A Generic Quasi-Newton Algorithm for Faster Gradient-Based Optimization

Julien Mairal

Inria, Grenoble

GdR Isis meeting at Telecom ParisTech
Collaborators

Hongzhou Lin
Zaid Harchaoui

Publications

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

\[
\min_{x \in \mathbb{R}^p} \left\{ f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\},
\]

where each \(f_i \) is **smooth and convex** and \(\psi \) is a convex but not necessarily differentiable penalty, e.g., the \(\ell_1 \)-norm.

Goal of this work

- Design accelerated methods for minimizing **large finite sums**.
- Give **generic acceleration schemes** which can be applied to previously un-accelerated algorithms.
Why do large finite sums matter?

Empirical risk minimization

\[
\min_{x \in \mathbb{R}^p} \left\{ f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\},
\]

- Typically, \(x \) represents **model parameters**.
- Each function \(f_i \) measures the **fidelity** of \(x \) to a data point.
- \(\psi \) is a **regularization function** to prevent overfitting.

For instance, given training data \((y_i, z_i)_{i=1,...,n}\) with features \(z_i \) in \(\mathbb{R}^p \) and labels \(y_i \) in \(\{-1, +1\} \), we may want to predict \(y_i \) by \(\text{sign}(\langle z_i, x \rangle) \). The functions \(f_i \) measure how far the prediction is from the true label.

This would be a **classification problem with a linear model**.
Why large finite sums matter?

A few examples

Ridge regression:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (y_i - \langle x, z_i \rangle)^2 + \frac{\lambda}{2} \|x\|_2^2.
\]

Linear SVM:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i \langle x, z_i \rangle) + \frac{\lambda}{2} \|x\|_2^2.
\]

Logistic regression:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i \langle x, z_i \rangle} \right) + \frac{\lambda}{2} \|x\|_2^2.
\]
Why does the composite problem matter?

A few examples

Ridge regression:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (y_i - \langle x, z_i \rangle)^2 + \frac{\lambda}{2} \| x \|_2^2.
\]

Linear SVM:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i \langle x, z_i \rangle) + \frac{\lambda}{2} \| x \|_2^2.
\]

Logistic regression:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i \langle x, z_i \rangle} \right) + \frac{\lambda}{2} \| x \|_2^2.
\]

The **squared ℓ_2-norm** penalizes large entries in x.
Why does the composite problem matter?

A few examples

Ridge regression:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (y_i - \langle x, z_i \rangle)^2 + \lambda \|x\|_1.
\]

Linear SVM:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i \langle x, z_i \rangle)^2 + \lambda \|x\|_1.
\]

Logistic regression:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i \langle x, z_i \rangle}\right) + \lambda \|x\|_1.
\]

When one knows in advance that \(x \) should be sparse, one should use a **sparsity-inducing** regularization such as the \(\ell_1 \)-norm.

[Chen et al., 1999, Tibshirani, 1996].
Part I: a quick overview of optimization methods
How to minimize a large finite sum of functions?

\[
\min_{x \in \mathbb{R}^p} \left\{ f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\},
\]

assuming here that the problem is μ-strongly convex.

We consider several alternatives

- Batch first-order methods (ISTA, FISTA).
- Stochastic first-order methods (SGD, mirror descent).
- Incremental first-order methods (SAG, SAGA, SDCA, MISO, ...).
- Quasi-Newton approaches (L-BFGS).
(Batch) gradient descent methods

Let us consider the composite problem

$$
\min_{x \in \mathbb{R}^p} \{ f(x) = f_0(x) + \psi(x) \},
$$

where f_0 is convex, differentiable with L-Lipschitz continuous gradient and ψ is convex, but not necessarily differentiable.

The classical forward-backward/ISTA algorithm

$$
x_k \leftarrow \arg \min_{x \in \mathbb{R}^p} \frac{1}{2} \left\| x - \left(x_{k-1} - \frac{1}{L} \nabla f_0(x_{k-1}) \right) \right\|^2_2 + \frac{1}{L} \psi(x).
$$

- $f(x_k) - f^* = O(1/k)$ for convex problems;
- $f(x_k) - f^* = O((1 - \mu/L)^k)$ for μ-strongly convex problems;

Accelerated gradient descent methods

Nesterov introduced in the 80’s an acceleration scheme for the gradient descent algorithm. It was generalized later to the composite setting.

FISTA [Beck and Teboulle, 2009]

\[x_k \leftarrow \arg\min_{x \in \mathbb{R}^p} \frac{1}{2} \left\| x - \left(y_{k-1} - \frac{1}{L} \nabla f_0(y_{k-1}) \right) \right\|_2^2 + \frac{1}{L} \psi(x); \]

Find \(\alpha_k > 0 \) s.t. \(\alpha_k^2 = (1 - \alpha_k)\alpha_{k-1}^2 + \frac{\mu}{L} \alpha_k; \)

\[y_k \leftarrow x_k + \beta_k (x_k - x_{k-1}) \quad \text{with} \quad \beta_k = \frac{\alpha_{k-1}(1 - \alpha_{k-1})}{\alpha_{k-1}^2 + \alpha_k}. \]

- \(f(x_k) - f^* = O(1/k^2) \) for convex problems;
- \(f(x_k) - f^* = O((1 - \sqrt{\mu/L})^k) \) for \(\mu \)-strongly convex problems;
- Acceleration works in many practical cases.

see also [Nesterov, 1983, 2004, 2013]
Stochastic gradient descent methods

... or the recent return of Robins and Monroe, 1951. Consider

\[
\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}.
\]

