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Summary of the previous class

Penalized risk minimization

Ridge penalty, ridge regression, SVM.

Fundamentals of constrained optimization.

You now know one regression algorithm, one classi�cation algorithm and
why they make sense.
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Outline for supervised learning

1 Support vector machines (continued).

2 `1 penalties.

3 Cross validation.

4 Local methods (nearest neighbors, smoothing).
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Support vector machines
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Summary

Linear method for binary classi�cation.

Hard margin: for linearly separable problems, �nd the separating
hyperplane with largest margin.

Soft margin: allow points to be on the wrong side of the margin, but
charge it to the objective function.

Soft margin can be written equivalently as a penalized empirical risk
minimization problem (hinge loss, ridge penalty).

Primal/Dual problems for both methods.
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Remarks

We started from a di�erent perspective (maximize margin) and
showed retrospectively that the problem we solved could be thought of
as penalized empirical risk minimization.

Yields another interpretation for `2 regularization of linear functions.

In practice controlling this trade-o� makes sense even if the classes are
linearly separable (as discussed during the �rst class).
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Logistic regression (1/2)

A similar analysis can be made for logistic regression:

Can be derived from a Bernouilli model: E [yi |xi ] = pi = 1

1+e−w>xi
,

where the logistic function ensures that pi ∈ [0, 1].

Leads to a linear separation: ln
(

pi
1−pi

)
= w>xi .

Maximizing the negative log likelihood yields
minw

∑n
i=1

ln(1 + e−w
>xi ).
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Logistic regression (2/2)

Empirical risk for a loss function with very similar shape (and
behavior) as the hinge loss.

Intuition/justi�cation is important but can be deceiving. In the end, it
is crucial to compare objectives.
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Algorithms

We mentioned hard and soft margin SVM could be written as a QP with
box constraints. In practice however, faster dedicated algorithms were
proposed, e.g.,

SimpleSVM

Active set method: solve sub-problem with a restricted set of points,
iteratively add the ones which most violate the constraints.

E�cient when only a few αi are non-zero (small C ).

Stochastic gradient descent

Take gradient steps with respect to randomly drawn single points.

E�cient when the number of samples is large ("Large scale learning").

L. Jacob Statistical Learning October 2, 2014 9 / 52



`1 penalty
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Penalties: the `1 norm

Another popular penalty is the `1 norm:

Ω(θ) = ‖θ‖1
∆
=

p∑
j=1

|θj |.

Interesting property: leads in practice to estimators

θ̂ ∈ argmin
θ

n∑
i=1

L(yi , θ
>xi ) + λ‖θ‖1

which are sparse, i.e., contain few non-zero values.

Combined with the `2 loss: Lasso (Tibshirani et al., 1996) or basis
pursuit (Chen et al., 1999).
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Penalties: the `1 norm

We can think of the problem constrained by the `1 norm as a convex
relaxation of the one constrained by the `0 pseudo-norm:

‖θ‖0
∆
=

p∑
j=1

1{θj 6=0}, ‖θ‖1
∆
=

p∑
j=1

|θj |.

More precisely, the convex envelope of a function f over a space X is
the largest convex function underestimating f over X .
‖.‖1 is the convex envelope of ‖.‖0 over [−1, 1]p.

[Exercise] : why [−1, 1]p and not Rp?
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Penalties: the `1 norm

Contrarily to the `0 pseudo-norm, the `1 norm penalizes the amplitude
of the θj , not only the fact that they are non-zero.

Consequence of this double e�ect of the penalty: setting a lot of
coe�cients to 0 may shrink non-zero coe�cients a lot.

Frequent (heuristic) strategy:
1 Use the `1 penalized estimator to get a sparse solution.
2 Perform unpenalized estimation on the support of this function.
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Sparsity of `1 penalized estimators

Analytical intuition (penalized form, special case)

θ̂ ∈ argmin
θ

1

2
(y − θ)2 + λ|θ|

The optimum is characterized by the stationarity condition:

∂θ

(
1

2
(y − θ)2 + λ|θ|

)
3 0,

where ∂θ is the subdi�erential operator.
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Sparsity of `1 penalized estimators: subdi�erential

The absolute value is not di�erentiable at 0.

Like for any convex function, we can however de�ne its subdi�erential:

∂θf (θ0)
∆
= {s : f (θ) ≥ f (θ0) + s(θ − θ0)} .

