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What this talk is about
The learning of compact representations of images
adapted to restoration tasks.

A multiscale method to learn such representations.

Various formulations for image and video processing.
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Sparse representations for image restoration

y︸︷︷︸
measurements

= xorig︸ ︷︷ ︸
original image

+ w︸︷︷︸
white Gaussian noise



Sparse representations for image restoration

Energy minimization problem - MAP
estimation:

E (x) = ||y− x||22︸ ︷︷ ︸
relation to measurements

+ Pr(x)︸ ︷︷ ︸
prior



Sparse representations for image restoration

Some classical priors
Smoothness λ||Lx||22
Total variation λ||∇x||22
Wavelet sparsity λ||Wx||1
. . .



Sparse representations for image restoration

Sparsity and redundancy
Pr(x) = λ||α||0 for x = Dα

x
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Designed sparse representations
[Haar 1909], [Zweig, Morlet, Grossman ∼70s], [Meyer, Mallat,
Daubechies, Coifman, Donoho, Candes ∼80s-today]. . .

Which dictionary to choose?
Wavelets
Curvelets
Wedgelets
Bandlets
. . . lets



Learned sparse representations
[Fields & Olshausen ’96], [MOD: Engan et. al ’99],[Lewicki &
Sejnowski ’00],[K-SVD: Aharon, Elad & Bruckstein ’04 ’05],[FoE: Roth
& Black ’05],[Lee et al. ’06],[Neural nets: Lecun, Hinton ∼90s-today.]

Learned dictionaries of patches

min
αi ,D∈C

∑
i
||xi −Dαi ||22︸ ︷︷ ︸
reconstruction

+λφ(αi)︸ ︷︷ ︸
sparsity

φ(α) = ||α||0 (“`0 pseudo-norm”)
φ(α) = ||α||1 (`1 norm)



Sparse representations for image restoration
MOD: [Engan et. al ’99]

{D,α} = argminD∈C,α
∑P

i=1 ||xi −Dαi ||22 + µi ||αi ||0

Initialization of D

Sparse Coding

Dictionary Update

ex: DCT

Fix D and ∀i ∈ 1 · · ·P,
{αi} ≈ arg minα ||xi −Dα||22 + µi ||α||0

using a Greedy approach

{D} = arg min
D∈C

∑
i
||xi −Dαi ||22



Sparse representations for image restoration
K-SVD: [Elad & Aharon (’06)]

{D,α} = argminD∈C,α
∑P

i=1 ||xi −Dαi ||22 + µi ||αi ||0

Initialization of D

Sparse Coding

Dictionary Update

ex: DCT

Fix D and ∀i ∈ 1 · · ·P,
{αi} ≈ arg minα ||xi −Dα||22 + µi ||α||0

using a Greedy approach

Sequantially, ∀j = 1 · · ·K : Fix all dl 6=j ,
and minimize the reconstruction error
respect to dj and the non-zeros αi(j),



Sparse representations for image restoration
`1: Lee et al. ’06]

{D,α} = argminD∈C,α
∑P

i=1 ||xi −Dαi ||22 + µi ||αi ||1

Initialization of D

Sparse Coding

Dictionary Update

ex: DCT

Fix D and ∀i ∈ 1 · · ·P,
{αi} = arg minα ||xi −Dα||22 + µi ||α||1

using LARS, coordinate descent,. . . ...

{D} = arg min
D∈C

∑
i
||xi −Dαi ||22



Sparse representations for image restoration
K-SVD: [Elad & Aharon (’06)]

Key ideas for denoising
Consider each patch of size n × n (n = 8) in
the image, including overlaps.

learn the dictionary on the corrupted image.

the Sparse Coding retrieve a sparse
approximation of the noisy patches.

Average the approximation of each patch to
reconstruct the full image.



Sparse representations for image restoration
K-SVD: [Elad & Aharon (’06)]

Figure: Dictionary trained on a noisy version of the
image boat.
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The multiscale extension
[Mairal, Sapiro & Elad (’07)]

Different ways of “thinking” multiscale
Image Pyramids (Gaussian, Laplacian) ?

Working with different sizes of patches at full
resolution



The multiscale extension
[Mairal, Sapiro & Elad (’07)]

The key changes

A Quadtree for each patch

One dictionary per scale

multiscale decomposition of
each patch



The multiscale extension
[Mairal, Sapiro & Elad (’07)]

= α0 + α1 + α2 + α3 +

α4 + α5 + α6 + α7 +

α8 + α9 + α10 + . . .

Figure: Possible decomposition of a 20× 20 patch
with a 3-scales dictionary.



The multiscale extension
[Mairal, Sapiro & Elad (’07)]

Figure: On the left: original image. In the middle,
image corrupted (σ = 15). On the right, the result
with 3 scales (PSNR=32.01dB)
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Sparse representations for image restoration
Color denoising, [Mairal, Sapiro & Elad (’08)]



Sparse representations for image restoration
Color denoising, [Mairal, Sapiro & Elad (’08)]

Most of the atoms are grey!
Color sparse approximations suffers from
color artefacts.
Average color should be taken into
account during sparse approximation:

< x1, x2 >γ= x1
T x2 + γ < x̄1, x̄2 >



Sparse representations for image restoration
Color denoising, [Mairal, Sapiro & Elad (’08)]

Figure: Denoising result for σ = 25 and 2 scales.



Sparse representations for image restoration
Inpainting, [Mairal, Sapiro & Elad (’08)]

min
D,α

∑
i

∑
i
||βi ⊗ (yi −Dαi)||22 + λi ||αi ||0



Sparse representations for image restoration
Inpainting, [Mairal, Sapiro & Elad (’08)]

Restored image on the right.



Sparse representations for image restoration
Inpainting, [Mairal, Sapiro & Elad (’08)]

Figure: Inpainting results
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Sparse representations for video restoration
Denoising, [Protter & Elad (’08)]

Key ideas for video processing
Using a 3D dictionary.
Processing of many frames at the same
time.
Dictionary propagation.



Sparse representations for image restoration
Inpainting, [Mairal, Sapiro & Elad (’08)]

Figure: Inpainting results with two scales.
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Figure: Inpainting results with two scales.



Sparse representations for image restoration
Color Video denoising, [Mairal, Sapiro & Elad (’08)]

Figure: Denoising results with two scales. σ = 25
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More information at
http://www.di.ens.fr/~mairal/
Contact: julien.mairal@inria.fr

http://www.di.ens.fr/~mairal/
julien.mairal@inria.fr

