Invariance and Stability to Deformations of Deep Convolutional Representations

Julien Mairal
Inria Grenoble

YES workshop, Eindhoven, 2019
This is in large parts the work of Alberto Bietti

Convolutional Neural Networks
Short Introduction and Current Challenges
Learning a predictive model

The goal is to learn a **prediction function** \(f : \mathbb{R}^p \rightarrow \mathbb{R} \) given labeled training data \((x_i, y_i)_{i=1,...,n}\) with \(x_i \) in \(\mathbb{R}^p \), and \(y_i \) in \(\mathbb{R} \):

\[
\min_{f \in F} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda \Omega(f).
\]

- **empirical risk, data fit**
- **regularization**
Convolutional Neural Networks

The goal is to learn a prediction function $f : \mathbb{R}^p \rightarrow \mathbb{R}$ given labeled training data $(x_i, y_i)_{i=1,...,n}$ with x_i in \mathbb{R}^p, and y_i in \mathbb{R}:

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda \Omega(f) .$$

What is specific to multilayer neural networks?

- The “neural network” space \mathcal{F} is explicitly parametrized by:

 $$f(x) = \sigma_k(W_k \sigma_{k-1}(W_{k-1} \ldots \sigma_2(W_2 \sigma_1(W_1 x)) \ldots)) .$$

- Linear operations are either unconstrained (fully connected) or share parameters (e.g., convolutions).

- Finding the optimal W_1, W_2, \ldots, W_k yields a non-convex optimization problem in huge dimension.
Convolutional Neural Networks

What are the main features of CNNs?
- they capture **compositional** and **multiscale** structures in images;
- they provide some **invariance**;
- they model **local stationarity** of images at several scales;
- they are **state-of-the-art** in many fields.
Convolutional Neural Networks

The keywords: multi-scale, compositional, invariant, local features.

Picture from Y. LeCun’s tutorial:

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
Convolutional Neural Networks

Picture from Olah et al. [2017]:

- **Edges** (layer conv2d0)
- **Textures** (layer mixed3a)
- **Patterns** (layer mixed4a)
Convolutional Neural Networks

Picture from Olah et al. [2017]:

Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)
Convolutional Neural Networks: Challenges

What are current high-potential problems to solve?

1. lack of **stability** (see next slide).
2. learning with **few labeled data**.
3. learning with **no supervision** (see Tab. from Bojanowski and Joulin, 2017).

<table>
<thead>
<tr>
<th>Method</th>
<th>Acc@1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random (Noroozi & Favaro, 2016)</td>
<td>12.0</td>
</tr>
<tr>
<td>SIFT+FV (Sánchez et al., 2013)</td>
<td>55.6</td>
</tr>
<tr>
<td>Wang & Gupta (2015)</td>
<td>29.8</td>
</tr>
<tr>
<td>Doersch et al. (2015)</td>
<td>30.4</td>
</tr>
<tr>
<td>Zhang et al. (2016)</td>
<td>35.2</td>
</tr>
<tr>
<td>Noroozi & Favaro (2016)</td>
<td>38.1</td>
</tr>
<tr>
<td>BiGAN (Donahue et al., 2016)</td>
<td>32.2</td>
</tr>
<tr>
<td>NAT</td>
<td>36.0</td>
</tr>
</tbody>
</table>

Table 3. Comparison of the proposed approach to state-of-the-art unsupervised feature learning on ImageNet. A full multi-layer perceptron is retrained on top of the features. We compare to several self-supervised approaches and an unsupervised approach.
Convolutional Neural Networks: Challenges

Illustration of instability. Picture from Kurakin et al. [2016].

Figure: Adversarial examples are generated by computer; then printed on paper; a new picture taken on a smartphone fools the classifier.
Convolutional Neural Networks: Challenges

\[
\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda \Omega(f).
\]

The issue of regularization

- today, heuristics are used (DropOut, weight decay, early stopping)...
- ...but they are not sufficient.
- how to control variations of prediction functions?

\[|f(x) - f(x')| \text{ should be close if } x \text{ and } x' \text{ are “similar”}.\]

- what does it mean for \(x\) and \(x'\) to be “similar”?
- what should be a good regularization function \(\Omega\)?
Invariance and Stability from a Kernel Perspective
Objectives

Deep convolutional signal representations
- Are they stable to deformations?
- How can we achieve invariance to transformation groups?
- Do they preserve signal information?

Learning aspects
- Building a functional space for CNNs (or similar objects).
- Deriving a measure of model complexity.
A kernel perspective

Recipe

- Map data x to **high-dimensional space**, $\Phi(x)$ in \mathcal{H} (RKHS), with Hilbertian geometry (projections, barycenters, angles, . . . , exist!).
- Predictive models f in \mathcal{H} are **linear forms** in \mathcal{H}: $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$.
- Learning with a positive definite kernel $K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$.

[Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004]...
A kernel perspective

Recipe

- Map data \(x \) to **high-dimensional space**, \(\Phi(x) \) in \(\mathcal{H} \) (RKHS), with Hilbertian geometry (projections, barycenters, angles, . . . , exist!).
- Predictive models \(f \) in \(\mathcal{H} \) are **linear forms** in \(\mathcal{H} \): \(f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}} \).
- Learning with a positive definite kernel \(K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}} \).

What is the relation with deep neural networks?

- It is possible to design a RKHS \(\mathcal{H} \) where a large class of deep neural networks live [Mairal, 2016].

\[
f(x) = \sigma_k(W_k \sigma_{k-1}(W_{k-1} \ldots \sigma_2(W_2 \sigma_1(W_1 x)) \ldots)) = \langle f, \Phi(x) \rangle_{\mathcal{H}}.
\]

- This is the construction of **“convolutional kernel networks”**.

[Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004]...
A kernel perspective

Recipe

- Map data \(x \) to **high-dimensional space**, \(\Phi(x) \) in \(\mathcal{H} \) (RKHS), with Hilbertian geometry (projections, barycenters, angles, . . . , exist!).
- Predictive models \(f \) in \(\mathcal{H} \) are **linear forms** in \(\mathcal{H} \): \(f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}} \).
- Learning with a positive definite kernel \(K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}} \).

Why do we care?

- \(\Phi(x) \) is related to the **network architecture** and is **independent of training data**. Is it stable? Does it lose signal information?
- \(f \) is a **predictive model**. Can we control its stability?

\[
|f(x) - f(x')| \leq \|f\|_{\mathcal{H}} \|\Phi(x) - \Phi(x')\|_{\mathcal{H}}.
\]

- \(\|f\|_{\mathcal{H}} \) controls both **stability and generalization**!
A kernel perspective: digression about regularization

Assume we have an RKHS \mathcal{H} for deep networks:

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2.$$

$\| \cdot \|_{\mathcal{H}}$ encourages smoothness and stability w.r.t. the geometry induced by the kernel (which depends itself on the choice of architecture).
A kernel perspective: digression about regularization

Assume we have an RKHS \mathcal{H} for deep networks:

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2.$$

$\|\cdot\|_{\mathcal{H}}$ encourages smoothness and stability w.r.t. the geometry induced by the kernel (which depends itself on the choice of architecture).

Problem
Multilayer kernels developed for deep networks are typically intractable.

One solution [Mairal, 2016]
do kernel approximations at each layer, which lead to non-standard CNNs called convolutional kernel networks (CKNs).
A kernel perspective: digression about regularization

Another point of view: consider a classical CNN parametrized by θ, which live in the RKHS:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f_\theta(x_i)) + \frac{\lambda}{2} \| f_\theta \|_H^2.$$

This is different than CKNs since f_θ admits a classical parametrization.
A kernel perspective: digression about regularization

Another point of view: consider a classical CNN parametrized by \(\theta \), which live in the RKHS:

\[
\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f_\theta(x_i)) + \frac{\lambda}{2} \| f_\theta \|_H^2.
\]

This is different than CKNs since \(f_\theta \) admits a classical parametrization.

Problem

\(\| f_\theta \|_H \) is intractable...

One solution [Bietti et al., 2019]

use approximations (lower- and upper-bounds), based on mathematical properties of \(\| . \|_H \).
A signal processing perspective
plus a bit of harmonic analysis

- consider images defined on a **continuous** domain $\Omega = \mathbb{R}^d$.
- $\tau : \Omega \to \Omega$: C^1-diffeomorphism.
- $L_\tau x(u) = x(u - \tau(u))$: action operator.
- much richer group of transformations than translations.

A signal processing perspective
plus a bit of harmonic analysis

- consider images defined on a **continuous** domain $\Omega = \mathbb{R}^d$.
- $\tau : \Omega \rightarrow \Omega$: C^1-diffeomorphism.
- $L_\tau x(u) = x(u - \tau(u))$: action operator.
- much richer group of transformations than translations.

relation with deep convolutional representations

stability to deformations studied for wavelet-based scattering transform.

A signal processing perspective
plus a bit of harmonic analysis

- consider images defined on a \textbf{continuous} domain \(\Omega = \mathbb{R}^d \).
- \(\tau : \Omega \to \Omega \): \(\mathcal{C}^1 \)-diffeomorphism.
- \(L_\tau x(u) = x(u - \tau(u)) \): action operator.
- much richer group of transformations than translations.

\textbf{Definition of stability}

- Representation \(\Phi(\cdot) \) is \textbf{stable} [Mallat, 2012] if:

\[
\| \Phi(L_\tau x) - \Phi(x) \| \leq (C_1 \| \nabla \tau \|_\infty + C_2 \| \tau \|_\infty) \| x \|.
\]

- \(\| \nabla \tau \|_\infty = \sup_u \| \nabla \tau(u) \| \) controls deformation.
- \(\| \tau \|_\infty = \sup_u |\tau(u)| \) controls translation.
- \(C_2 \to 0 \): translation invariance.
Summary of our results

Multi-layer construction of the RKHS \mathcal{H}
- Contains CNNs with smooth homogeneous activations functions.

Signal representation

Signal preservation of the multi-layer kernel mapping Φ.

Conditions of non-trivial stability for Φ.

Constructions to achieve group invariance.

On learning

Bounds on the RKHS norm $\|f\|_{\mathcal{H}}$ to control stability and generalization of a predictive model $f(x) - f(x') \leq \|f\|_{\mathcal{H}} \|\Phi(x) - \Phi(x')\|_{\mathcal{H}}$.

Julien Mairal

Invariance and stability of DL
Summary of our results

Multi-layer construction of the RKHS \mathcal{H}
- Contains CNNs with smooth homogeneous activations functions.

Signal representation
- **Signal preservation** of the multi-layer kernel mapping Φ.
- Conditions of **non-trivial stability** for Φ.
- Constructions to achieve **group invariance**.
Summary of our results

Multi-layer construction of the RKHS \mathcal{H}
- Contains CNNs with smooth homogeneous activations functions.

Signal representation
- **Signal preservation** of the multi-layer kernel mapping Φ.
- Conditions of **non-trivial stability** for Φ.
- Constructions to achieve **group invariance**.