[Exercise :] Compute the subdi�erential of the absolute value at 0.
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Sparsity of `1 penalized estimators

Analytical intuition (penalized form, special case)

∂θ

(
1

2
(y − θ)2 + λ|θ|

)
3 0,

The stationarity condition is that either

θ = 0 and (y − θ) ∈ [−λ, λ], or
|θ| > 0 and θ − y + λsign(θ) = 0.

We can therefore check that the solution is θ̂ = sign(y)(|y | − λ)+,

which involves the soft thresholding operator (.)+ ∆
= max(., 0).

If |y | < λ, the estimator is set to 0. Otherwise, its amplitude is
decreased by λ.
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Sparsity of `1 penalized estimators

Geometrical intuition (constrained form)

θ̂ ∈ argmin
‖θ‖1≤µ

n∑
i=1

L(yi , θ
>xi )

The constrained minimum is likely to lie on one of the singularities.
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Sparsity of `1 penalized estimators

Geometrical intuition (constrained form, special case)

α̂ ∈ argmin
‖α‖1≤µ

1

2
‖α− x‖2

Equivalent problem with indicator function:
minα

1

2
‖x − α‖2 + δ‖α‖1≤µ(α).

Optimality given by stationarity condition (unconstrained convex
problem):

∂α

(
1

2
‖α− x‖2 + δ‖α‖1≤µ(α)

)
3 0,

where ∂α now denotes the subgradient of the (convex but non
di�erentiable) objective.
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Sparsity of `1 penalized estimators

Exercise:

Show that the subgradient of δ‖α‖1≤µ at a point ᾱ ≤ µ is the normal
cone to the ball at ᾱ:

N(ᾱ) =
{
d ∈ Rp : d>(α− ᾱ) ≤ 0 ∀‖α‖1 ≤ µ

}
.

Describe the set of points in Rp which project at a given point ᾱ of
the ball.
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Sparsity of `1 penalized estimators

Geometrical intuition (constrained form, special case)

α̂ ∈ argmin
‖α‖1≤µ

‖α− x‖2

Picture by J. Mairal
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Sparsity of `1 penalized estimators

We provided intuitive explanations as to why the `1 penalty led to
sparse estimators.

No theoretical result guarantees a �xed level of sparsity for a particular
penalty intensity.

However, we have a good empirical knowledge of how these estimators
behave (very hot topic), and we know that in practice the `1 penalty
allows to adjust the sparsity level.
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Algorithms for the Lasso

min
α
‖Xα− y‖2 + λ‖α‖1.

Can be formulated as a QP:

min
α−,α+≥0

‖Xα+ − Xα− − y‖2 + λα>+1 + λα>−1.

Like for SVM, we can therefore use generic toolboxes.

Much faster dedicated algorithms have been devised. Choice of best
algorithm depends on exact setting.

We detail one easy to implement and generally e�cient method:
coordinate descent.
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Coordinate descent for the Lasso

Iteratively �x all but one variables, optimize with respect to this
variable:

argmin
αj

‖Xα− y‖2 + λ‖α‖1 = argmin
αj

‖Xjαj − (y − X−jα−j)‖2 + λ|αj |.

Assuming the columns of X have unit `2 norm,

α∗j = sign(X>j r)
[
|X>j r | − λ

]+
,

where r = (y − X−jα−j) are the current residuals.

Coordinate descent does not converge in general for non-smooth
objectives. Was proved to converge in this case.

Can be complemented with an active set strategy.
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Penalties: the `1 norm

Informally, we recognize the bias-variance tradeo� again. The `1 term
biases the estimator towards 0 in a di�erent way than the ridge.

Formal analysis is harder than for the ridge because even with an `2
loss, there is no closed form for the estimator. Analysis uses optimality
conditions.
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Consistencies for the `1 norm

Assuming a linear model y = x>θ + ε, three important questions are:

1 Consistency: does ‖θ̂ − θ‖ converge to 0 as n tends to ∞?

Can be proved under restricted eigenvalues condition on design
restricted to support of θ. Related to identi�ability of θ (curvature of
risk large enough in enough directions).

2 Model selection consistency (sparsistency): does the zero pattern of θ̂
converge to the zero pattern of θ?

Can be proved under identi�ability over support of θ and
irrepresentable conditions:

max
j /∈J
|X>j XJ(X>J XJ)−1| ≤ 1− γ, γ ∈]0, 1],

where J is the support of θ. Unrealistic for many problems (molecular
data, images...).