At iteration \(k\), select at random an index \(i_k\), and perform the update

\[
x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1})
\]
Stochastic gradient descent methods

... or the recent return of Robins and Monroe, 1951. Consider

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}.$$

At iteration k, select at random an index i_k, and perform the update

$$x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1}) \quad \text{(note that } \mathbb{E}[\nabla f_{i_k}(x_{k-1})] = \nabla f(x_{k-1})) \text{).}$$
Stochastic gradient descent methods

... or the recent return of Robins and Monroe, 1951. Consider

\[
\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}.
\]

At iteration \(k \), select at random an index \(i_k \), and perform the update

\[
x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1}) \quad \text{(note that } \mathbb{E}[\nabla f_{i_k}(x_{k-1})] = \nabla f(x_{k-1})\text{)}.
\]

Main features vs. batch

- **Complexity per-iteration is \(n \) times smaller;**
Stochastic gradient descent methods

... or the recent return of Robins and Monroe, 1951. Consider

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}.$$

At iteration k, select at random an index i_k, and perform the update

$$x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1}) \quad \text{(note that } \mathbb{E}[\nabla f_{i_k}(x_{k-1})] = \nabla f(x_{k-1}).)$$

Main features vs. batch

- **Complexity per-iteration is n times smaller**;
- Convergence rate is slower: $O(1/k)$ for strongly-convex problems and $O(1/\sqrt{k})$ for convex ones, see [Nemirovski et al., 2009];
Stochastic gradient descent methods

... or the recent return of Robins and Monroe, 1951. Consider

\[
\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}.
\]

At iteration \(k \), select at random an index \(i_k \), and perform the update

\[
x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1}) \quad \text{(note that } \mathbb{E}[\nabla f_{i_k}(x_{k-1})] = \nabla f(x_{k-1})\text{)}.
\]

Main features vs. batch

- **Complexity per-iteration is** \(n \) **times smaller**;
- Convergence rate is slower: \(O(1/k) \) for strongly-convex problems and \(O(1/\sqrt{k}) \) for convex ones, see [Nemirovski et al., 2009];
- variants are **compatible with prox** \(\psi \), e.g., [Duchi et al., 2011].
Stochastic gradient descent methods

... or the recent return of Robins and Monroe, 1951. Consider

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}.$$

At iteration k, select at random an index i_k, and perform the update

$$x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1}) \quad \text{(note that } \mathbb{E}[\nabla f_{i_k}(x_{k-1})] = \nabla f(x_{k-1})) \text{)}.$$

Main features vs. batch

- **Complexity per-iteration is n times smaller**;
- Convergence rate is slower: $O(1/k)$ for strongly-convex problems and $O(1/\sqrt{k})$ for convex ones, see [Nemirovski et al., 2009];
- variants are **compatible with prox** ψ, e.g., [Duchi et al., 2011].
- Sometimes a bit difficult to tune. When well tuned, the speed-up to obtain a solution with moderate accuracy may be huge.
Stochastic gradient descent methods

Figure: The Adaline [Widrow et al., 1960].
Incremental gradient descent methods

\[
\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}.
\]

Several *randomized* algorithms are designed with one \(\nabla f_i \) computed per iteration, with *fast convergence rates*, e.g., SAG [Schmidt et al., 2013]:

\[
x_k \leftarrow x_{k-1} - \frac{\gamma}{L_n} \sum_{i=1}^{n} y_i^k \quad \text{with} \quad y_i^k = \begin{cases}
\nabla f_i(x_{k-1}) & \text{if } i = i_k \\
y_i^{k-1} & \text{otherwise}
\end{cases}.
\]
Incremental gradient descent methods

\[
\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}.
\]

Several \textbf{randomized} algorithms are designed with one \(\nabla f_i \) computed per iteration, with \textbf{fast convergence rates}, e.g., SAG [Schmidt et al., 2013]:

\[
x_k \leftarrow x_{k-1} - \frac{\gamma}{L} \sum_{i=1}^{n} y_i^k \quad \text{with} \quad y_i^k = \begin{cases}
\nabla f_i(x_{k-1}) & \text{if } i = i_k \\
y_i^{k-1} & \text{otherwise}
\end{cases}.
\]

See also SVRG, SAGA, SDCA, MISO, Finito...

Some of these algorithms perform updates of the form

\[
x_k \leftarrow x_{k-1} - \eta_k g_k \quad \text{with} \quad \mathbb{E}[g_k] = \nabla f(x_{k-1}),
\]

but \(g_k \) has \textbf{lower variance} than in SGD.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b, Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]
Incremental gradient descent methods

These methods achieve low \textbf{(worst-case)} complexity in expectation. The number of gradients evaluations to ensure $f(x_k) - f^* \leq \varepsilon$ is

<table>
<thead>
<tr>
<th>Method</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISTA</td>
<td>$O\left(n \sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon}\right)\right)$</td>
</tr>
<tr>
<td>SVRG, SAG, SAGA, SDCA, MISO, Finito</td>
<td>$O\left(\max\left(n, \frac{L}{\mu}\right) \log \left(\frac{1}{\varepsilon}\right)\right)$</td>
</tr>
</tbody>
</table>
Incremental gradient descent methods

These methods achieve low \textbf{(worst-case)} complexity in expectation. The number of gradients evaluations to ensure $f(x_k) - f^* \leq \varepsilon$ is