On learning
- Bounds on the RKHS norm $\| \cdot \|_{\mathcal{H}}$ to control **stability and generalization** of a predictive model f.

\[
|f(x) - f(x')| \leq \|f\|_{\mathcal{H}} \|\Phi(x) - \Phi(x')\|_{\mathcal{H}}.
\]
Outline

1. Construction of the multi-layer convolutional representation

2. Invariance and stability

3. Learning aspects: model complexity
A generic deep convolutional representation

Initial map x_0 in $L^2(\Omega, \mathcal{H}_0)$

$x_0 : \Omega \to \mathcal{H}_0$: \textbf{continuous} input signal

- $u \in \Omega = \mathbb{R}^d$: location \hspace{1cm} (d = 2 for images).
- $x_0(u) \in \mathcal{H}_0$: input value at location u \hspace{1cm} ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images).
A generic deep convolutional representation

Initial map x_0 in $L^2(\Omega, \mathcal{H}_0)$

$x_0 : \Omega \to \mathcal{H}_0$: **continuous** input signal

- $u \in \Omega = \mathbb{R}^d$: location
- $x_0(u) \in \mathcal{H}_0$: input value at location u \quad ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images).

Building map x_k in $L^2(\Omega, \mathcal{H}_k)$ from x_{k-1} in $L^2(\Omega, \mathcal{H}_{k-1})$

$x_k : \Omega \to \mathcal{H}_k$: **feature map** at layer k

$$P_k x_{k-1}.$$

- P_k: **patch extraction** operator, extract small patch of feature map x_{k-1} around each point u \quad ($P_k x_{k-1}(u)$ is a patch centered at u).
A generic deep convolutional representation

Initial map x_0 in $L^2(\Omega, \mathcal{H}_0)$

$x_0 : \Omega \rightarrow \mathcal{H}_0$: **continuous** input signal

- $u \in \Omega = \mathbb{R}^d$: location
- $x_0(u) \in \mathcal{H}_0$: input value at location u ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images).

Building map x_k in $L^2(\Omega, \mathcal{H}_k)$ from x_{k-1} in $L^2(\Omega, \mathcal{H}_{k-1})$

$x_k : \Omega \rightarrow \mathcal{H}_k$: **feature map** at layer k

\[M_k P_k x_{k-1}. \]

- P_k: **patch extraction** operator, extract small patch of feature map x_{k-1} around each point u ($P_k x_{k-1}(u)$ is a patch centered at u).
- M_k: **non-linear mapping** operator, maps each patch to a new Hilbert space \mathcal{H}_k with a **pointwise** non-linear function $\varphi_k(\cdot)$.
A generic deep convolutional representation

Initial map x_0 in $L^2(\Omega, \mathcal{H}_0)$

$x_0 : \Omega \rightarrow \mathcal{H}_0$: continuous input signal

- $u \in \Omega = \mathbb{R}^d$: location
- $x_0(u) \in \mathcal{H}_0$: input value at location u ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images).

Building map x_k in $L^2(\Omega, \mathcal{H}_k)$ from x_{k-1} in $L^2(\Omega, \mathcal{H}_{k-1})$

$x_k : \Omega \rightarrow \mathcal{H}_k$: feature map at layer k

$$x_k = A_k M_k P_k x_{k-1}.$$

- P_k: patch extraction operator, extract small patch of feature map x_{k-1} around each point u ($P_k x_{k-1}(u)$ is a patch centered at u).
- M_k: non-linear mapping operator, maps each patch to a new Hilbert space \mathcal{H}_k with a pointwise non-linear function $\varphi_k(\cdot)$.
- A_k: (linear) pooling operator at scale σ_k.
A generic deep convolutional representation

\[x_k := A_k M_k P_k x_{k-1} : \Omega \to \mathcal{H}_k \]

\[x_k(w) = A_k M_k P_k x_{k-1}(w) \in \mathcal{H}_k \]

linear pooling

\[M_k P_k x_{k-1} : \Omega \to \mathcal{H}_k \]

kernel mapping

\[M_k P_k x_{k-1}(v) = \varphi_k(P_k x_{k-1}(v)) \in \mathcal{H}_k \]

\[P_k x_{k-1}(v) \in \mathcal{P}_k \text{ (patch extraction)} \]

\[x_{k-1}(u) \in \mathcal{H}_{k-1} \]

\[x_{k-1} : \Omega \to \mathcal{H}_{k-1} \]
Patch extraction operator P_k

$$P_k x_{k-1}(u) := (v \in S_k \mapsto x_{k-1}(u + v)) \in \mathcal{P}_k = \mathcal{H}^{S_k}_{k-1}.$$

- S_k: patch shape, e.g. box.
- P_k is **linear**, and **preserves the norm**: $\|P_k x_{k-1}\| = \|x_{k-1}\|$.
- Norm of a map: $\|x\|^2 = \int_\Omega \|x(u)\|^2 du < \infty$ for x in $L^2(\Omega, \mathcal{H})$.

$x_{k-1}(u) \in \mathcal{H}_{k-1}$

$x_{k-1} : \Omega \rightarrow \mathcal{H}_{k-1}$

$P_k x_{k-1}(v) \in \mathcal{P}_k$ (patch extraction)
Non-linear pointwise mapping operator M_k

$$M_k P_k x_{k-1}(u) := \varphi_k(P_k x_{k-1}(u)) \in \mathcal{H}_k.$$
Non-linear pointwise mapping operator M_k

\[M_k P_k x_{k-1}(u) := \varphi_k(P_k x_{k-1}(u)) \in \mathcal{H}_k. \]

- $\varphi_k : \mathcal{P}_k \to \mathcal{H}_k$ pointwise non-linearity on patches.
- We assume non-expansivity
 \[\|\varphi_k(z)\| \leq \|z\| \quad \text{and} \quad \|\varphi_k(z) - \varphi_k(z')\| \leq \|z - z'\|. \]
- M_k then satisfies, for $x, x' \in L^2(\Omega, \mathcal{P}_k)$
 \[\|M_k x\| \leq \|x\| \quad \text{and} \quad \|M_k x - M_k x'\| \leq \|x - x'\|. \]
\(\varphi_k \) from kernels

- Kernel mapping of **homogeneous dot-product kernels**:

\[
K_k(z, z') = \|z\| \|z'\| \kappa_k \left(\frac{\langle z, z' \rangle}{\|z\| \|z'\|} \right) = \langle \varphi_k(z), \varphi_k(z') \rangle.
\]

- \(\kappa_k(u) = \sum_{j=0}^{\infty} b_j u^j \) with \(b_j \geq 0 \), \(\kappa_k(1) = 1 \).