3 Prediction: does 1

n
‖X θ̂ − Xθ‖ converge to 0 as n tends to ∞?

Can be proved under rather general conditions.
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Penalties: the `1 norm

Sparsity is a desirable property because it leads to interpretable
estimates.

However it is important to be clear about the objective: are we trying
to detect variables x associated with y (hypothesis testing), or to
minimize the risk incurred when predicting y from θ>x
(estimation/prediction)?

Note that testing procedures can be derived � among other
approaches � using a ridge or an `1 penalized estimator (much more
complicated for the latter).
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Penalties: variations

Graph Laplacian,

Trace norm,

Fused norm,

Group lasso,

Weighted `1,

Other `p norms,

Group fused,

Overlapping groups,

All size k groups,

Groups de�ned over a graph,

Combinations

...

× combinations with various loss functions.
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Relationship to maximum likelihood estimation
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Relationship to maximum likelihood estimation

Until now we discussed risk minimization without involving models for
the data.

This discussion and the related penalized methods are however related
to methods based on the likelihood of data under some model.

Given a model p(D|θ) of data D, for example

y = θ̄>x + ε,

where ε is endowed with some distribution, it is common to estimate θ
by the value which maximizes the likelihood of the data under the
model:

θ̂ = argmax
θ

p(D|θ).

(popularized by R. A. Fisher at the beginning of the 20th century).
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Relationship to maximum likelihood estimation

The maximum likelihood estimator has a few desirable asymptotic
properties under some regularity conditions:

Consistency : θ̂MLE → θ̄ as n increases,
Asymptotic normality,
E�ciency (asymptotic minimal variance).

Can be biased though.

Can behave poorly when p/n is not small enough.
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Relationship to maximum likelihood estimation

In practice, it is often easier to minimize the negative log likelihood:

θ̂ = argmin
θ
− log p(D|θ).

We recover an empirical risk minimization problem, where the loss

function is de�ned by L(D, θ)
∆
= − log p(D|θ).

Exercise : which loss function − log p(D|θ) corresponds to the
negative log likelihood of the model:

y = θ̂>x + ε, ε ∼ N (0, σ2)?

Why use the log?
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Relationship to maximum likelihood estimation

In Bayesian statistics, we de�ne a prior distribution p(θ) over the
parameter θ.

By the Bayes rule, we can then de�ne a posterior distribution p(θ|D)
of θ :

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ p(D|θ)p(θ),

We can then estimate θ by maximizing its posterior likelihood (MAP):

θ̂MAP = argmax
θ

p(θ|D)
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Relationship to maximum likelihood estimation

Maximizing the posterior likelihood yields

θ̂MAP = argmax
θ

p(θ|D) = argmin
θ
−logp(θ|D)

= argmin
θ
− log (p(D|θ)p(θ))

= argmin
θ
− log p(D|θ)− log p(θ).

We recover a penalized empirical risk minimization problem, where
Ω(θ) = − log p(θ).

Exercise : what penalty do we get using the prior

θ ∼ N (0, σ2),

and which prior would lead to the `1 penalty?

L. Jacob Statistical Learning October 2, 2014 33 / 52



Bayesian statistics

In a purely Bayesian statistical framework, we would not look for the
single value maximizing the posterior likelihood but rather consider
distributions (over θ, over θ>x ...).

This paradigm requires to know how to sample from the posterior
distribution.
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Relationship to maximum likelihood estimation

Minimization of the penalized empirical risk can therefore be derived
in the framework of likelihood maximization.

Not necessary. Some loss functions (SVM) do not correspond to a
negative log likelihood.

Giving ourselves a model allows some type of theoretical analysis of
our estimators: bias, consistency, admissibility...

These analyses allow to understand the behavior of the estimators and
to compare them, at the expense of some generality.

This is useful, but it is important to keep in mind the sensitivity of the
analysis to the assumptions made by the model, and the fact that in
reality, the data was not generated by a model.
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Penalized empirical risk minimization: summary

Penalized empirical risk minimization allows us to implement the
idea of structural risk minimization.

Lots of penalties have been proposed, leading to various types of
regularity for the estimators.

Ideally, a good penalty corresponds to a prior for the estimator: we
assume there exists a low risk function with this type of regularity.