<table>
<thead>
<tr>
<th></th>
<th>$\mu > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISTA</td>
<td>$O\left(n\sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon}\right)\right)$</td>
</tr>
<tr>
<td>SVRG, SAG, SAGA, SDCA, MISO, Finito</td>
<td>$O\left(\max\left(n, \frac{L}{\mu}\right) \log \left(\frac{1}{\varepsilon}\right)\right)$</td>
</tr>
</tbody>
</table>

Main features vs. stochastic gradient descent

- Same complexity per-iteration (but higher memory footprint).
Incremental gradient descent methods

These methods achieve low \textbf{(worst-case)} complexity in expectation. The number of gradients evaluations to ensure $f(x_k) - f^* \leq \varepsilon$ is

<table>
<thead>
<tr>
<th>Method</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISTA</td>
<td>$O \left(n \sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
</tr>
<tr>
<td>SVRG, SAG, SAGA, SDCA, MISO, Finito</td>
<td>$O \left(\max \left(n, \frac{L}{\mu} \right) \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
</tr>
</tbody>
</table>

Main features vs. stochastic gradient descent

- Same complexity per-iteration (but higher memory footprint).
- \textbf{Faster convergence} (exploit the finite-sum structure).
Incremental gradient descent methods

These methods achieve low \textbf{(worst-case)} complexity in expectation. The number of gradients evaluations to ensure $f(x_k) - f^* \leq \varepsilon$ is

<table>
<thead>
<tr>
<th>Method</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISTA</td>
<td>$\mu > 0$ \hspace{2cm} $O \left(n \sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
</tr>
<tr>
<td>SVRG, SAG, SAGA, SDCA, MISO, Finito</td>
<td>$O \left(\max \left(n, \frac{L}{\mu} \right) \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
</tr>
</tbody>
</table>

Main features vs. stochastic gradient descent

- Same complexity per-iteration (but higher memory footprint).
- **Faster convergence** (exploit the finite-sum structure).
- **Less parameter tuning** than SGD.
Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure \(f(x_k) - f^* \leq \varepsilon \) is

<table>
<thead>
<tr>
<th>Method</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISTA</td>
<td>(O\left(n\sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon}\right)\right)) for (\mu > 0)</td>
</tr>
<tr>
<td>SVRG, SAG, SAGA, SDCA, MISO, Finito</td>
<td>(O\left(\max\left(n, \frac{1}{\mu}\right) \log \left(\frac{1}{\varepsilon}\right)\right))</td>
</tr>
</tbody>
</table>

Main features vs. stochastic gradient descent

- Same complexity per-iteration (but higher memory footprint).
- **Faster convergence** (exploit the finite-sum structure).
- Less parameter tuning than SGD.
- Some variants are compatible with composite term \(\psi \).
Incremental gradient descent methods

These methods achieve low \textit{(worst-case)} complexity in expectation. The number of gradients evaluations to ensure $f(x_k) - f^* \leq \varepsilon$ is

<table>
<thead>
<tr>
<th>Method</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISTA</td>
<td>$O \left(n \sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
</tr>
<tr>
<td>SVRG, SAG, SAGA, SDCA, MISO, Finito</td>
<td>$O \left(\max \left(n, \frac{L}{\mu} \right) \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
</tr>
</tbody>
</table>

Main features vs. stochastic gradient descent

- Same complexity per-iteration (but higher memory footprint).
- \textbf{Faster convergence} (exploit the finite-sum structure).
- \textbf{Less parameter tuning} than SGD.
- Some variants are \textit{compatible with composite term ψ}.
- May be accelerated [Lin, Mairal, and Harchaoui, 2015].
Yet, none of these approaches are able to exploit curvature.
Newton-like methods
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Consider minimizing a twice-differentiable function \(f(x) \).
- Newton-like methods use a quadratic approximation of \(f \):
 \[
 f(x_{k-1}) + \nabla f(x_{k-1})^\top (x - x_{k-1}) + \frac{1}{2\alpha} (x - x_{k-1})B_k(x - x_{k-1}).
 \]

 \(B_k \) is a \textbf{positive-definite} approximation of the Hessian.
- The new iterate is set to the \textbf{minimizer of the approximation}
 \[
 x_k \leftarrow x_{k-1} - \alpha d_k,
 \]
 where \(d_k \) is the solution to
 \[
 B_k d_k = \nabla f(x_{k-1}).
 \]
- Guarantees descent for small enough \(\alpha \).
Newton-like vs gradient method.
Newton-like methods
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Newton-like vs gradient method.
Newton-like methods

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Newton-like vs gradient method.

\[x^k - \alpha \nabla f(x^k) \]
Newton-like methods

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Newton-like vs gradient method.
Newton-like methods

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Newton-like vs gradient method.
Newton-like methods
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Pros

- Under suitable smoothness and convexity assumptions, the method achieves a \textbf{quadratic convergence rate}: it requires $O(\log \log 1/\varepsilon)$ iterations to achieve ε-accuracy.
Newton-like methods
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Pros
- Under suitable smoothness and convexity assumptions, the method achieves a **quadratic convergence rate**: it requires $O(\log \log 1/\varepsilon)$ iterations to achieve ε-accuracy.

Cons
- not always possible to **store and compute the** $p \times p$ **Hessian**...
- ... and even less possible to solve efficiently the linear systems.
- not clear how to deal efficiently with a **composite term**.
Newton-like methods
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Pros
- Under suitable smoothness and convexity assumptions, the method achieves a **quadratic convergence rate**: it requires $O(\log \log 1/\varepsilon)$ iterations to achieve ε-accuracy.

Cons
- not always possible to store and compute the $p \times p$ Hessian...
- ... and even less possible to solve efficiently the linear systems.
- not clear how to deal efficiently with a composite term.

