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Summary of the previous class

We saw how the risk could generally be decomposed as a term of
bias/approximation and a term of variance/estimation.

This decomposition highlights the tradeo� that needs to be dealt with
in inference. This tradeo� is related to the complexity of the set of
functions under consideration:

Sets too simple lead to a large approximation error.

Sets too large lead to a large estimation error.

We de�ned this notion of complexity more precisely (Rademacher,
VC), and saw it also depended on the number of samples.

These ideas are crucial in modern applications, where we sometimes
have few samples in high dimension.
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Part III

Supervised learning
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Perspective

With these ideas in mind, we now turn to concrete examples of
statistical learning methods.

We start with penalized empirical risk minimization techniques, which
explicitly implements the bias-variance tradeo�.

We then move to other classical techniques.
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Supervised vs unsupervised

This part is about supervised learning, i.e., inference using labeled
data (class, real value...).

If no labeled data is available but we want to estimate an assumed
hidden structure, we need unsupervised learning (di�erent techniques,
next part).

Although algorithms for unsupervised learning are often di�erent,
underlying models are often similar.

More importantly, the previous bias-variance discussion also applies
(we are still doing estimation from data).
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Outline for supervised learning

1 `2 penalties.

2 Ridge regression.

3 Fundamentals of constrained optimization.

4 Support vector machines.

5 `1 penalties.

6 Cross validation.

7 Local methods (nearest neighbors, smoothing).

8 Random forests.

9 Neural networks.

10 Kernel methods.

First �ve points are related to penalized empirical risk minimization.
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Penalized empirical risk minimization
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Reminder: structural risk minimization

1 De�ne nested function sets of increasing complexity.

2 Minimize the empirical risk over each family.

3 Choose the solution giving the best generalization performances.

De�ne a complexity measure Ω for functions, and consider the classes

H1 ⊆ H2 ⊆ . . . ,

where Hj = {f ,Ω(f ) ≤ µj} and µ1 < µ2 < ....
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Reminder: structural risk minimization

De�ne a complexity measure Ω for functions, and consider the classes

H1 ⊆ H2 ⊆ . . . ,

where Hj = {f ,Ω(f ) ≤ µj} and µ1 < µ2 < ....
Then (step 2) we can successively solve:

min
f ∈Hj

n∑
i=1

L(yi , f (xi )),

i.e., minimize the empirical risk while restricting ourselves to sets of
function of increasing complexity.
Note: this results in constrained optimization problems. Solving these
problems for di�erent loss functions and function spaces is an active
reasearch area.

L. Jacob Statistical Learning September 19, 2014 9 / 71



Remark: equivalence with a penalized estimator

We mostly discuss penalized methods:

min
f

n∑
i=1

L(yi , f (xi )) + λΩ(f )

The �rst term favors a good �t to the data, the second one favors
regularity of f .

We will show later that the constrained and penalized forms are often
equivalent in some sense (need to introduce some technical tools
before that).

The approach will stay the same: we de�ne an Ω which is relevant for
our problem and we compare the generalization performances of the
functions obtained for decreasing values of λ.
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Usual loss functions

Regression : y ∈ R
`2 : L(yi , f (xi )) = (yi − f (xi ))2 (which we used in introduction),

`1 : L(yi , f (xi )) = |yi − f (xi )| (robust version, less sensitive to large
errors, e.g. median vs mean).

(from J. Mairal's slides)
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Usual loss functions

Classi�cation : y ∈ {0, 1}
0/1 : L(yi , f (xi )) = 1yi f (xi )≥0,

logistic : L(yi , f (xi )) = log
(
1 + e−yi f (xi )

)
,

hinge : L(yi , f (xi )) = max(0, 1− yi f (xi )).

(from J. Mairal's slides)

Other problems: ranking, multi-class, survival...
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Convexity

0/1 loss counts the number of missclassi�cation, the other ones are
convex approximations.

Convex losses combined with convex penalties lead to convex
objectives for which global optima can be found.

Methods based on convex objectives are also simpler to analyze.

However, this guarantees by no mean that the convex version of a
method performs better than its non-convex counterpart in practice.
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Penalties

We now present two usual penalties, and analyze their e�ect on the
estimated function.