L. Jacob Statistical Learning October 2, 2014 36 / 52



Validation
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Reminder: structural risk minimization

1 De�ne nested function sets of increasing complexity.

2 Minimize the empirical risk over each family.

3 Choose the solution giving the best generalization
performances.

Best generalization means lowest (population) risk

R(f ) =

∫
X×Y

L(y , f (x))dP = E[L(y , f (x))].

But the very reason we need all this is that we don't have access to R!

We need to estimate it as well.
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Validation/Hold out procedure

[Exercise:] why is empirical risk a poor estimator?

Alternative: split available data into training and test sets.

Formally:

R̂HO
(
f̂ ;Dn; I (t)

)
=

1

nv

∑
i∈D(v)

n

L
(
yi , f̂D(t)

n
(xi )
)
.

Dn: full set of n available data points. I (t): subset of indices used for

training. D
(t)
n (resp. D

(v)
n ): set of data points restricted to training

indices (resp. its complement).

f̂ denotes the learning algorithm whose risk we want to estimate. f̂
D

(t)
n

is the function learnt by applying this algorithm to training data D
(t)
n .
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Cross validation

Idea: averaging several hold out estimators of the risk corresponding
to di�erent data splits:

. . .

Formally:

R̂CV
(
f̂ ;Dn;

(
I

(t)
j

)
1≤j≤B

)
=

1

B

B∑
j=1

R̂HO
(
f̂ ;Dn; I

(t)
j

)
,

where I
(t)
1
, . . . , I

(t)
B are non-empty proper subsets of {1, . . . , n}.
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Cross validation procedures

CV estimators di�er in how they de�ne I
(t)
1
, . . . , I

(t)
B .

Most common: V-fold CV. Partition Dn into V sets of approximately
equal cardinality n

V
.

Leave-one-out CV: V-fold with V = n.

Monte-Carlo CV, leave-p-out CV...
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Bias of the hold out estimator

Hold out estimator: because training and validation samples are
independent,

EDn∼P

[
R̂HO

(
f̂ ;Dn; I (t)

)]
=

1

nv

∑
i∈D(v)

n

E
(xi ,yi )∪D

(t)
n ∼P

[
L
(
yi , f̂D(t)

n
(xi )
)]

= E
(x ,y)∪D(t)

n ∼P

[
L
(
y , f̂

D
(t)
n

(x)
)]

= E
D

(t)
n ∼P

[
E(x ,y)∼P

[
L
(
y , f̂

D
(t)
n

(x)
)]]

= E
D

(t)
n ∼P

[
R
(
f̂
D

(t)
n

)]
.

Only makes sense because L
(
yi , f̂D(t)

n
(xi )
)
are i.i.d objects when

(xi , yi ) are independent of f̂
D

(t)
n
.

L. Jacob Statistical Learning October 2, 2014 42 / 52



Bias of the hold out estimator

Hold out estimator: because training and validation samples are
independent,

EDn∼P

[
R̂HO

(
f̂ ;Dn; I (t)

)]
=

1

nv

∑
i∈D(v)

n

E
(xi ,yi )∪D

(t)
n ∼P

[
L
(
yi , f̂D(t)

n
(xi )
)]

= E
(x ,y)∪D(t)

n ∼P

[
L
(
y , f̂

D
(t)
n

(x)
)]

= E
D

(t)
n ∼P

[
E(x ,y)∼P

[
L
(
y , f̂

D
(t)
n

(x)
)]]

= E
D

(t)
n ∼P

[
R
(
f̂
D

(t)
n

)]
.

Only makes sense because L
(
yi , f̂D(t)

n
(xi )
)
are i.i.d objects when

(xi , yi ) are independent of f̂
D

(t)
n
.

L. Jacob Statistical Learning October 2, 2014 42 / 52



Bias of cross validation estimators

For any cross validation estimator such that
∣∣∣I (t)
j

∣∣∣ = nt ,

EDn∼P

[
R̂CV

(
f̂ ;Dn; I (t)

)]
= E

D
(t)
n ∼P

[
R
(
f̂
D

(t)
n

)]
.

The bias of such a CV estimator is therefore the di�erence between
the risk expected using n and nt training samples:

Bias
(
R̂CV

)
= E

D
(t)
n ∼P

[
R
(
f̂
D

(t)
n

)]
− EDn∼P

[
R
(
f̂Dn

)]
.