- \(\|\varphi_k(z)\| = K_k(z, z)^{1/2} = \|z\| \) (norm preservation).

- \(\|\varphi_k(z) - \varphi_k(z')\| \leq \|z - z'\| \) if \(\kappa'_k(1) \leq 1 \) (non-expansiveness).
\(\varphi_k \) from kernels

- Kernel mapping of **homogeneous dot-product kernels**:
 \[
 K_k(z, z') = \|z\| \|z'\| \kappa_k \left(\frac{\langle z, z' \rangle}{\|z\| \|z'\|} \right) = \langle \varphi_k(z), \varphi_k(z') \rangle.
 \]
- \(\kappa_k(u) = \sum_{j=0}^{\infty} b_j u^j \) with \(b_j \geq 0, \kappa_k(1) = 1 \).
- \(\| \varphi_k(z) \| = K_k(z, z)^{1/2} = \|z\| \) (norm preservation).
- \(\| \varphi_k(z) - \varphi_k(z') \| \leq \|z - z'\| \) if \(\kappa_k'(1) \leq 1 \) (non-expansiveness).

Examples

- \(\kappa_{\text{exp}}(\langle z, z' \rangle) = e^{\langle z, z' \rangle} - 1 = e^{-\frac{1}{2} \|z - z'\|^2} \) (if \(\|z\| = \|z'\| = 1 \)).
- \(\kappa_{\text{inv-poly}}(\langle z, z' \rangle) = \frac{1}{2 - \langle z, z' \rangle} \).

Pooling operator A_k

$$x_k(u) = A_k M_k P_k x_{k-1}(u) = \int_{\mathbb{R}^d} h_{\sigma_k}(u - v) M_k P_k x_{k-1}(v) dv \in \mathcal{H}_k.$$
Pooling operator A_k

\[x_k(u) = A_k M_k P_k x_{k-1}(u) = \int_{\mathbb{R}^d} h_{\sigma_k}(u - v) M_k P_k x_{k-1}(v) dv \in \mathcal{H}_k. \]

- h_{σ_k}: pooling filter at scale σ_k.
- $h_{\sigma_k}(u) := \sigma_k^{-d} h(u/\sigma_k)$ with $h(u)$ Gaussian.
- **Linear, non-expansive operator**: $\|A_k\| \leq 1$ (operator norm).
Recap: P_k, M_k, A_k

$x_k := A_k M_k P_k x_{k-1} : \Omega \rightarrow \mathcal{H}_k$

$M_k P_k x_{k-1} : \Omega \rightarrow \mathcal{H}_k$

$M_k P_k x_{k-1}(v) = \varphi_k(P_k x_{k-1}(v)) \in \mathcal{H}_k$

kernel mapping

$P_k x_{k-1}(v) \in \mathcal{P}_k$ (patch extraction)

$x_{k-1}(u) \in \mathcal{H}_{k-1}$

$x_{k-1} : \Omega \rightarrow \mathcal{H}_{k-1}$

$x_k(w) = A_k M_k P_k x_{k-1}(w) \in \mathcal{H}_k$

linear pooling
Multilayer construction

Assumption on x_0

- x_0 is typically a discrete signal acquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (anti-aliasing).
Multilayer construction

Assumption on x_0

- x_0 is typically a **discrete** signal acquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (**anti-aliasing**).

Multilayer representation

$$\Phi_n(x) = A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x_0 \in L^2(\Omega, \mathcal{H}_n).$$

- S_k, σ_k grow exponentially in practice (i.e., fixed with subsampling).
Multilayer construction

Assumption on x_0

- x_0 is typically a discrete signal acquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (anti-aliasing).

Multilayer representation

$$\Phi_n(x) = A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x_0 \in L^2(\Omega, H_n).$$

- S_k, σ_k grow exponentially in practice (i.e., fixed with subsampling).

Prediction layer

- e.g., linear $f(x) = \langle w, \Phi_n(x) \rangle$.
- “linear kernel” $K(x, x') = \langle \Phi_n(x), \Phi_n(x') \rangle = \int_{\Omega} \langle x_n(u), x'_n(u) \rangle du$.

Julien Mairal
Invariance and stability of DL
Outline

1. Construction of the multi-layer convolutional representation

2. Invariance and stability

3. Learning aspects: model complexity
Invariance, definitions

- $\tau: \Omega \rightarrow \Omega$: C^1-diffeomorphism with $\Omega = \mathbb{R}^d$.
- $L_\tau x(u) = x(u - \tau(u))$: action operator.
- Much richer group of transformations than translations.

Invariance, definitions

- $\tau : \Omega \to \Omega$: C^1-diffeomorphism with $\Omega = \mathbb{R}^d$.
- $L_\tau x(u) = x(u - \tau(u))$: action operator.
- Much richer group of transformations than translations.