Alternatives
- solving inexactly the linear systems.
- **Limited Memory Quasi-Newton** (e.g., L-BFGS).
Quasi-Newton methods work with the parameter and gradient differences between successive iterations:

\[s_k \triangleq x_{k+1} - x_k, \quad y_k \triangleq \nabla f(x_{k+1}) - \nabla f(x_k). \]
Quasi-Newton methods work with the parameter and gradient differences between successive iterations:

\[s_k \triangleq x_{k+1} - x_k, \quad y_k \triangleq \nabla f(x_{k+1}) - \nabla f(x_k). \]

They start with an initial approximation \(B_0 \triangleq \sigma I \), and choose \(B_{k+1} \) to interpolate the gradient difference:

\[B_{k+1} s_k = y_k. \]
Quasi-Newton methods work with the parameter and gradient differences between successive iterations:

\[s_k \triangleq x_{k+1} - x_k, \quad y_k \triangleq \nabla f(x_{k+1}) - \nabla f(x_k). \]

They start with an initial approximation \(B_0 \triangleq \sigma I \), and choose \(B_{k+1} \) to interpolate the gradient difference:

\[B_{k+1} s_k = y_k. \]

Since \(B_{k+1} \) is not unique; the BFGS method chooses the symmetric matrix whose difference with \(B_k \) is minimal:

\[B_{k+1} = B_k - \frac{B_k s_k s_k B_k}{s_k B_k s_k} + \frac{y_k y_k^\top}{y_k^\top s_k}. \]
Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
Convergence and Limited-Memory BFGS (L-BFGS)
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- The BFGS method has a superlinear convergence rate.
Convergence and Limited-Memory BFGS (L-BFGS)
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- The BFGS method has a superlinear convergence rate.
- But, it still uses a dense $p \times p$ matrix B_k.
Convergence and Limited-Memory BFGS (L-BFGS)
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- The BFGS method has a superlinear convergence rate.
- But, it still uses a dense $p \times p$ matrix B_k.
- Instead of storing B_k, the limited-memory BFGS (L-BFGS) method stores the previous l differences s_k and y_k.
Convergence and Limited-Memory BFGS (L-BFGS)
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- The BFGS method has a superlinear convergence rate.
- But, it still uses a dense $p \times p$ matrix B_k.
- Instead of storing B_k, the limited-memory BFGS (L-BFGS) method stores the previous l differences s_k and y_k.
- We can solve a linear system involving these updates applied to a diagonal B_0 in $\mathcal{O}(pl)$ [Nocedal, 1980].
Limited-Memory BFGS (L-BFGS)

Remarks

- using the right initialization B_0 is crucial.
- the calibration of the line-search is also an art.
Limited-Memory BFGS (L-BFGS)

Remarks

- using the right initialization B_0 is crucial.
- the calibration of the line-search is also an art.

Pros

- one of the biggest practical success of smooth optimization.
Limited-Memory BFGS (L-BFGS)

Remarks
- using the right initialization B_0 is crucial.
- the calibration of the line-search is also an art.

Pros
- one of the biggest practical success of smooth optimization.

Cons
- worst-case convergence rates for strongly-convex functions are linear, but **no better than the gradient descent method**.
- proximal variants typically requires solving many times

\[
\min_{x \in \mathbb{R}^p} \frac{1}{2} (x - z)B_k(z - z) + \psi(x).
\]
- no guarantee of approximating the Hessian.
Part II: QuickeNing
Challenges

We still consider the problem

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\}.$$

The goal is to

- **accelerate first-order methods** with Quasi-Newton principles.
- design L-BFGS algorithms **compatible with composite term**, which are **easy to use** (no line search, natural initialization, assuming L, μ are known),
- and which may **exploit the finite-sum structure**.
The workhorse: the Moreau-Yosida regularization

The Moreau-Yosida regularization of a convex function f is defined as

$$F(x) = \min_{z \in \mathbb{R}^p} \left\{ f(z) + \frac{\kappa}{2} \| x - z \|^2 \right\},$$

and call $p(x)$ the unique solution of the problem.

The equivalence property

F is convex and minimizing f and F are equivalent in the sense that

$$\min_{x \in \mathbb{R}^p} F(x) = \min_{x \in \mathbb{R}^p} f(x).$$

The minimizers of f and F coincide with each other.
The workhorse: the Moreau-Yosida regularization

The Moreau-Yosida regularization of a convex function f is defined as

$$F(x) = \min_{z \in \mathbb{R}^p} \left\{ f(z) + \frac{\kappa}{2} \|x - z\|^2 \right\},$$

and call $p(x)$ the unique solution of the problem.

The smoothness properties

- F is **continuously differentiable** even when f is not and
 $$\nabla F(x) = \kappa(x - p(x)),$$

 The gradient ∇F is Lipschitz continuous with constant $L_F = \kappa$.

- When f is μ-strongly convex, F is μ_F-strongly convex with constant $\mu_F = \frac{\mu \kappa}{\mu + \kappa}$.

