Statistical learning: homework 1

October 2, 2014

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be an undirected graph with a set \mathcal{V} of p vertices and a set \mathcal{E} of edges. The **adjacency** matrix A of \mathcal{G} is a $p \times p$ matrix with elements $a_{ij} = \mathbf{1}_{(v_i, v_j) \in \mathcal{E}}$, *i.e.*, elements 1 at coordinates corresponding to vertices connected by an edge, 0 otherwise. The **degree** matrix D of \mathcal{G} is defined by $D = \text{Diag}(A\mathbf{1}_p)$ where $\mathbf{1}_p$ is the all one vector in dimension p. In other words, D is a diagonal matrix with d_{ii} corresponding to the degree of vertex i. The **Laplacian** matrix \mathcal{L} is defined by

$$\mathcal{L} = D - A.$$

The objective of this homework is to study some of its theoretical properties, and the empirical behavior of a penalized estimator based on a regularity measure defined using \mathcal{L} .

1 Analysis of the graph Laplacian penalty

1.1 A property of quadratic forms

Let $M \in \mathbb{R}^{p \times p}$ be a symmetric, positive semidefinite matrix $(M \succeq 0)$, *i.e.*, such that $v^{\top}Mv \ge 0 \quad \forall v \in \mathbb{R}^{p}$. Denote $M = U^{\top}\Lambda U$ its spectral decomposition: the columns of U are the eigenvectors of M and Λ is a diagonal matrix with the corresponding eigenvalues $\lambda_1 \ge \ldots \ge \lambda_p \ge 0$ on its diagonal.

We denote $\|v\|^2 = v^{\top}v = \sum_{j=1}^p v_j^2$ the squared Euclidean norm of $v \in \mathbb{R}^p$.

1.1.1 First eigenvector

Prove that

$$\begin{cases} \max_{v \in \mathbb{R}^p} v^\top M v \\ \|v\|^2 = 1 \end{cases} = \lambda_1,$$

and that this value is reached for $v = u_1$.

You are advised **not** to use Lagrangian duality. Instead, you can use the following steps:

1. Prove that $v^{\top}Mv = \alpha^{\top}\Lambda\alpha$ for some $\alpha \in \mathbb{R}^p$ with $\|\alpha\|^2 = 1$.

2. Prove that

$$\begin{cases} \max_{\alpha \in \mathbb{R}^p} \alpha^\top \Lambda \alpha \\ \|\alpha\|^2 = 1 \end{cases} = \lambda_1, \qquad (P_1)$$

and deduce the optimal v.

1.1.2 Other eigenvectors

Prove that

$$\begin{cases} \max_{v \in \mathbb{R}^p} v^\top M v \\ \|v\|^2 = 1 \\ v \in \{v_1, \dots, v_{k-1}\}^\perp \end{cases} = \lambda_k, \qquad (P_k)$$

where $\{v_1, \ldots, v_{k-1}\}$ are argmax to problems P_1, \ldots, P_{k-1} . and that this value is reached for $v = u_k$.

1.2 Quadratic forms with Laplacian matrices

We now consider the quadratic form obtained using the Laplacian matrix defined in the header of this homework.

1.2.1 Dirichlet's energy over \mathcal{G}

Prove that $v^{\top} \mathcal{L} v = \sum_{(v_i, v_j) \in \mathcal{E}} (v_i - v_j)^2$ for $v \in \mathbb{R}^p$.

 $v^{\top} \mathcal{L} v$ is small if the values in v are smooth over the graph, *i.e.*, if connected nodes typically have similar values.

1.2.2 Using \mathcal{L} for statistical inference

Assume we observe *n* samples $(x_i, y_i)_{i=1,...,n}$, where $x_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$. We denote $X \in \mathbb{R}^{n \times p}$ the matrix whose rows are x_i , and $Y \in \mathbb{R}^n$ the vector with values y_i . We consider the prediction function $f(x) = x^{\top}\hat{\beta}$, where $\hat{\beta}$ is an argmin of the following optimization problem:

$$\min_{\beta \in \mathbb{R}^p} L(X\beta, Y) + \mu_1 \beta^\top \mathcal{L}\beta + \mu_2 \|\beta\|^2,$$
(E)

for some $\mu_1, \mu_2 \in \mathbb{R}^+_*$.

