection for the multicategory svm via adaptive
sup-norm regularization. Electronic Journal of Statistics, 2:149–167, 2008.

L. Zhang and X. Wu. Color demosaicking via directional linear minimum mean square-
error estimation. IEEE Transactions on Image Processing, 14(12):2167–2178, 2005.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and
hierarchical variable selection. 37(6A):3468–3497, 2009.

S. C. Zhu and D. Mumford. Prior learning and gibbs reaction-diffusion. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 19(11):1236–1250, 1997.

M. Zibulevsky and B. A. Pearlmutter. Blind source separation by sparse decomposition
in a signal dictionary. Neural Computation, 13(4):863–882, 2001.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society Series B, 67(2):301–320, 2005.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of
computational and graphical statistics, 15(2):265–286, 2006.

232

	Contents
	List of Figures
	List of Tables
	Introduction and Related Work
	Contributions of the Thesis
	Notation
	Sparse Methods and Sparsity-Inducing Norms
	Optimization for Sparse Regularized Problems
	Dictionary Learning and Matrix Factorization
	Dictionary Learning for Image Processing

	Online Learning for Matrix Factorization and Sparse Coding
	Introduction
	Problem Statement
	Proposed Approach
	Convergence Analysis
	Extensions to Matrix Factorization
	Experimental Validation
	Conclusion

	Network Flow Algorithms for Structured Sparsity
	Introduction
	Related Work and Problem Statement
	Proposed Approach
	Computation of the Dual Norm
	Applications and Experiments
	Conclusions

	Non-Local Sparse Models for Image Restoration
	Introduction
	Related Work
	Proposed Formulation
	Experimental Validation
	Conclusion

	Modeling the Local Appearance of Image Patches
	Introduction
	Learning Discriminative Dictionaries
	Modeling Texture and Local Appearance of Objects
	Combining Geometry and Local Appearance of Edges
	Conclusion

	Task-Driven Dictionary Learning
	Introduction
	Related Work: Data-Driven Dictionary Learning
	Proposed Formulation
	Optimization
	Experimental Validation
	Conclusion

	Conclusion
	Theorems and Useful Lemmas
	Proofs
	Proofs of Lemmas
	Proofs of Propositions

	Efficient Projection Algorithms
	A Linear-time Projection Algorithm on the Elastic-Net Constraint
	A Homotopy Method for Solving the Fused Lasso Signal Approximation

	Software
	SPAMS, a SParse Modeling Software
	Efficient Sparse Solvers with Proximal Methods

	Bibliography