We restrict ourselves to linear functions f (x) = θ>x , θ ∈ Rp.
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Ridge penalty

A very common penalty is the ridge :

Ω(θ) = ‖θ‖22.

Used in ridge regression combined with the `2 loss and support
vector machines (SVM) combined with the hinge loss.

Leads to functions with the following type of regularity: two points
x , x ′ which are close in Euclidean norm have close evaluations by the
function since by the Cauchy-Schwarz inequality,

|θ>x − θ>x ′| ≤ ‖θ‖2‖x − x ′‖2.
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Ridge penalty

This property can limit the over�t and improve generalization: it
makes functions behave similarly over similar, potentially unobserved
data.

Of course if there is no good predictor with this kind of regularity, the
risk can be high because of the approximation term.

We now study more precisely the in�uence of the ridge penalty in
terms of bias-variance tradeo� for the linear model:

y = θ̄>x + ε,

where ε is a random variable with mean zero and variance σ2.
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The ridge regression
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Ridge regression: bias and variance

We observe n realizations of the previous linear model, represented by
an X ∈ Rn,p matrix and a Y ∈ Rn vector.

Consider the estimator

θ̂ = argmin
θ

(
‖Y − Xθ‖2 + λ‖θ‖2

)
.

We can show there exists a closed form for this estimator :

θ̂ = (X>X + λI )−1X>Y .

[Exercise] Show that the bias E[θ̂ − θ̄] of θ̂ is −λ(X>X + λI )−1θ̄.
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Ridge regression: bias and variance

E[θ̂] = E[(X>X + λI )−1X>Y ]

= E[(X>X + λI )−1X>
(
X θ̄ + ε

)
]

= (X>X + λI )−1X>X θ̄ + (X>X + λI )−1X>E[ε]

= (X>X + λI )−1X>X θ̄

E[θ̂ − θ̄] = (X>X + λI )−1X>X θ̄ − θ̄

=
(

(X>X + λI )−1X>X − I
)
θ̄

= (X>X + λI )−1(X>X − X>X − λI )θ̄
= −λ(X>X + λI )−1θ̄.
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Ridge regression: bias and variance

We now look at the variance of θ̂ :

Var [θ̂] = Var [(X>X + λI )−1X>Y ]

= (X>X + λI )−1X>Var [Y ]X (X>X + λI )−1

= σ2(X>X + λI )−1X>X (X>X + λI )−1

(reminder : for a deterministic matrix A, Var [AX ] = AVar [X ]A>).
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Ridge regression : bias and variance

Bias (1/3)

The bias −λ(X>X + λI )−1θ̄ increases with λ and tends to −θ̄.
Remark: θ̂ → 0 when λ→∞, so the limit bias is the one incurred by
estimating θ̄ by 0.

If λ = 0 (unpenalized linear regression), the bias is zero.

The amplitude of the bias also depends on the norm of θ̄: if the θ̄
which generated the data has a small norm, the bias/approximation
error incurred by restricting ourselves to small norm estimators is
smaller.
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Ridge regression : bias and variance

Bias (2/3)

A little more precisely, the squared norm of the bias is (λ 6= 0) :

‖ − λ(X>X + λI )−1θ̄‖2 = ‖(λ−1X>X + I )−1θ̄‖2

= ‖UΣU>θ̄‖2 = ‖ΣU>θ̄‖2,

where UΣU> is the spectral decomposition of (λ−1X>X + I )−1.

The eigenvalues of (λ−1X>X + I )−1 are [Exercise] :

Σ = Diag
(
λ−1e2i + 1

)−1
= Diag

(
λ

e2i + λ

)
,

where the ei are the eigenvalues of X .

L. Jacob Statistical Learning September 19, 2014 22 / 71



Ridge regression : bias and variance

Bias (2/3)

A little more precisely, the squared norm of the bias is (λ 6= 0) :

‖ − λ(X>X + λI )−1θ̄‖2 = ‖(λ−1X>X + I )−1θ̄‖2

= ‖UΣU>θ̄‖2 = ‖ΣU>θ̄‖2,

where UΣU> is the spectral decomposition of (λ−1X>X + I )−1.

