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1 Supervised vs unsupervised learning

Machine learning algorithms can be either supervised or unsupervised. Super-
vised learning consists of using already labeled data (training set) to infere the
labels of new data. The label can be a class (classification problem), a real value
(regression problem).

Unsupervised learning is adapted when we do not have any information on
the class of the data.

2 Penalized empirical risk minimization

During the last course, we saw a method to minimize the structural risk, by:

– defining nested function sets of increasing complexity
– minimizing the empirical risk over each family
– choosing the solution that gives the best generalization performances

This approach requires to solve a constrained optimization problem, which
is usually harder than to solve its unconstrained equivalent.

This problem is often equivalent to the following penalized problem:

min
f

n∑
i=1

L(yi, f(xi)) + λΩ(f)

The first term corresponds to the loss function minimization, and favors a
good fit to the data. The second term is a penalty term, which penalizes functions
with high complexity, it thus favors regularity of f . In order to solve this problem,
we need to define a good mesure of the complexity Ω, and then to compare the
generalization performances of the functions found for decreasing values of λ.

2.1 Loss functions

For regression problems, common loss functions include the l1 or l2 norms of
y − f(x). The l1 norm has the advantage of being robust (i.e: less sensitive to
large errors than the l2 norm). With the l2 norm, if a function makes one large
mistake, it can be very costly.



For classification problems, we can use the 0/1, the logistic or the hinge loss
function. The 0/1 loss function has a major drawback: it is a non-convex function,
and optimization problems are simpler to solve when the function to minimize
is convex. Indeed, some general results of convex optimization guarantee the
existence of a unique global solution if a minimum is found.

Moreover, methods based on convex objectives are simpler to analyze.

2.2 Penalties

Let us consider a linear function f(x) = ΘTx,Θ ∈ IRp.
A very common penalty is the ridge penalty:

Ω(Θ) = ‖Θ‖22
The ridge penalty is used in ridge regression (a regression algorithm, com-

bined with the l2 loss) and in Support Vector Machines (SVM) (a classification
algorithm, combined with the hinge loss).

This penalty leads to function that are regular in the sense that 2 points x, x′

that are closed in the Euclidian space have close evaluations by the function,
since by the Cauchy-Schwarz inequality:

|ΘTx−ΘTx′| ≤ ‖Θ‖2‖x− x′‖2

This property can limit overfitting and improve generalization performances:
it makes functions behave in a similar manner over similar data.

3 The ridge regression

We now assume that the data can be explained with a linear model:

y = Θ̄Tx+ ε

where ε is a random noise with mean 0 and variance σ2, y ∈ IR and Θ, x ∈
IRp. We observe n realization of this linear model, represented by the matrix
X ∈ IRn,p, and the vector Y ∈ IRn.

Let us consider the estimator:

Θ̂ = arg min
Θ

(‖Y −XΘ‖2 + λ‖Θ‖2)

We can show that:

Θ̂ = (XTX + λI)−1XTY

It is also possible the find the bias E[Θ̂ − Θ̄] and the variance of Θ̂:

E[Θ̂ − Θ̄] = −λ(XTX + λI)−1Θ̄



V ar[Θ̂] = σ2(XTX + λI)−1XTX(XTX + λI)−1

The bias increases with λ and tends to −Θ̄ when λ −→∞. It is noteworthy
that if λ = 0 (unpenalized linear regression), the bias is null. If the ratio n/p is
small (i.e the number of parameters is large compared to the number of points),
the bias and the variance increase.

In practise, for a given dataset, some λ give smaller risks than others. λ can
be chosen by hold-out or cross validation.

4 Fundamentals of constrained optimization

Constrained optimization methods are important to understand the SVM. Let
us consider an equality and inequality constrained optimization problem over a
variable x ∈X :
minimize f(x)
subject to hi(x) = 0, i = 1, . . . ,m, gi(x) ≤ 0, j = 1, . . . , r, making no
assumption about f , g and h.

Let f∗ be the optimal value of the decision function under the constraints
(f∗ = f(x∗) if the global minimum is reached at x∗). The Lagrangian of the
constrained problem is the function L : X × IRm × IRr → IR defined by:

L(x, λ, µ) = f(x) +

m∑
i=1

λihi(x) +

r∑
j=1

µjgj(x)

We can now define the Lagrange dual function q : IRm × IRr → IR:

q(λ, µ) = inf
x∈X

L(x, λ, µ)

We can show that q is concave in (λ, µ), even if the original problem in not
convex. Furthermore, we have:

q(λ, µ) ≤ f∗, ∀λ ∈ IRm,∀µ ∈ IRr, µ ≥ 0

We can finally define the Lagrange dual problem:
maximize q(λ, µ) subject to µ ≥ 0
If we let d∗ be the optimal value of Lagrange dual problem, the weak duality

inequality is:

d∗ ≤ f∗

The difference d∗ − f∗ is called the optimal duality gap.
The strong duality holds when:

d∗ = f∗

Strong duality does not hold for general nonlinear problems, but usually
holds for convex problems. The conditions that ensure strong duality for convex
problems are called constraint qualification.



5 Penalized vs constrained risk optimization

6 Support vector machines

Support Vector Machines (SVM) is a popular linear classification algorithm.
Let us consider a training set D = {(x1, y1), . . . , (xn, yn)}, where xi ∈ IRp and
yi ∈ {−1, 1}. Is is assumed that the set of points is linearly separable, i.e. that
there exists (w, b) ∈ IRp × IR such that:{

w.xi + b > 0 if yi = 1
w.xi + b < 0 if yi = −1

Many decision boundaries can split the training data into the two classes
correctly, but which one offers the best generalization performance? Among the
possible boundaries, SVM select the one with the largest margin between the two
classes. The margin is defined as the distance between a planar decision surface
that separates two classes and the closest training samples to the decision surface.

We can show that the margin is 2
‖w‖ . The values of w and b are chosen such

that the margin is maximal under the constraint that the points in the training
set are correctly classified (i.e. the decision function gives the correct value of
yi). The decision function gives the correct value of yi if:

yi(w.xi + b) ≥ 1

Maximizing the margin is equivalent to minimizing ‖w‖2. Hence, finding the
optimal hyperplace fullfilling these conditions can be written as a constrained
optimization problem:

Find (w, b) which minimize ‖w‖2 under the constraints:

∀i = 1, . . . , n, yi(w.xi + b)− 1 ≥ 0

.
Using the constrained optimization methods studied earlier, we can obtain

the Lagrange dual function:

q(α) = inf
w∈IRp,b∈IR

L(w, b, α)

Then q(α) equals:{∑n
i=1 αi − 1/2

∑n
j=1 yiyjαiαjxixj if

∑n
i=1 αiyi = 0

−∞ otherwise

And the problem becomes: maximize q(α) under the constraints α ≥ 0.
This is a quadratic program on IRn, and can be solved efficiently using ded-

icated optimization software. Once the optimal α (= α∗) is found, we can re-
cover the (w∗, b∗) corresponding to the optimal hyperplane that separate the
two classes:



w∗ =

n∑
i=1

αiyixi

And the decision function is therefore:

f∗(x) = w∗x+ b∗

This SVM method is called hard-margin, because the data is assumed to
be linearly separable. If it is not, the problem cannot be solved anymore. The
separation constraints need to be relaxed, by introducing slack variables ξi (soft-
margin SVM):

∀i = 1, . . . , n, yi(w.xi + b) ≥ 1− ξi