- 1. What is the expected behavior of the estimator obtained by minimizing the empirical risk penalized by $v^{\top} \mathcal{L} v$?
- 2. Prove that (E) is equivalent to

$$\min_{\beta \in \mathbb{R}^p} L(\tilde{X}\beta, Y) + \|\beta\|^2, \tag{E'}$$

where $\tilde{X} = XB$, $B = (\mu_1 \mathcal{L} + \mu_2 I_p)^{-\frac{1}{2}}$.

- 3. Using the results of 1.1, what can you say about the energy $\Omega(x) = \mu_1 \beta^\top \mathcal{L} \beta + \mu_2 \|\beta\|^2$ of the eigenvectors of *B*?
- 4. Prove that the transformation B decreases the relative energy Ω in the following sense:

$$\Omega(\tilde{x}) / \|\tilde{x}\|^2 \le \Omega(x) / \|x\|^2$$

where $\tilde{x} = Bx$.

2 Simulations

The following exercise can be done in your favorite programming language. If you want to use R (available for free at http://cran.r-project.org/), we provide a few useful primitives in the hw1-help.R file on the website http://lear.inrialpes.fr/people/mairal/teaching/2014-2015/M2ENS/.

- 1. Download the hw1-adj.txt file from the website http://lear.inrialpes.fr/ people/mairal/teaching/2014-2015/M2ENS/. It contains the 50×50 adjacency matrix of a graph with 50 vertices. Load the matrix A and compute the Laplacian matrix of the associated graph and its spectral decomposition $\mathcal{L} = U\Lambda U^{\top}$.
- 2. Generate $n = 100 (x_i, y_i)$ pairs under the model

$$y_i = x_i^\top \beta + \varepsilon_i,$$

where ε_i are independent indentically distributed from a normal distribution with 0 mean and variance 1 and x_i are real vectors in dimension p = 50. Do so for two different choices of β :

- $\beta_{low} = u_p$,
- $\beta_{high} = u_1$,

where u_k is the eigenvector associated with the k-th largest eigenvalue of \mathcal{L} .

3. Compute the ridge regression estimator

$$\hat{\beta}_{\text{ridge}}(X,Y) = \underset{\beta \in \mathbb{R}^p}{\arg\min} L(X\beta,Y) + \lambda \|\beta\|^2 = \left(X^\top X + \lambda I_p\right)^{-1} X^\top Y$$

over both training sets, for $\lambda = 100$ (to save your time, you are not asked to play with λ , this value is the best choice for this problem). Using the closed form for the ridge regression estimator and the equivalence between (E) and (E'), compute

$$\hat{\beta}_{\mathcal{L}}(X,Y) = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} L(X\beta,Y) + \mu_1 \beta^\top \mathcal{L}\beta + \mu_2 \|\beta\|^2,$$

for $\mu_1 = \lambda$ and $\mu_2 = 0.1$, over both training sets.

4. Generate 10,000 new independent points¹ (x_i, y_i) under each of the two settings $(\beta_{low}, \beta_{high})$. For both estimators $(\hat{\beta}_{ridge}, \hat{\beta}_{\mathcal{L}})$ over both settings, compute the relative risk:

$$R(\hat{\beta},\beta) = \|X_{\text{test}}\hat{\beta} - Y_{\text{test}}\|^2 / \|X_{\text{test}}\beta - Y_{\text{test}}\|^2.$$

For comparison, also compute $R(0,\beta)$, the relative risk when predicting y = 0 for all x.

5. Discuss the four estimated $R(\hat{\beta}, \beta)$. When is $\hat{\beta}_{\mathcal{L}}$ better than $\hat{\beta}_{ridge}$, when is it worse, and why?

 $^{^1 {\}rm You}$ can reduce this number if the resulting computation is too heavy for your computer.