The eigenvalues of (λ−1X>X + I )−1 are [Exercise] :

Σ = Diag
(
λ−1e2i + 1

)−1
= Diag

(
λ

e2i + λ

)
,

where the ei are the eigenvalues of X .

L. Jacob Statistical Learning September 19, 2014 22 / 71



Ridge regression: bias and variance

Bias (3/3)

‖ − λ(X>X + λI )−1θ̄‖2 =

∥∥∥∥Diag

(
λ

e2i + λ

)
U>θ̄

∥∥∥∥2 ,
Provides the shape of the convergence towards maximum bias as λ
increases.

If n/p is small, X>X has small eigenvalues e2i , and the bias is larger
(even more if θ is aligned with eigenvectors corresponding to small
eigenvalues).

Statistical interpretation: the bias is larger if the vector to be
estimated lies in a direction of low empirical variance of the X .
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Ridge regression: bias and variance

Variance

Total variance

trVar [θ̂] = tr
(
σ2(X>X + λI )−1X>X (X>X + λI )−1

)
= σ2tr

(
(X>X + λI )−2X>X

)
= σ2

∑
i

e2i
(e2i + λ)2

.

tends to 0 as λ increases, and to the variance σ2tr(X>X )−1 of
unpenalized linear regression as λ→ 0 (if X>X is invertible).

Here again if n/p is small, X>X has small eigenvalues e2i and the
variance for λ = 0 increases.
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Ridge regression: bias and variance

(from J. Taylor's slides)

Illustrates the phenomenon we discussed abstractly on a particular
estimator.

In practice for a dataset, some λ tradeo�s yield smaller risks than
others.

λ can be chosen by hold out or cross validation (later in this class).
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Ridge regression: remark

We can also justify ridge regression from a numerical point of view:
the λI term decreases the condition number of the X>X matrix,
which can otherwise get very small eigenvalues.

A poorly conditionned X>X leads to results which are very sensitive
to small variations in the data.
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Ridge regression: remark

Historically, this mo-
tivated the introduction of ridge regression by Hoerl et Kennard (1970):

We were charging $90/day for our time, but had to charge
$450/hour for computer time [...], we found that we had
both encountered the same phenomenon, one that had
caused some embarrassment with clients. We found that
multiple linear regression coe�cients computed using least
squares didn't always make sense when put into the context
of the process generating the data. The coe�cients tended
to be too large in absolute value, some would even have the
wrong sign, and they could be unstable with very small
changes in the data.

Tikhonov (1943) and Philips (1962) already introduced Hilbert norm
penalties to improve the conditionning of integral equation solutions.
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Fundamentals of constrained optimization (from JP
Vert)
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Fundamentals of constrained optimization

Setting

We consider an equality and inequality constrained optimization
problem over a variable x ∈ X :

minimize f (x)

subject to hi (x) = 0 , i = 1, . . . ,m ,

gj(x) ≤ 0 , j = 1, . . . , r ,

making no assumption of f , g and h.

Let us denote by f ∗ the optimal value of the decision function under
the constraints, i.e., f ∗ = f (x∗) if the minimum is reached at a global
minimum x∗.
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Lagrangian and dual function

Lagrangian

The Lagrangian of this problem is the function L : X × Rm × Rr → R
de�ned by:

L (x , λ, µ) = f (x) +
m∑
i=1

λihi (x) +
r∑

j=1

µjgj(x) .

Lagrangian dual function

The Lagrange dual function q : Rm × Rr → R is:

q(λ, µ) = inf
x∈X

L (x , λ, µ)

= inf
x∈X

f (x) +
m∑
i=1

λihi (x) +
r∑

j=1

µjgj(x)

 .
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Properties of the dual function

q is concave in (λ, µ), even if the original problem is not convex.

The dual function yields lower bounds on the optimal value f ∗ of the
original problem when µ is nonnegative:

q(λ, µ) ≤ f ∗ , ∀λ ∈ Rm,∀µ ∈ Rr , µ ≥ 0 .
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Proofs

For each x , the function (λ, µ) 7→ L(x , λ, µ) is linear, and therefore
both convex and concave in (λ, µ). The pointwise minimum of
concave functions is concave, therefore q is concave.