Definition of stability

- Representation $\Phi(\cdot)$ is stable [Mallat, 2012] if:

$$
\|\Phi(L_\tau x) - \Phi(x)\| \leq (C_1 \|\nabla \tau\|_\infty + C_2 \|\tau\|_\infty) \|x\|.
$$

- $\|\nabla \tau\|_\infty = \sup_u \|\nabla \tau(u)\|$ controls deformation.
- $\|\tau\|_\infty = \sup_u |\tau(u)|$ controls translation.
- $C_2 \to 0$: translation invariance.

Warmup: translation invariance

Representation

\[\Phi_n(x) \triangleq A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x. \]

How to achieve translation invariance?

- Translation: \(L_c x(u) = x(u - c) \).
Warmup: translation invariance

Representation

\[\Phi_n(x) \triangleq A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x. \]

How to achieve translation invariance?

- **Translation:** \(L_c x(u) = x(u - c) \).
- **Equivariance** - all operators commute with \(L_c \): \(\Box L_c = L_c \Box \).

\[
\| \Phi_n (L_c x) - \Phi_n (x) \| = \| L_c \Phi_n (x) - \Phi_n (x) \| \\
\leq \| L_c A_n - A_n \| \cdot \| M_n P_n \Phi_{n-1} (x) \| \\
\leq \| L_c A_n - A_n \| \| x \| .
\]
Warmup: translation invariance

Representation

\[\Phi_n(x) \triangleq A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x. \]

How to achieve translation invariance?

- **Translation**: \(L_c x(u) = x(u - c) \).

- **Equivariance** - all operators commute with \(L_c \): \(\Box L_c = L_c \Box \).

\[
\| \Phi_n(L_c x) - \Phi_n(x) \| = \| L_c \Phi_n(x) - \Phi_n(x) \| \\
\leq \| L_c A_n - A_n \| \cdot \| M_n P_n \Phi_{n-1}(x) \| \\
\leq \| L_c A_n - A_n \| \| x \|.
\]

- Mallat [2012]: \(\| L_\tau A_n - A_n \| \leq \frac{C_2}{\sigma_n} \| \tau \|_\infty \) (operator norm).
Warmup: translation invariance

Representation

$$\Phi_n(x) \triangleq A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

How to achieve translation invariance?

- **Translation:** $L_c x(u) = x(u - c)$.
- **Equivariance** - all operators commute with L_c: $\square L_c = L_c \square$.

$$\| \Phi_n(L_c x) - \Phi_n(x) \| = \| L_c \Phi_n(x) - \Phi_n(x) \|$$

$$\leq \| L_c A_n - A_n \| \cdot \| M_n P_n \Phi_{n-1}(x) \|$$

$$\leq \| L_c A_n - A_n \| \| x \| .$$

- Mallat [2012]: $\| L_c A_n - A_n \| \leq \frac{C_2}{\sigma_n} c$ (operator norm).
- **Scale σ_n of the last layer controls translation invariance.**
Stability to deformations

Representation

\[\Phi_n(x) \triangleq A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x. \]

How to achieve stability to deformations?

- Patch extraction \(P_k \) and pooling \(A_k \) do not commute with \(L_\tau \)!
Stability to deformations

Representation

\[\Phi_n(x) \triangleq A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x. \]

How to achieve stability to deformations?

- Patch extraction \(P_k \) and pooling \(A_k \) do not commute with \(L_\tau \)!
- \[\| A_k L_\tau - L_\tau A_k \| \leq C_1 \| \nabla \tau \|_\infty \] [from Mallat, 2012].
Stability to deformations

Representation

$$\Phi_n(x) \triangleq A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

How to achieve stability to deformations?

- Patch extraction P_k and pooling A_k do not commute with L_τ!
- $\| [A_k, L_\tau] \| \leq C_1 \| \nabla \tau \|_\infty$ [from Mallat, 2012].
Stability to deformations

Representation

\[\Phi_n(x) \triangleq A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x. \]

How to achieve stability to deformations?

- Patch extraction \(P_k \) and pooling \(A_k \) do not commute with \(L_\tau \)!
- \(\|[A_k, L_\tau]\| \leq C_1 \|\nabla \tau\|_\infty \) [from Mallat, 2012].
- But: \([P_k, L_\tau] \) is unstable at high frequencies!
Stability to deformations

Representation

\[\Phi_n(x) \triangleq A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x. \]

How to achieve stability to deformations?

- Patch extraction \(P_k \) and pooling \(A_k \) do not commute with \(L_\tau \)!
- \(\|[A_k, L_\tau]\| \leq C_1 \|\nabla \tau\|_\infty \) [from Mallat, 2012].
- But: \([P_k, L_\tau]\) is unstable at high frequencies!
- Adapt to current layer resolution, patch size controlled by \(\sigma_{k-1} \):

\[
\|[P_k A_{k-1}, L_\tau]\| \leq C_{1,\kappa} \|\nabla \tau\|_\infty \quad \sup_{u \in S_k} |u| \leq \kappa \sigma_{k-1}
\]
Stability to deformations

Representation

\[\Phi_n(x) \triangleq A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x. \]

How to achieve stability to deformations?