- \Rightarrow When $\mu > 0$, the condition number of F is $1 + \frac{\kappa}{\mu}$.
The workhorse: the Moreau-Yosida regularization

A naive approach consists of minimizing F instead of f with a method designed for smooth optimization. Consider indeed

$$x_{k+1} = x_k - \frac{1}{\kappa} \nabla F(x_k).$$

By rewriting the gradient $\nabla F(x_k)$ as $\kappa(x_k - p(x_k))$, we obtain

$$x_{k+1} = p(x_k) = \arg \min_{z \in \mathbb{R}^p} \left\{ f(z) + \frac{\kappa}{2} \| z - x_k \|^2 \right\}.$$

This is exactly the **proximal point algorithm** [Rockafellar, 1976].
The workhorse: the Moreau-Yosida regularization

Consider now

\[x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k), \]

where \(\beta_{k+1} \) is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of \(\nabla F \), which gives:

\[x_{k+1} = p(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k) \]

This is the \textbf{accelerated proximal point algorithm} of Güler [1992].
The workhorse: the Moreau-Yosida regularization

Consider now

\[x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k), \]

where \(\beta_{k+1} \) is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of \(\nabla F \), which gives:

\[x_{k+1} = p(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k) \]

This is the \textbf{accelerated proximal point algorithm} of Güler [1992].

What is the advantage of these approaches?

\(F \) may be better conditioned than \(f \) when \(1 + \kappa/\mu \leq L/\mu \);
The workhorse: the Moreau-Yosida regularization

Consider now

\[x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k), \]

where \(\beta_{k+1} \) is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of \(\nabla F \), which gives:

\[x_{k+1} = p(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k) \]

This is the \textit{accelerated proximal point algorithm} of Güler [1992].

What is the advantage of these approaches?

\(F \) may be better conditioned than \(f \) when \(1 + \kappa/\mu \leq L/\mu \);

But...

Computing \(p(y_k) \) has a cost!
A fresh look at Catalyst [Lin, Mairal, and Harchaoui, 2015]

Catalyst is a particular accelerated proximal point algorithm with inexact gradients [Güler, 1992].

\[x_{k+1} \approx p(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k) \]

The quantity \(x_{k+1} \) is obtained by approximately solving using an optimization method \(\mathcal{M} \):

\[
x_{k+1} \approx \arg\min_{x \in \mathbb{R}^p} \left\{ h_k(x) \triangleq f(x) + \frac{\kappa}{2} \| x - y_k \|^2 \right\},
\]

such that \(h_k(x_{k+1}) - h_k^* \leq \epsilon_k \).
A fresh look at Catalyst [Lin, Mairal, and Harchaoui, 2015]

Catalyst is a particular accelerated proximal point algorithm with \textbf{inexact gradients} [Güler, 1992].

\[x_{k+1} \approx p(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k) \]

The quantity x_{k+1} is obtained by approximately solving using an optimization method \mathcal{M}:

\[x_{k+1} \approx \arg \min_{x \in \mathbb{R}^p} \left\{ h_k(x) \triangleq f(x) + \frac{\kappa}{2} \| x - y_k \|^2 \right\}, \]

such that $h_k(x_{k+1}) - h_k^* \leq \epsilon_k$.

Catalyst provides Nesterov’s acceleration to \mathcal{M} with...

- the right κ, sequence $(\epsilon_k)_{k \geq 0}$, and restart strategy for \mathcal{M}.
- global complexity analysis resulting in theoretical acceleration.
QuickeNing

QuickeNing is a limited memory Quasi-Newton algorithm with inexact gradients applied to the smoothed function F.

Main features

- uses an optimization method \mathcal{M} to solve the sub-problems.
- if \mathcal{M} is compatible with prox, so is QuickeNing.
- linear convergence rate for strongly-convex functions.
- no need for a line-search and easy initialization of B_0, assuming L and μ are known.
QuickeNing

QuickeNing is a limited memory Quasi-Newton algorithm with inexact gradients applied to the smoothed function F.

Main features

- uses an optimization method \mathcal{M} to solve the sub-problems.
- if \mathcal{M} is compatible with prox, so is QuickeNing.
- linear convergence rate for strongly-convex functions.
- no need for a line-search and easy initialization of B_0, assuming L and μ are known.

Theory vs practice

- global theoretical complexity is not as good as Catalyst.
- in practice, outperforms Catalyst for ill-conditioned problems.
QuickeNing

Related work

- L-BFGS with inexact gradients [Friedlander and Schmidt, 2012].

Our contributions

- **practical** inexactness criterion and dedicated L-BFGS rule with no line search.
- **global complexity** with both inner- and outer-loop analysis.
- parameter choices that ensure **linear convergence rate for strongly-convex problems**.
The first building block

Algorithm Procedure GradientEstimate

input Current point x in \mathbb{R}^p; accuracy ε; smoothing parameter $\kappa > 0$.

1. Compute the approximate proximal mapping using \mathcal{M}:

 $$z \approx \arg\min_{v \in \mathbb{R}^p} \left\{ h(v) \triangleq f(v) + \frac{\kappa}{2} \|v - x\|^2 \right\},$$

 such that $h(z) - h^* \leq \varepsilon$ where $h^* = \min_{z \in \mathbb{R}^p} h(z)$; define $F_a = h(z)$.

2. Estimate the gradient of the Moreau-Yosida objective function

 $$g = \kappa(x - z).$$

output gradient estimate $g \approx \nabla F(x)$,

objective value $F_a \approx F(x)$,

proximal mapping $z \approx p(x)$.

Julien Mairal

QuickeNing
The first building block

Algorithm Procedure GradientEstimate

input Current point \(x \) in \(\mathbb{R}^p \); accuracy \(\epsilon \); smoothing parameter \(\kappa > 0 \).

1: Compute the approximate proximal mapping using \(\mathcal{M} \):

\[
z \approx \arg \min_{v \in \mathbb{R}^p} \left\{ h(v) \triangleq f(v) + \frac{\kappa}{2} \| v - x \|^2 \right\}, \tag{1}
\]

such that \(h(z) - h^* \leq \epsilon \) where \(h^* = \min_{z \in \mathbb{R}^p} h(z) \); define \(F_a = h(z) \).