Let x̄ be any feasible point, i.e., h(x̄) = 0 and g(x̄) ≤ 0. Then we
have, for any λ and µ ≥ 0:

m∑
i=1

λihi (x̄) +
r∑

i=1

µigi (x̄) ≤ 0 ,

=⇒ L(x̄ , λ, µ) = f (x̄) +
m∑
i=1

λihi (x̄) +
r∑

i=1

µigi (x̄) ≤ f (x̄) ,

=⇒ q(λ, µ) = inf
x
L(x , λ, µ) ≤ L(x̄ , λ, µ) ≤ f (x̄) , ∀x̄ . �
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Dual problem

De�nition

For the (primal) problem:

minimize f (x)

subject to h(x) = 0 , g(x) ≤ 0 ,

the Lagrange dual problem is:

maximize q(λ, µ)

subject to µ ≥ 0 ,

where q is the (concave) Lagrange dual function and λ and µ are the
Lagrange multipliers associated to the constraints h(x) = 0 and g(x) ≤ 0.
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Weak duality

Let d∗ the optimal value of the Lagrange dual problem. Each q(λ, µ)
is a lower bound for f ∗ and by de�nition d∗ is the best lower bound
that is obtained. The following weak duality inequality therefore
always hold:

d∗ ≤ f ∗ .

This inequality holds when d∗ or f ∗ are in�nite. The di�erence
d∗ − f ∗ is called the optimal duality gap of the original problem.
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Strong duality

We say that strong duality holds if the optimal duality gap is zero,
i.e.:

d∗ = f ∗ .

If strong duality holds, then the best lower bound that can be
obtained from the Lagrange dual function is tight.

Strong duality does not hold for general nonlinear problems.

It usually holds for convex problems.

Conditions that ensure strong duality for convex problems are called
constraint quali�cation.
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Slater's constraint quali�cation

Strong duality holds for a convex problem:

minimize f (x)

subject to gj(x) ≤ 0 , j = 1, . . . , r ,

Ax = b ,

if it is strictly feasible, i.e., there exists at least one feasible point that
satis�es:

gj(x) < 0 , j = 1, . . . , r , Ax = b .
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Dual optimal pairs

Suppose that strong duality holds, x∗ is primal optimal, (λ∗, µ∗) is dual
optimal. Then we have:

f (x∗) = q (λ∗, µ∗)

= inf
x∈Rn

f (x) +
m∑
i=1

λ∗i hi (x) +
r∑

j=1

µ∗j gj(x)


≤ f (x∗) +

m∑
i=1

λ∗i hi (x
∗) +

r∑
j=1

µ∗j gj(x
∗)

≤ f (x∗)

Hence both inequalities are in fact equalities.
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Complementary slackness

The second equality shows that:

µjgj(x
∗) = 0 , j = 1, . . . , r .

This property is called complementary slackness:
the ith optimal Lagrange multiplier is zero unless the ith constraint
is active at the optimum.
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Penalized vs constrained empirical risk minimization
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Equivalence with a penalized estimator

In some cases, the constrained problem

min
Ω(f )≤µ

n∑
i=1

L(yi , f (xi )), (1)

is equivalent in some sense to the penalized problem

min
f

n∑
i=1

L(yi , f (xi )) + λΩ(f ). (2)

Any solution of (1) is a solution of (2) for some λ depending of µ, and
vice-versa.

The latter problem is sometimes easier to solve in practice.

We will see later that estimators obtained by maximizing the
posterior likelihood of some probabilistic models have this form.
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Remark: equivalence with a penalized estimator

Example: L and Ω convex, f ∈ Rp. We assume there exists f such that

Ω(f ) < µ. We note L(f )
∆
=
∑n

i=1 L(yi , f (xi )) and

fµ ∈ argmin
Ω(f )≤µ

L(f ),

fλ ∈ argmin
f

L(f ) + λΩ(f ).
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Remark: equivalence with a penalized estimator

We �rst show that fλ is a solution of the constrained problem for some µ
[Exercise]:

fλ veri�es the constraint of the constrained problem for µ = Ω(fλ).

