Contents

1 Support Vector Machines (continued) 1
 1.1 Reminder .. 1
 1.2 Algorithms ... 1

2 l_1 penalties 1
 2.1 l_1 norm .. 1
 2.2 Algorithms for the Lasso 2

3 Relationship to maximum likelihood estimation 2
 3.1 Model for the Data 2
 3.2 Bayesian Statistics 2

4 Validation 2
 4.1 Hold Out Procedure 3
 4.2 Cross Validation ... 3
 4.3 Model Selection vs Assessment 3

1 Support Vector Machines (continued)

1.1 Reminder
SVM are a linear method for binary classification. 2 methods,
 • hard margin SVM: for linearly separable problems, hyperplane with largest margin
 • soft margin SVM: allow points to be on the wrong side of the margin
 Soft margin can be written as a penalised empirical risk minimization problem.

1.2 Algorithms
 • QP with box constraints. In practice, faster dedicated algorithm exist.
 • SimpleSVM : solve sub-problem with a restricted set of points, then iteratively add the points which most violate the constraints
 • Stochastic Gradient Descent
2 l_1 penalties

2.1 l_1 norm

l_1 norm:

$$\Omega(\theta) = ||\theta||_1 = \sum_{j=1}^{p} |\theta_j|$$

The l_1 norm leads in practice to sparse estimators. A problem constrained by the l_1 norm can be thought of as a convex relaxation of the problem constrained by the l_0 norm.

2.2 Algorithms for the Lasso

Lasso:

$$\min_{\alpha} \|X\alpha - y\|^2 + \lambda \|\alpha\|_1$$

Can be formulated as a QP problem and solved with generic toolboxes. However, there exists other algorithms, e.g. coordinate descent which are often faster.

3 Relationship to maximum likelihood estimation

3.1 Model for the Data

So far, risk minimization without model for the data. Model $P(D \mid \theta)$ of data D, for instance

$$y = \bar{\theta}^T x + \varepsilon$$

where ε has a given distribution. It is common to estimate θ by the value which maximizes the likelihood of the data under the model

$$\hat{\theta} = \arg \max_{\theta} P(D \mid \theta)$$

In practice, it is easier to minimize the negative log likelihood

$$\hat{\theta} = \arg \min_{\theta} -\log P(D \mid \theta)$$

, which can be thought of like an empirical risk minimization problem with loss function:

$$L(D, \theta) = -\log P(D \mid \theta)$$
3.2 Bayesian Statistics

Prior distribution $P(\theta)$ over the parameter θ. Posterior distribution $P(\theta \mid D)$:

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)} \propto P(D \mid \theta)P(\theta)$$

Estimate θ through maximization of its posterior likelihood:

$$\hat{\theta}_{MAP} = \arg \max_{\theta} P(\theta \mid D)$$

is a penalized empirical risk minimization problem, with penalty $\Omega(\theta) = -\log P(\theta)$.

4 Validation

Need to estimate the population risk:

$$R(f) = \int_{X \times Y} L(y, f(x))dP = E[L(y, f(x))]$$

4.1 Hold Out Procedure

Split available data between training and test sets:

$$\hat{R}^{HO}(\hat{f}, D_n, I^{(t)}) = \frac{1}{n_v} \sum_{i \in D_n^{(t)}} L(y_i, \hat{f}_{D_n^{(t)}}(x_i))$$

where

- D_n: full set of n available data points
- $I^{(t)}$: subset of indices used for training
- $D_n^{(t)}$: set of data point restricted to training indices
- $D_n^{(v)}$: complement of $D_n^{(t)}$
- \hat{f}: learning algorithm whose risk we want to estimate
- $\hat{f}_{D_n^{(t)}}$: function learnt by applying the algorithm to the training data $D_n^{(t)}$

4.2 Cross Validation

Averaging several hold out estimators of the risk corresponding to different data splits:

$$\hat{R}^{CV}(\hat{f}, D_n, (I_j^{(t)})_{1 \leq j \leq B}) = \frac{1}{B} \sum_{j=1}^{B} \hat{R}^{HO}(\hat{f}, D_n, I_j^{(t)})$$

where $I_1^{(t)}, \ldots, I_B^{(t)}$ are non empty proper subsets of $\{1, \ldots, n\}$. CV estimators:
• V-fold CV: partition D_n into V sets of approximately equal cardinality $\frac{n}{V}$

• Leave-one-out: V-fold with $V = n$

• Monte-Carlo CV, leave-p-out CV, ...

4.3 Model Selection vs Assessment

CV can be used for model assessment (see above), but also for model selection. Some care is necessary when doing both, for instance split the data in Train/Validation/Test set or perform double cross validation.