2: Estimate the gradient of the Moreau-Yosida objective function

\[
g = \kappa (x - z).
\]

output gradient estimate \(g \approx \nabla F(x) \),

objective value \(F_a \approx F(x) \),

proximal mapping \(z \approx p(x) \).
The first building block

Algorithm Procedure GradientEstimate

input Current point x in \mathbb{R}^p; accuracy ε; smoothing parameter $\kappa > 0$.
1: Compute the approximate proximal mapping using \mathcal{M}:

$$z \approx \arg \min_{v \in \mathbb{R}^p} \left\{ h(v) \triangleq f(v) + \frac{\kappa}{2} \|v - x\|^2 \right\}, \quad (1)$$

such that $h(z) - h^* \leq \varepsilon$ where $h^* = \min_{z \in \mathbb{R}^p} h(z)$; define $F_a = h(z)$.
2: Estimate the gradient of the Moreau-Yosida objective function

$$g = \kappa(x - z).$$

output gradient estimate $g \approx \nabla F(x)$,
objective value $F_a \approx F(x)$,
proximal mapping $z \approx p(x)$.

The first building block

Algorithm Procedure GradientEstimate

input Current point x in \mathbb{R}^p; accuracy ε; smoothing parameter $\kappa > 0$.

1. Compute the approximate proximal mapping using \mathcal{M}:

 $$z \approx \arg \min_{v \in \mathbb{R}^p} \left\{ h(v) \triangleq f(v) + \frac{\kappa}{2} \| v - x \|^2 \right\}, \quad (1)$$

 such that $h(z) - h^* \leq \varepsilon$ where $h^* = \min_{z \in \mathbb{R}^p} h(z)$; define $F_a = h(z)$.

2. Estimate the gradient of the Moreau-Yosida objective function

 $$g = \kappa (x - z).$$

output gradient estimate $g \approx \nabla F(x)$,
objective value $F_a \approx F(x)$,
proximal mapping $z \approx p(x)$.

Julien Mairal
QuickeNing 32/50
The first building block

Remember,

\[F(x) = \min_{z \in \mathbb{R}^p} \left\{ f(z) + \frac{\kappa}{2} \| x - z \|^2 \right\}, \]

and call \(p(x) \) the unique solution of the problem.

Approximation guarantees [Fukushima and Qi, 1996]

Consider a vector \(x \) in \(\mathbb{R}^p \), a positive scalar \(\varepsilon \) and

\[(g, F_a, z) = \text{GradientEstimate}(x, \varepsilon).\]

Then, the following inequalities hold

\[F(x) \leq F_a \leq F(x) + \varepsilon, \]

\[\| z - p(x) \| \leq \sqrt{\frac{2\varepsilon}{\kappa}}, \]

\[\| g - \nabla F(x) \| \leq \sqrt{2\kappa\varepsilon}. \]
Second building block: dedicated L-BFGS rule

- Initialize $C_1 = (1/\kappa)I$.
- Maintain a generating list $(s_i, y_i)_{i=1...j}$ with $j \leq l$ such that

$$C_{i+1} = C_i - \frac{C_i s_i s_i C_i}{s_i C_i s_i} + \frac{y_i y_i^\top}{y_i^\top s_i}$$

and the current L-BFGS matrix is $B_k = C_j$.
- Remember that B_k is never stored explicitly, but that $B_k^{-1}z$ can be computed in $O(pl)$ operations for all vector z.
- The generating list is incrementally updated given a new pair

$$y_k \approx \nabla F(x_{k+1}) - \nabla F(x_k) \quad \text{and} \quad s_k = x_{k+1} - x_k.$$

but it requires **skipping steps** to ensure positive definiteness.
Second building block: dedicated L-BFGS rule

Algorithm Quasi-Newton-type update rule L-BFGS

input current generating list \(\{(s_i, y_i)\}_{i=1...j} \); new candidate pair \((s, y)\); L-BFGS parameters \(0 < c_1, c_2 \leq 1\); memory parameter \(l\);

1. **if** the following condition is satisfied

\[
c_1 \mu_F \|s\|^2 < y^T s \quad \text{and} \quad \frac{c_2}{L_F} \|y\|^2 < y^T s.
\]

2. **then**

 2. add \((s, y)\) to the generating list, and remove the oldest pair if the cardinal exceeds \(l\).

3. **else**

4. keep the generating list unchanged.

5. **end if**

output new L-BFGS matrix \(B\) (generating list).
Second building block: dedicated L-BFGS rule

Algorithm Quasi-Newton-type update rule L-BFGS

input current generating list \(\{(s_i, y_i)\}_{i = 1 \ldots j} \); new candidate pair \((s, y)\);
L-BFGS parameters \(0 < c_1, c_2 \leq 1 \); memory parameter \(l \);

1. **if** the following condition is satisfied

\[
c_1 \mu_F \|s\|^2 < y^T s \quad \text{and} \quad \frac{c_2}{L_F} \|y\|^2 < y^T s.
\]

2. **then**

2. add \((s, y)\) to the generating list, and remove the oldest pair if the cardinal exceeds \(l \).

3. **else**

4. keep the generating list unchanged.