If there exists f ′ such that L(f ′) < L(fλ) and Ω(f ′) ≤ µ = Ω(fλ), then
L(f ′) + λΩ(f ′) < L(fλ) + λΩ(fλ) which contradicts the optimality of
fλ for the penalized problem.
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Remark: equivalence with a penalized estimator

This �rst part does not use convexity.

We can therefore say in general that the regularization path of the
penalized problem is included in the one of the constrained problem.
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Remark: equivalence with a penalized estimator

We now show that fµ is a solution of the penalized problem for some λ:

Let L(f , λ)
∆
= L(f ) + λ(Ω(f )− µ) be the Lagrangian of the

constrained problem (1).

The dual of (1) is q(λ)
∆
= minf L(f , λ).

We note that here,

min
f
L(f , λ) = L(fλ, λ). (3)

The dual always provides a lower bound to the primal solution:
∀λ ≥ 0, minΩ(f )≤µ L(f ) ≥ q(λ) = minf L(f , λ).

Here by strong duality (obtained through Slater's conditions: convex
problem and strictly feasible primal), we have

min
Ω(f )≤µ

L(f )
s.d.
= max

λ≥0
min
f
L(f , λ)

(3)
= max

λ≥0
(L(fλ) + λ(Ω(fλ)− µ))
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Remark: equivalence with a penalized estimator

min
Ω(f )≤µ

L(f ) = max
λ≥0

(L(fλ) + λ(Ω(fλ)− µ))

In addition, by Slater's conditions again, there exists λ∗ such that

L(fλ∗) + λ∗(Ω(fλ∗)− µ) = min
Ω(f )≤µ

L(f ) = L(fµ).

By complementary slackness, it is necessary that λ∗(Ω(fλ∗)− µ) = 0,
which implies that L(fµ) = L(f ∗λ ) and:

either λ∗ = 0 and L(fµ) + 0Ω(fµ) = L(f ∗λ ) + 0Ω(f ∗λ ),
or Ω(fλ∗) = µ and

L(fµ) + λ∗Ω(fµ) = L(f ∗λ ) + λ∗ Ω(fµ)︸ ︷︷ ︸
≤µ=Ω(fλ∗ )

≤ L(f ∗λ ) + λ∗Ω(fλ∗).

In both cases, fµ is a solution of the problem penalized by λ∗.
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Support vector machines
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Linear SVM

We now present Support Vector Machines, a classical statistical
learning algorithm.

Fits into the penalized/constrained empirical risk minimization
framework.

We choose the historical large margin presentation.

L. Jacob Statistical Learning September 19, 2014 47 / 71



Linear classi�er
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Linear classi�er

L. Jacob Statistical Learning September 19, 2014 48 / 71



Which one is better?
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The margin of a linear classi�er
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The margin of a linear classi�er
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Largest margin classi�er (hard-margin SVM)
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Support vectors
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More formally

The training set is a �nite set of n data/class pairs:

D = {(x1, y1), . . . , (xn, yn)} ,
where xi ∈ Rp and yi ∈ {−1, 1}.
We assume (for the moment) that the data are linearly separable,
i.e., that there exists (w , b) ∈ Rp × R such that:{

w .xi + b > 0 if yi = 1 ,

w .xi + b < 0 if yi = −1 .
L. Jacob Statistical Learning September 19, 2014 53 / 71



How to �nd the largest separating hyperplane?

For a given linear classi�er f (x) = w .x + b consider the "tube" de�ned by
the values −1 and +1 of the decision function:

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

w.x+b=0
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The margin is 2/‖w ‖

Indeed, the points x1 and x2 satisfy:{
w .x1 + b = 0 ,

w .x2 + b = 1 .

By subtracting we get w .(x2 − x1) = 1, and therefore:

γ = 2‖ x2 − x1 ‖ =
2

‖w ‖
.
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All training points should be on the correct side of the
dotted line

For positive examples (yi = 1) this means:

w .xi + b ≥ 1 .

For negative examples (yi = −1) this means:

w .xi + b ≤ −1 .

Both cases are summarized by:

∀i = 1, . . . , n , yi (w .xi + b) ≥ 1 .
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Finding the optimal hyperplane

Find (w , b) which minimize:

‖w ‖2

under the constraints:

∀i = 1, . . . , n , yi (w .xi + b)− 1 ≥ 0 .