- Patch extraction \(P_k \) and pooling \(A_k \) **do not commute** with \(L_\tau \)!
- \(\|[A_k, L_\tau]\| \leq C_1 \|\nabla \tau\|_\infty \) [from Mallat, 2012].
- But: \([P_k, L_\tau] \) is **unstable** at high frequencies!
- Adapt to **current layer resolution**, patch size controlled by \(\sigma_{k-1} \):
 \[\|[P_k A_{k-1}, L_\tau]\| \leq C_{1,\kappa} \|\nabla \tau\|_\infty \sup_{u \in S_k} |u| \leq \kappa \sigma_{k-1} \]
 \(C_{1,\kappa} \) grows as \(\kappa^{d+1} \) \(\Longrightarrow \) **more stable with small patches** (e.g., 3x3, VGG et al.).
Stability to deformations: final result

Theorem

If $\|\nabla \tau\|_\infty \leq 1/2$,

$$\|\Phi_n(L_\tau x) - \Phi_n(x)\| \leq \left(C_{1,\kappa} (n + 1) \|\nabla \tau\|_\infty + \frac{C_2}{\sigma_n} \|\tau\|_\infty \right) \|x\|.$$

- translation invariance: large σ_n.
- stability: small patch sizes.
- signal preservation: subsampling factor \approx patch size.
- \implies needs several layers.

related work on stability [Wiatowski and Bölcskei, 2017]
Stability to deformations: final result

Theorem

If $\|\nabla \tau\|_\infty \leq 1/2$,

$$\|\Phi_n(L_\tau x) - \Phi_n(x)\| \leq \left(C_{1,\kappa} (n + 1) \|\nabla \tau\|_\infty + \frac{C_2}{\sigma_n} \|\tau\|_\infty \right) \|x\|.$$

- translation invariance: large σ_n.
- stability: small patch sizes.
- signal preservation: subsampling factor \approx patch size.
 $\implies \textbf{needs several layers.}$
- requires additional discussion to make stability non-trivial.

related work on stability [Wiatowski and Bölcskei, 2017]
Beyond the translation group

Can we achieve invariance to other groups?

- Group action: \(L_g x(u) = x(g^{-1}u) \) (e.g., rotations, reflections).
- Feature maps \(x(u) \) defined on \(u \in G \) (\(G \): locally compact group).

Recipe: Equivariant inner layers + global pooling in last layer

Patch extraction:

\[P_x(u) = x(uv) \quad v \in S. \]

Non-linear mapping: equivariant because pointwise!

Pooling (\(\mu \): left-invariant Haar measure):

\[A_x(u) = \int_G x(uv) h(v) d\mu(v) = \int_G x(v) h(u^{-1}v) d\mu(v). \]

related work [Sifre and Mallat, 2013, Cohen and Welling, 2016, Raj et al., 2016]...
Beyond the translation group

Can we achieve invariance to other groups?

- Group action: $L_g x(u) = x(g^{-1}u)$ (e.g., rotations, reflections).
- Feature maps $x(u)$ defined on $u \in G$ (G: locally compact group).

Recipe: Equivariant inner layers + global pooling in last layer

- **Patch extraction:**

 $$Px(u) = (x(uv))_{v \in S}.$$

- **Non-linear mapping**: equivariant because pointwise!
- **Pooling** (μ: left-invariant Haar measure):

 $$Ax(u) = \int_{G} x(uv)h(v)d\mu(v) = \int_{G} x(v)h(u^{-1}v)d\mu(v).$$

related work [Sifre and Mallat, 2013, Cohen and Welling, 2016, Raj et al., 2016]...
Group invariance and stability

Previous construction is similar to Cohen and Welling [2016] for CNNs.

A case of interest: the roto-translation group

- $G = \mathbb{R}^2 \rtimes SO(2)$ (mix of translations and rotations).
- **Stability** with respect to the translation group.
- **Global invariance** to rotations (only global pooling at final layer).
 - Inner layers: only pool on translation group.
 - Last layer: global pooling on rotations.
 - Cohen and Welling [2016]: pooling on rotations in inner layers hurts performance on Rotated MNIST.
Discretization and signal preservation: example in 1D

- Discrete signal \bar{x}_k in $\ell^2(\mathbb{Z}, \mathcal{H}_k)$ vs continuous ones x_k in $L^2(\mathbb{R}, \mathcal{H}_k)$.
- \bar{x}_k: subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:
 \[
 \bar{x}_k[n] = \bar{A}_k \bar{M}_k \bar{P}_k \bar{x}_{k-1}[ns_k].
 \]
Discretization and signal preservation: example in 1D

- Discrete signal \bar{x}_k in $\ell^2(\mathbb{Z}, \bar{\mathcal{H}}_k)$ vs continuous ones x_k in $L^2(\mathbb{R}, \mathcal{H}_k)$.

- \bar{x}_k: subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

$$\bar{x}_k[n] = \bar{A}_k \bar{M}_k \bar{P}_k \bar{x}_{k-1}[ns_k].$$

- **Claim**: We can recover \bar{x}_{k-1} from \bar{x}_k if factor $s_k \leq$ patch size.
Discretization and signal preservation: example in 1D

- Discrete signal \(\bar{x}_k \) in \(\ell^2(\mathbb{Z}, \mathcal{H}_k) \) vs continuous ones \(x_k \) in \(L^2(\mathbb{R}, \mathcal{H}_k) \).
- \(\bar{x}_k \): subsampling factor \(s_k \) after pooling with scale \(\sigma_k \approx s_k \):
 \[
 \bar{x}_k[n] = \bar{A}_k \bar{M}_k \bar{P}_k \bar{x}_{k-1}[ns_k].
 \]

- **Claim**: We can recover \(\bar{x}_{k-1} \) from \(\bar{x}_k \) if factor \(s_k \leq \text{patch size} \).
- **How?** Recover patches with **linear functions** (contained in \(\mathcal{H}_k \))
 \[
 \langle f_w, \bar{M}_k \bar{P}_k \bar{x}_{k-1}(u) \rangle = f_w(\bar{P}_k \bar{x}_{k-1}(u)) = \langle w, \bar{P}_k \bar{x}_{k-1}(u) \rangle,
 \]
 and
 \[
 \bar{P}_k \bar{x}_{k-1}(u) = \sum_{w \in B} \langle f_w, \bar{M}_k \bar{P}_k \bar{x}_{k-1}(u) \rangle w.
 \]