Usually non-negative (if f̂ is a smart rule, i.e., if its risk is a decreasing
function of the size of the training set).

More precise results for speci�c f̂ and cross-validation estimators.
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Bias of cross validation estimators

(from The Elements of Statistical Learning)
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Variance of cross validation estimators

All CV estimators with training sets of the same size nt have the same
bias. Di�erence of behavior explained by variances.

For the hold out estimator,

VarDn

[
R̂HO

(
f̂ ;Dn; I (t)

)]
=

1

nv
E
D

(t)
n

[
Var(x ,y)

(
L(y , f̂

D
(t)
n

(x))
)]

+ Var
D

(t)
n

[
R
(
f̂
D

(t)
n

)]
.

First term: sensitivity of the error to a change of the validation
sample. Also decreases in nv (for �xed nt).

Second term: sensitivity of the risk to a change of the training set.
Depends on stability of f̂ .
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Variance of cross validation estimators

No general result for CV.

Less variable CV depends on framework (classi�cation, regression,
density estimation, model selection...).

Factors of variability: nv , nt ,B and stability of the algorithm.

What should I do: no general answer, but it is standard to do 5 or
10 fold CV. Sometimes leave-one-out, but it is more expensive and
known to often have large variance.

More detailed answers in A survey of cross-validation procedures for

model selection by S. Arlot and A. Celisse (from which this section is
largely inspired).
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Conditional vs expected prediction error

There are actually two related quantities we could want to estimate:

RDn

∆
= E(x ,y)∼P

[
L(y , f̂Dn

(x))|Dn

]
R

∆
= EDn,(x ,y)∼P

[
L(y , f̂Dn

(x))
]

= EDn∼P [RDn
] .

Both can be useful depending on the context:

1 are you always going to use this particular Dn
2 or are you more interested in assessing the average performance of f̂ ?

CV empirically known to do a better job at estimating R than RDn
.

Actually hard to estimate RDn
without using additional data. Keep

that in mind if your objective is 1!
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Model selection vs assessment

Cross validation was historically �rst used for model assessment:
estimate the generalization error of a given algorithm f̂ .

As you will see in this class, there are lots of methods to solve the
same inference problem. Most of them have options/hyperparameters
(e.g., penalized empirical risk minimization).

We also need a tool for model selection: choose best method or best
class of hypothesis for a particular problem.

Cross validation is commonly used for model selection as well.
However, some care is necessary when doing both (which is often the
case).
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An example: selection bias in gene extraction

2002 paper by C. Ambroise and G. McLachlan: Selection bias in gene

extraction on the basis of microarray gene-expression data.

At the time, several paper using microarrays for cancer diagnosis
claimed 0% generalization error estimated by cross validation:

Xiong et al.(2001), Mol Genet Metab, Feature (Gene) Selection in
Gene Expression-Based Tumor Classi�cation.
Zhang et al. (2001), Proc Natl Acad Sci USA, Recursive partitioning
for tumor classi�cation with gene expression microarray data.
Guyon et al. (2002), Mach Learn, Gene Selection for Cancer
Classi�cation using Support Vector Machines.
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An example: selection bias in gene extraction

General procedure was:
1 Select a few genes which are good predictors over all samples.
2 Perform cross validation to estimate the generalization error of a

method using these genes.

Exercise: What is wrong with this procedure? What should be done
instead

The samples used to estimate the generalization error were used to
select predictive genes.

The predictive genes are optimal for the samples used to estimate the
generalization error, which leads to an over-optimistic assessment
regarding what will happen for actually new samples.

Picking a gene set is model selection, computing the generalization
error of the estimator built over these genes is model assessment.
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Model selection vs assessment

Same thing goes for selecting a regularization parameter or a method:
cross-validation error over Dn gives you an estimate of your best
option (model selection), but it doesn't tell you how your best
option will perform on new data (model assessment).

[Exercise:] what would be an acceptable procedure to select a
regularization parameter and estimate the resulting generalization
error using a dataset Dn?

Train/Validation/Test split.
Double cross-validation.
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Model selection vs assessment

Principle: the data you use to estimate the generalization error of an
algorithm cannot be used in any way to build the estimator. But it is
easy to get confused, and di�cult to strictly follow this principle when
data is scarce.

Maybe even more important than choosing best type of CV. Still
results in many mistakes today.

Other frequent source of mistakes in CV: duplicate/non i.i.d. samples.
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