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About this document

These are lecture notes of the 2014-2015 course on statistical learning, which
is a M2 course at ENS Lyon.

Slides of the course are available at http://lear.inrialpes.fr/people/
mairal/teaching/2014-2015/M2ENS/, the present notes only complement
the slides.

1 Introduction

Scribes: Baptiste Jonglez and Stéphane Durand
References for the course:

• Freedman, Hastie, Tibshirani: The elements of statistical learning
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• http://www.stat.berkeley.edu/bartlett/courses/2013springstat210b/
(theoretical part)

• http://www.di.ens.fr/arlot/2013orsay.htm

• Boyd Vandenberghe: Convex optimization

• Matrix cookbook : many formulas about matrices (PDF document, to
be found online)

1.1 Examples

Simple application of statistical learning: classification, where you are given
labels for some objects, and you must guess the label of new objects. Clas-
sification is a subpart of supervised learning.

Supervised learning: we are given labels for objects during training. Un-
supervised: we don’t.

1.1.1 Recommendation systems

Given your rating of movies, recommend new movies that you will probably
like.

Netflix: the 1$ million challenge (improve their recommendation algo-
rithm by 10%). The whole machine learning community worked on this for
5 years.

1.1.2 Search engine: relevance of results

This can be seen as a prediction problem.

1.1.3 Natural Language Processing

Predict the topic of a natural text, spam filtering, machine translation, ...
Remark: here (and in the other examples of this section), objects are

much more complex than 2-dimension points. We must find descriptors
for the objects (e.g. for an email: occurrences of a word, set of letters, set of
words, etc)

1.1.4 Biology

When dealing with genes, ARN, etc, we have tons of information, but it’s
hard to sift through it (high-dimensional, etc)
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Tumor classification for prognosis The goal is to predict whether the
tumor will reappear in a few years, so that you know which treatment to
give (chemotherapy). Figure of slide 11: x are genes, y are persons. A green
point represents low expression of a gene, red is high expression of a gene.
The top of the figure shows bad prognosis patients, the bottom shows good
patients. When you have a new sample (= gene expression of a person),
then you can try to classify it as either good or bad prognosis.

Molecule classification for drug design A target is a protein whose
function we want to alter, because it’s not working well. We add a molecule to
change the behaviour. Some molecules are active against the target protein,
some are not, but we want to find new active molecules (maybe because the
current ones have side-effect). Classification problem: find good candidates
for the new molecules.

Gene expression clustering Unsupervised learning. Similar to the tu-
mor classification, but we don’t have examples of the classes we are trying
to identify. Difficult problem. Application: subtypes of cancer (for instance,
“breast cancer” can be many different diseases)

DNA reconstruction Phylogenetic tree: if we have the DNA of descen-
dants of a specie, we can look at what’s common and reconstruct the genome
of the extinct specie. This doesn’t work for T-rex or raptors, because they
didn’t left any descendance (we could get a common ancestor of one of these
species and other species which left a descendance). LUCA: Last Universal
Common Ancestor, what does it look like?

1.1.5 Computer vision

Image imprinting, not really a prediction/statistical learning, but same for-
mulation.

1.1.6 Music recognition

Popular application of statistical learning (Shazam, etc)

1.1.7 Neuroscience

Record brain activity of people watching video (training).
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Then, you look at the activity of their brain when watching a video you
don’t know, and you can reconstruct an approximate version of the video.

It’s not thought-reading, because we only reconstruct the visual input of
the brain, not the thoughts themselves.

2 Learning with high dimensional data

Scribes: Baptiste Jonglez and Stéphane Durand
We are dealing with complex objects, with large number of features, but

a reduced number of sample.

2.1 Bias/variance trade-off and how to deal with it

2.1.1 Over-fitting, bias/variance trade-off: what is the problem?

Example Regression example on a set of points in 2D (this is not clas-
sification). We can try to build a very simple function (affine), or a more
complex function (quadratic, polynomial of high degree).

For n points, a polynomial of degree n − 1 is “optimal”, because it goes
through all of our points: but it’s intuitively a very bad predictor for new
points, because it varies a lot. Maybe our goal is wrong: we don’t want to
decrease the error on the sample points, but on the rest of the population.

Intuition Much liberty in choosing the model. Existence of many "per-
fect" solution (for distance/error criterion). Re-sampling will change the
parameter of these more than it will simple functions.
→ generalization issue.

Summary The bias/variance tradeoff: too simple functions do not de-
scribe the data well, while too complex functions are too specific to the
observed sample (over-fitting) and generalise poorly to new data.

2.1.2 Complexity vs dimension

Complexity and dimension are related notions. We can sometimes switch
from the second to the first by a change of descriptors.

All functions of the previous example were linear when you look hard
at them. For a polynomial degree 2 in dimension 1, just take the vector
(X,X2): then the regression problem becomes linear, in dimension 2.
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More generally, if you have multiple descriptors, you can sometimes in-
crease dimension to simplify.

2.1.3 Models

No (probabilistic) model for now. Non necessary, but can improve problem
understanding.
Some models can be justified using probabilistic models but were originally
introduced without these models (e.g. least squares).

2.1.4 Bias-variance decomposition

Assume the data follows y = f(x) + ε
ε is a random noise term of null expectancy.
Both fˆ and y are random, the expectation is taken over both. On the

other hand, x is not random, the variable of study is y|x.
The average mean square error can be decomposed in three terms. A term

of variance, the Bayesian error (not reducible), a bias term and a variance
term. Proof: use the König-Huygens relation. Was let as exercise.

For the previous example, too simple functions have a large bias, while
too complex functions have a large variance: they will vary a lot for different
samples, which produces error.

2.1.5 Generalization

Definitions We call L : Y × Y 7→ R the loss function it is the distance
used to evaluate the error. (eg : ||.||22)
Given an estimator f : X 7→ Y , we write

R(f) =

∫
X×Y

L(y, f(x))dP = E(L(y, f(y))

the risk.
One should note that R is not computable unless the joint distribution of
(X,Y ) is known. We will have to estimate it. If we pose H the function
space where to search for f, we have :
The Bayes regret is R(f)−R∗ = (R(f)−ming∈H R(g))+(ming∈H R(g)−R∗)
with R∗ the Bayes risk. The second term is the approximation error.
The first term comes from the fact that R has to be estimated.

[Slide 43] These terms depend on the size of the set of functions: the
largest the set of functions, the larger the error term will become.
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2.1.6 Rademacher complexity of H

R(H) = Eε,Z
[
sup | 1

n

∑
εif(Zi)|

]
Intuition: we see if H can provide functions that align well with noise (epsilon
term of the definition, which is a vector in {−1, 1}n and fixed in advance).
We don’t want our functions to align well with the noise.

It is increasing with H and decreasing with n. It can bound the error of
the empirical risk minimization estimator.

Ex,y(R(f̃ −R∗) ≤ min
g∈H

(R(g)−R∗) + 4R(H)

2.1.7 Practical implications

How to design estimators: build small classes H which we think contain good
approximations.

2.2 Summary

Risk: decomposed as a term of bias/approximation and a term of vari-
ance/estimation. This highlights the tradeoff, related to the complexity of
the set of functions we consider (either too simple or too complex).

More accurate definitions of complexity: Rademacher, VC [slide 57]
VC dimension := sup {n,∃(Z1 . . . Zn)|{f(Z1) . . . f(Zn)}| = 2n}
Definition H shatter (Z1 . . . Zn) iff {f(Z1) . . . f(Zn)}| = 2n

Property : V C(L(Rp,R) = p

3 Supervised learning

4 Unsupervised learning

5 Statistical learning theory
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