Warning: no claim that recovery is practical and/or stable.
Discretization and signal preservation: example in 1D

- Discrete signal \(\bar{x}_k \) in \(\ell^2(\mathbb{Z}, \mathcal{H}_k) \) vs continuous ones \(x_k \) in \(L^2(\mathbb{R}, \mathcal{H}_k) \).
- \(\bar{x}_k \): subsampling factor \(s_k \) after pooling with scale \(\sigma_k \approx s_k \):

\[
\bar{x}_k[n] = \bar{A}_k \bar{M}_k \bar{P}_k \bar{x}_{k-1}[ns_k].
\]

- **Claim**: We can recover \(\bar{x}_{k-1} \) from \(\bar{x}_k \) if factor \(s_k \leq \text{patch size} \).
- **How**? Recover patches with **linear functions** (contained in \(\mathcal{H}_k \))

\[
\langle f_w, \bar{M}_k \bar{P}_k \bar{x}_{k-1}(u) \rangle = f_w(\bar{P}_k \bar{x}_{k-1}(u)) = \langle w, \bar{P}_k \bar{x}_{k-1}(u) \rangle,
\]

and

\[
\bar{P}_k \bar{x}_{k-1}(u) = \sum_{w \in B} \langle f_w, \bar{M}_k \bar{P}_k \bar{x}_{k-1}(u) \rangle w.
\]

Warning: no claim that recovery is practical and/or stable.
Discretization and signal preservation: example in 1D

\[\bar{x}_{k-1} \]

\[\bar{A}_k \bar{x}_{k-1} \]

\[\bar{x}_k \]

\[\bar{A}_k \bar{M}_k \bar{P}_k \bar{x}_{k-1} \]

\[\bar{M}_k \bar{P}_k \bar{x}_{k-1} \]

\[\bar{x}_{k-1} \]

deconvolution

recovery with linear measurements

downsampling

linear pooling

dot-product kernel

\[\bar{P}_k \bar{x}_{k-1}(u) \in \mathcal{P}_k \]
Outline

1. Construction of the multi-layer convolutional representation
2. Invariance and stability
3. Learning aspects: model complexity
RKHS of patch kernels K_k

$$K_k(z, z') = \|z\|\|z'\|\kappa \left(\frac{\langle z, z' \rangle}{\|z\|\|z'\|} \right), \quad \kappa(u) = \sum_{j=0}^{\infty} b_j u^j.$$

What does the RKHS contain?

Homogeneous version of [Zhang et al., 2016, 2017]
RKHS of patch kernels K_k

$$K_k(z, z') = \|z\|\|z'\|\kappa\left(\frac{\langle z, z' \rangle}{\|z\|\|z'\|}\right), \quad \kappa(u) = \sum_{j=0}^{\infty} b_j u^j.$$

What does the RKHS contain?

- RKHS contains **homogeneous functions**:

 $$f : z \mapsto \|z\|\sigma(\langle g, z \rangle/\|z\|).$$

Homogeneous version of [Zhang et al., 2016, 2017]
RKHS of patch kernels K_k

\[
K_k(z, z') = \|z\|\|z'\|\kappa\left(\frac{\langle z, z' \rangle}{\|z\|\|z'\|}\right), \quad \kappa(u) = \sum_{j=0}^{\infty} b_j u^j.
\]

What does the RKHS contain?

- RKHS contains **homogeneous functions**:

 \[
 f : z \mapsto \|z\|\sigma(\langle g, z \rangle/\|z\|).
 \]

- **Smooth activations**: $\sigma(u) = \sum_{j=0}^{\infty} a_j u^j$ with $a_j \geq 0$.

- **Norm**: $\|f\|_{\mathcal{H}_k}^2 \leq C_\sigma^2(\|g\|^2) = \sum_{j=0}^{\infty} \frac{a_j^2}{b_j} \|g\|^2 < \infty$.

Homogeneous version of [Zhang et al., 2016, 2017]
RKHS of patch kernels K_k

Examples:

- $\sigma(u) = u$ (linear): $C_{\sigma}^2(\lambda^2) = O(\lambda^2)$.
- $\sigma(u) = u^p$ (polynomial): $C_{\sigma}^2(\lambda^2) = O(\lambda^{2p})$.
- $\sigma \approx \sin, \text{sigmoid, smooth ReLU}$: $C_{\sigma}^2(\lambda^2) = O(e^{c\lambda^2})$.

![Graph](image)
Constructing a CNN in the RKHS \mathcal{H}_K

Some CNNs live in the RKHS: “linearization” principle

$$f(x) = \sigma_k(W_k\sigma_{k-1}(W_{k-1} \ldots \sigma_2(W_2\sigma_1(W_1x)) \ldots)) = \langle f, \Phi(x) \rangle_{\mathcal{H}}.$$
Constructing a CNN in the RKHS \mathcal{H}_K

Some CNNs live in the RKHS: “linearization” principle

$$f(x) = \sigma_k(W_k\sigma_{k-1}(W_{k-1} \ldots \sigma_2(W_2\sigma_1(W_1 x)) \ldots)) = \langle f, \Phi(x) \rangle_\mathcal{H}.$$

- Consider a CNN with filters $W_{ij}^k(u)$, $u \in S_k$.
 - k: layer;
 - i: index of filter;
 - j: index of input channel.

- “Smooth homogeneous” activations σ.

- The CNN can be constructed hierarchically in \mathcal{H}_K.