5. **end if**

output new L-BFGS matrix \(B \) (generating list).
Second building block: dedicated L-BFGS rule

Algorithm Quasi-Newton-type update rule L-BFGS

input current generating list \(\{(s_i, y_i)\}_{i=1...j} \); new candidate pair \((s, y)\); L-BFGS parameters \(0 < c_1, c_2 \leq 1\); memory parameter \(l\);

1. **if** the following condition is satisfied

\[
c_1 \mu_F \|s\|^2 < y^T s \quad \text{and} \quad \frac{c_2}{L_F} \|y\|^2 < y^T s.
\]

then

2. add \((s, y)\) to the generating list, and remove the oldest pair if the cardinal exceeds \(l\).

3. **else**

4. keep the generating list unchanged.

5. **end if**

output new L-BFGS matrix \(B\) (generating list).
Second building block: dedicated L-BFGS rule

Algorithm Quasi-Newton-type update rule L-BFGS

input current generating list \(\{(s_i, y_i)\}_{i=1...j} \); new candidate pair \((s, y)\);

L-BFGS parameters \(0 < c_1, c_2 \leq 1 \); memory parameter \(l \);

1. **if** the following condition is satisfied

\[
 c_1 \mu_F \|s\|^2 < y^T s \quad \text{and} \quad \frac{c_2}{L_F} \|y\|^2 < y^T s.
\]

2. **then**

 2: add \((s, y)\) to the generating list, and remove the oldest pair if the cardinal exceeds \(l\).

3. **else**

4: keep the generating list unchanged.

5. **end if**

output new L-BFGS matrix \(B\) (generating list).
Second building block: dedicated L-BFGS rule

Algorithm Quasi-Newton-type update rule L-BFGS

input current generating list \(\{(s_i, y_i)\}_{i=1...j} \); new candidate pair \((s, y)\);
L-BFGS parameters \(0 < c_1, c_2 \leq 1\); memory parameter \(l\);

1: if the following condition is satisfied

\[
c_1 \mu_F \|s\|^2 \ < \ y^T s \quad \text{and} \quad \frac{c_2}{L_F} \|y\|^2 \ < \ y^T s.
\]

then

2: add \((s, y)\) to the generating list, and remove the oldest pair if the cardinal exceeds \(l\).

3: else

4: keep the generating list unchanged.

5: end if

output new L-BFGS matrix \(B\) (generating list).
Finally, the QuickeNing algorithm I

\[
\textbf{Algorithm} \quad \text{QuickeNing}
\]

\textbf{input} Initial point } x_0 \text{ in } \mathbb{R}^p; \text{ sequence } (\varepsilon_k)_{k \geq 0}; \text{ number of iterations } K; \text{ smoothing parameter } \kappa > 0; \text{ L-BFGS parameters } 0 < c_1, c_2 \leq 1; \text{ optimization method } \mathcal{M}.

1. Initialization:
 \[(g_0, F_0, z_0) = \text{GradientEstimate}(x_0, \varepsilon_0);
 \text{BFGS matrix } B_0 = \kappa I.\]

2. for } k = 0, \ldots, K - 1 \text{ do}

3. Perform the Quasi-Newton step

 \[x_{\text{test}} = x_k - B_k^{-1} g_k.\]

4. Estimate the new gradient and the Moreau-Yosida function value

 \[(g_{\text{test}}, F_{\text{test}}, z_{\text{test}}) = \text{GradientEstimate}(x_{\text{test}}, \varepsilon_{k+1}).\]
Finally, the QuickeNing algorithm II

5: \textbf{if} sufficient decrease is obtained

\[F_{\text{test}} \leq F_k - \frac{1}{4\kappa} \|g_k\|^2 + \epsilon_k, \]

\textbf{then}

6: \hspace{0.5em} \text{accept: } (x_{k+1}, g_{k+1}, F_{k+1}, z_{k+1}) = (x_{\text{test}}, g_{\text{test}}, F_{\text{test}}, z_{\text{test}}).

7: \hspace{0.5em} \textbf{else}

8: \hspace{0.5em} \text{update the current iterate: } x_{k+1} = z_k.

\[(g_{k+1}, F_{k+1}, z_{k+1}) = \text{GradientEstimate}(x_{k+1}, \epsilon_{k+1}). \]

9: \hspace{0.5em} \textbf{end if}

10: \hspace{0.5em} \text{update } B_{k+1} = \text{L-BFGS}(B_k, x_{k+1} - x_k, g_{k+1} - g_k).

11: \hspace{0.5em} \textbf{end for}

\textbf{output} last proximal mapping z_K (solution).
Convergence analysis

A key lemma:

Approximate descent property

Consider the sequence \((x_k, z_k)_{k \geq 0}\) generated by QuickeNing. Then,

\[
\max\{F(x_{k+1}), f(z_k)\} \leq F(x_k) - \frac{1}{8\kappa} \|\nabla F(x_k)\|^2 + 3\varepsilon_k.
\]
Convergence analysis

A key lemma:

Approximate descent property

Consider the sequence \((x_k, z_k)_{k \geq 0}\) generated by QuickeNing. Then,

\[
\max\{F(x_{k+1}), f(z_k)\} \leq F(x_k) - \frac{1}{8\kappa} \|\nabla F(x_k)\|^2 + 3\varepsilon_k.
\]

In contrast, the exact gradient descent method applied to \(F\) provides

\[
F(x_{k+1}) \leq F(x_k) - \frac{1}{2\kappa} \|\nabla F(x_k)\|^2.
\]
Convergence analysis

Next, we control the accumulation of errors.