This is a classical quadratic program on Rp+1.
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Lagrangian

In order to minimize:
1

2
‖w ‖22

under the constraints:

∀i = 1, . . . , n , yi (w .xi + b)− 1 ≥ 0 ,

we introduce one dual variable αi for each constraint, i.e., for each
training point. The Lagrangian is:

L (w , b, α) =
1

2
||w ||2 −

n∑
i=1

αi (yi (w .xi + b)− 1) .
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Lagrangian

L (w , b, α) is convex quadratic in w . It is minimized for:

∇wL = w −
n∑

i=1

αiyixi = 0 =⇒ w =
n∑

i=1

αiyixi .

L (w , b, α) is a�ne in b. Its minimum is −∞ except if:

∇bL =
n∑

i=1

αiyi = 0 .
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Dual function

We therefore obtain the Lagrange dual function:

q (α) = inf
w∈Rp ,b∈R

L (w , b, α)

=

{∑n
i=1 αi − 1

2

∑n
i=1

∑n
j=1 yiyjαiαjxi .xj if

∑n
i=1 αiyi = 0 ,

−∞ otherwise.

The dual problem is:

maximize q (α)

subject to α ≥ 0 .
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Dual problem

Find α∗ ∈ Rn which maximizes

L(α) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi .xj ,

under the (simple) constraints αi ≥ 0 (for i = 1, . . . , n), and

n∑
i=1

αiyi = 0.

This is a quadratic program on RN , with "box constraints". α∗ can be
found e�ciently using dedicated optimization softwares.

This dual shows how SVM are an instance of kernel methods (later
in this class).
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Recovering the optimal hyperplane

Once α∗ is found, we recover (w∗, b∗) corresponding to the optimal
hyperplane. w∗ is given by:

w∗ =
n∑

i=1

αixi ,

and the decision function is therefore:

f ∗(x) = w∗.x + b∗

=
n∑

i=1

αixi .x + b∗ .
(4)
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Interpretation: support vectors

α>0

α=0
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What if data are not linearly separable?
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Relaxing the separation constraints

The problem is not feasible anymore. We need to relax the separation
constraints:

∀i = 1, . . . , n , yi (w .xi + b) ≥ 1− ξi .

The ξi are called slack variables.
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Trade-o�

Allowing a larger slack makes a larger margin possible.

One way to control the trade-o� is to integrate the slack variables as a
cost in the objective function:

minw ,b,ξ ‖w‖2 + C
∑n

i=1 ξi
∀i = 1, . . . , n , yi (w .xi + b) ≥ 1− ξi
∀i = 1, . . . , n , ξi ≥ 0

C ∈ R+ controls the trade-o�.
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Dual formulation of soft-margin SVM (exercice)

Maximize

L(α) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi .xj ,

under the constraints:{
0 ≤ αi≤ C, for i = 1, . . . , n∑n

i=1 αiyi = 0.
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Interpretation: bounded and unbounded support vectors

C

α=0

0<α<C

α=
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Penalized empirical risk minimization

Relaxed problem
minw ,ξ ‖w‖2 + C

∑n
i=1 ξi

∀i = 1, . . . , n , yi (w .xi + b) ≥ 1− ξi
∀i = 1, . . . , n , ξi ≥ 0

is equivalent to

min
w
‖w‖2 + C

n∑
i=1

max (0, 1− yi (w .xi + b))

Note: this is a useful trick to turn piecewise linear objective into linear
objective with linear constraints.
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Soft-margin SVM and hinge loss

min
w ,b

{
n∑

i=1

`hinge (w .xi + b, yi ) + λ‖w ‖22

}
,

for λ = 1/C and the hinge loss function:

`hinge(u, y) = max (1− yu, 0) =

{
0 if yu ≥ 1,

1− yu otherwise.

yf(x)

l(f(x),y)

1
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Remarks

We started from a di�erent perspective (maximize margin) and
showed retrospectively that the problem we solved could be thought of
as penalized empirical risk minimization.

Yields another interpretation for `2 regularization of linear functions.

In practice controlling this trade-o� makes sense even if the classes are
linearly separable (as discussed during the �rst class).
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