- Norm (linear layers):
 $$\|f \sigma\|^2 \leq \|W_{n+1}\|^2_2 \cdot \|W_n\|^2_2 \cdot \|W_{n-1}\|^2_2 \cdots \|W_1\|^2_2.$$

- Linear layers: product of spectral norms.
Link with generalization

Direct application of classical generalization bounds

- Simple bound on Rademacher complexity for linear/kernel methods:

\[\mathcal{F}_B = \{ f \in \mathcal{H}_K, \|f\| \leq B \} \implies \text{Rad}_N(\mathcal{F}_B) \leq O\left(\frac{BR}{\sqrt{N}}\right). \]
Link with generalization

Direct application of classical generalization bounds

- Simple bound on Rademacher complexity for linear/kernel methods:

$$\mathcal{F}_B = \{ f \in \mathcal{H}_K, \| f \| \leq B \} \implies \text{Rad}_N(\mathcal{F}_B) \leq O\left(\frac{BR}{\sqrt{N}}\right).$$

- Leads to margin bound $O(\|\hat{f}_N\| R/\gamma \sqrt{N})$ for a learned CNN \hat{f}_N with margin (confidence) $\gamma > 0$.

- Related to recent generalization bounds for neural networks based on product of spectral norms [e.g., Bartlett et al., 2017, Neyshabur et al., 2018].

[see, e.g., Boucheron et al., 2005, Shalev-Shwartz and Ben-David, 2014]...
Deep convolutional representations: conclusions

Study of generic properties of signal representation

- **Deformation stability** with small patches, adapted to resolution.
- **Signal preservation** when subsampling \leq patch size.
- **Group invariance** by changing patch extraction and pooling.
Deep convolutional representations: conclusions

Study of generic properties of signal representation

- **Deformation stability** with small patches, adapted to resolution.
- **Signal preservation** when subsampling \leq patch size.
- **Group invariance** by changing patch extraction and pooling.

Applies to learned models

- Same quantity $\|f\|$ controls stability and generalization.
- “higher capacity” is needed to discriminate small deformations.
Deep convolutional representations: conclusions

Study of generic properties of signal representation
- **Deformation stability** with small patches, adapted to resolution.
- **Signal preservation** when subsampling \(\leq \) patch size.
- **Group invariance** by changing patch extraction and pooling.

Applies to learned models
- Same quantity \(\| f \| \) controls stability and generalization.
- “higher capacity” is needed to discriminate small deformations.

Questions:
- Better regularization?
- How does SGD control capacity in CNNs?
- What about networks with no pooling layers? ResNet?

References II

References III

References IV

References V

Approximate $\varphi_k(z)$ by projection (Nyström approximation) on

$$\mathcal{F} = \text{Span}(\varphi_k(z_1), \ldots, \varphi_k(z_p))$$.

[Fig: Nyström approximation.]

[Williams and Seeger, 2001, Smola and Schölkopf, 2000, Zhang et al., 2008]...
from kernel approximations: CKNs [Mairal, 2016]

- Approximate $\varphi_k(z)$ by projection (Nyström approximation) on

 $$\mathcal{F} = \text{Span}(\varphi_k(z_1), \ldots, \varphi_k(z_p)).$$

- Leads to tractable, p-dimensional representation $\psi_k(z)$.
- Norm is preserved, and projection is non-expansive:

 $$\|\psi_k(z) - \psi_k(z')\| = \|\Pi_k \varphi_k(z) - \Pi_k \varphi_k(z')\|$$
 $$\leq \|\varphi_k(z) - \varphi_k(z')\| \leq \|z - z'\|.$$

- Anchor points z_1, \ldots, z_p (\approx filters) can be learned from data (K-means or backprop).

[Williams and Seeger, 2001, Smola and Schölkopf, 2000, Zhang et al., 2008]...
Convolutional kernel networks in practice.

\(\varphi_k \) from kernel approximations: CKNs [Mairal, 2016]
Discussion

- norm of $\|\Phi(x)\|$ is of the same order (or close enough) to $\|x\|$.
- the kernel representation is non-expansive but not contractive

$$\sup_{x,x' \in L^2(\Omega, \mathcal{H}_0)} \frac{\|\Phi(x) - \Phi(x')\|}{\|x - x'\|} = 1.$$
A kernel perspective: digression about regularization

Another point of view: consider a classical CNN parametrized by θ, which live in the RKHS:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f_\theta(x_i)) + \frac{\lambda}{2} \|f_\theta\|_H^2.$$

Upper-bounds

$$\|f\|_H \leq \omega(\|A_k\|, \|A_{k-1}\|, \ldots, \|A_1\|) \text{ (spectral norms)}.$$

Lower-bounds

$$\|f\|_H = \sup_{\|u\|_H \leq 1} \langle f, u \rangle_H \geq \sup_{u \in U} \langle f, u \rangle_H \text{ for } U \subseteq B_H(1).$$
A kernel perspective: digression about regularization

- adversarial penalty

\[U = \{ \Phi(x + \delta) - \Phi(x) : x \in \mathcal{X}, \|\delta\|_2 \leq 1 \} \]
\[\Rightarrow \|f\|_\delta^2 = \sup_{x \in \mathcal{X}, \|\delta\|_2 \leq 1} f(x + \delta) - f(x). \]

- gradient penalty

\[U = \left\{ \frac{\Phi(x) - \Phi(y)}{\|x - y\|_2} : x, y \in \mathcal{X} \right\} \Rightarrow \|\nabla f\| = \sup_{x \in \mathcal{X}} \|\nabla f(x)\|_2. \]

- deformation stability penalty

\[U = \{ \Phi(L_\tau x) - \Phi(x) : x \in \mathcal{X}, \tau \} \]
\[\Rightarrow \|f\|_\tau^2 = \sup_{x \in \mathcal{X}} f(L_\tau x) - f(x). \]
\[\tau \text{ small deformation} \]

- use CKN kernel approximations (work in progress).

see [Bietti et al., 2019] and references therein