Accumulation of errors in QuickeNing when $\mu > 0$

Assume that f is μ-strongly convex and define $\rho = \frac{\mu}{8(\mu + \kappa)}$. Then, the iterates $(x_k)_{k \geq 0}$ and $(z_k)_{k \geq 0}$ produced by QuickeNing satisfy

$$\max\{F(x_{k+1}) - F^*, f(z_k) - f^*\} \leq (1 - 2\rho)^{k+1} (f(x_0) - f^*) + 3 \sum_{i=0}^{k} (1 - 2\rho)^{k-i} \varepsilon_i.$$
Convergence analysis

Complexity analysis when $\mu > 0$

Assume that \mathcal{M} is always able to produce a sequence of iterates $(w_t)_{t \geq 0}$ for solving the sub-problems such that

$$h(w_t) - h^* \leq A(1 - \tau_{\mathcal{M}})^t (h(w_0) - h^*)$$

for some constants $A, \tau_{\mathcal{M}} > 0$. \hspace{1cm} (3)

Then, choose $\varepsilon_k = C(1 - \rho)^{k+1}/3$ with $C \geq (f(x_0) - f^*)$ and define $\rho = \frac{\mu}{8(\mu + \kappa)}$; then,

$$\max \{ F(x_k) - F^*, f(z_k) - f^* \} \leq \frac{C}{\rho} (1 - \rho)^{k+2}. \hspace{1cm} (4)$$

Moreover, by initializing \mathcal{M} with $w_0 = z_k$ at iteration k, each sub-problem (1) is solved up to accuracy ε_{k+1} in at most a constant number $T_{\mathcal{M}}$ of iterations of \mathcal{M}, where $T_{\mathcal{M}} = \tilde{O}(1/\tau_{\mathcal{M}})$.

Julien Mairal
QuickeNing
Remarks

Theory and practice

- the restart at z_k is not the best one, both in theory and in practice (work in progress, arXiv paper is outdated).
- the gap between theory and practice is huge, due to L-BFGS.
- the theory does not provide the right parameters for κ: we use those of Catalyst in practice.

Nice features

- \mathcal{M} can **exploit the structure** (incremental for large n, block coordinate descent for large p), and so does QuickeNing.
- **no line search**: when the test point is rejected, we perform one step of inexact PPA, whose convergence is well understood.
- the sequence $(z_k)_{k \geq 0}$ is produced by \mathcal{M} and thus may be **compatible with composite regularization** (e.g., sparse).
Part III: Preliminary experiments
Formulations

We consider two types of formulations

A smooth one: logistic regression

Given some data \((y_i, z_i)\), with \(y_i\) in \([-1, +1]\) and \(z_i\) in \(\mathbb{R}^p\), minimize

\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i x^\top z_i}) + \frac{\mu}{2} \|x\|_2^2,
\]

\(\mu\) is the regularization parameter.

A non-smooth one: Elastic-net [Zou and Hastie, 2005]

\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}(y_i - x^\top z_i)^2 + \lambda \|x\|_1 + \frac{\mu}{2} \|x\|_2^2.
\]

We will consider a regime with relatively small \(\mu\).
Datasets and methods

Datasets

<table>
<thead>
<tr>
<th>name</th>
<th>rcv1</th>
<th>real-sim</th>
<th>covtype</th>
<th>alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>781 265</td>
<td>72 309</td>
<td>581 012</td>
<td>250 000</td>
</tr>
<tr>
<td>p</td>
<td>47 152</td>
<td>20 958</td>
<td>54</td>
<td>500</td>
</tr>
</tbody>
</table>

Methods

- Mark Schmidt’s implementation of L-BFGS;
- Catalyst Miso [Lin, Mairal, and Harchaoui, 2015];
- QuickeNing Miso;
- SAGA [Defazio et al., 2014a];
- SVRG [Xiao and Zhang, 2014];
- QuickeNing SVRG.

All methods come with **default parameters** (no further tuning here).
- QuickeNing MISO \geq Catalyst MISO.
- QuickeNing SVRG $>\$ SVRG.
- L-BFGS is competitive, unlike SAGA.
• **QuickeNing MISO** \geq Catalyst MISO.
• **QuickeNing SVRG** $>$ SVRG.
• L-BFGS and SAGA are not competitive here.
QuickeNing SVRG and SVRG are surprisingly good.
QuickeNing MISO \geq Catalyst MISO.
SAGA is close to QuickeNing MISO here.
QuickeNing MISO and Catalyst MISO are the best here.

QuickeNing SVRG > SVRG.

QuickeNing MISO ≥ Catalyst MISO.
QuickeNing and sparsity

Are the iterates \((z_k)\) sparse with the Elastic-Net?

When the regularization parameter \(\lambda\) is large enough, the solution is sparse. In this context, **exact sparsity is a desirable feature.**
Concluding remarks

- **Conclusions are always data/context-dependent:**
 - Is the dataset well-conditioned?
 - What is the amount of regularization?
 - Is there hidden strong convexity in the loss at the optimum?
 - Is the solution sparse?

- **QuickeNing has been a safe heuristic so far.**

- Not evaluated yet: the one-pass heuristic, QuickeNing-block-coordinate-descent, ...

- We also have convergence results without strong convexity, but no complexity analysis.
Concluding remarks

- **Conclusions are always data/context-dependent:**
 - Is the dataset well-conditioned?
 - What is the amount of regularization?
 - Is there hidden strong convexity in the loss at the optimum?
 - Is the solution sparse?

- **QuickeNing has been a safe heuristic so far.**

- Not evaluated yet: **the one-pass heuristic, QuickeNing-block-coordinate-descent,**

- We also have convergence results without strong convexity, but no complexity analysis.

- Note: this is **work in progress**; the figures here should not be considered as those of a published paper (yet).

References II

References III

References IV

References V

