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1 Supervised learning, course of October the 3rd

Notations for these courses: n: number of training points, p: number of dimensions of the points

1.1 Main principles seen in the previous classes
Training data: (x;,y;) where

o z; ¢ RP

e y; are labels:

— {—1,+1} for binary classification
— R for regression

— {1,.., M} for multiclass classification



1.1.1 Goal

Learn some function f such that f (x) ~ y for a new data x and its unknown label y.
For instance, linear functions:

o f(x) =0Tz +b (regression)
o f(z)=sign(0Tx +b) (classification)
1.1.2 Empirical risk minimisation

1 n
61}16111})71;11,(31,9 x;) + AQ(0)

Example of loss functions L:
o L(u,a) = (u—a)? (ridge)
e log(1 — e~ %) (logistic)

e maz(l — ut,0) (hinge)

Regularisation term:
o Q(0) = [|0]3 (ridge)
e Q(0) =||0]|1 (lasso)

1.1.3 Bias-variance decomposition

Assume Y = f(X) + € with E(e) =0
Let us c9nsider some test point x, withA a label y to predict: R
El(y - f(2))*] = Bl(y — f(2))?] + E[(f(z) — E(f(2)))’] + E[(f(z) — E(f(2)))?]
Bayes error, variance, squared bias
Cross-validation



1.2 Optimisation principles
1.2.1 Basic definitions
f:RP R
Gradient: Vf = (88—;1, - g—:g;)
Convex functions

[ =mingepy f(0)
Properties of convex functions:

local optimum is global
f is above its tangents: f(6) > f(6o) + (V£(00))T (0 — 6p)
if f is differentiable, V f(#) = 0 iff 6 is a global optimum

e f(0) — f* is easy to control through duality gaps

9(8)

— requires convexity

1.2.2 Linear systems

Simpler than optimising a function: find x such that Az = b. Just use LAPACK in your favourite
language.

If A€ R™™ then solving is O(n?) in general

If n is very large, minimise mingcrn||Az — b||3 by using a conjugate gradient (approximate
solution)

Example of ridge regression, where X is a n times p matrix:

mingere||Y — X0|13 + \|0|/3

0* = (XTX + AI)7'XTY. Complexity is O(p?).
If n is smaller than p, we can solve this in O(n?) instead:



e assume that there exists a solution #* = X7 2*, where z € R"

Vi) =0s (XTX - A)XTz= XY

S (XTXXT + AXT)z = XTY

& (XT(XXT + M)z =XTY

<= (XXT+A)z=Y

<= (XXT+ A7y

This tells us that 6* = XT(XXT + AI)~'Y
Complexity is now O(n?)

1.2.3 Gradient descent

h is k-Lipschitz continuous if for all x, y, ||h(z) — h(y)|| < k||x — y||
Cauchy-Schwarz: z7y < ||z||||y]|

Lemma: If f is differentiable and its gradient is L-Lipschitz continuous, then for all 6y,0 € RP,
F(0) < f(00) + (V£(00)" (0 — o) + 5110 — 003

First order approximation + quadratic term = g(0)

Proof of the lemma

F0) = £(0") = [;Ly V(0 + (1 —1)0)T (0 — 0")dt ()
h:[0,1] = R

t— f(t0+ (1 —1)0)

h(1) —h(0) = [} W' (t)dt

<~

(*) £(8) — f(6) — f(O)V ] CORCEED!

< S V(0 + 1 —0)0) — V@) (60— 0)dt
< [ IVF(0+ (1 —1)8") — V£(0)||dt]]6 — 0]
< fy tLI0" — 0|[3dt = [0 — /|3

End of proof.

e Gradient descent algorithm
Input ) e R? ny € R
for t=1...T
Orr1 — Or — mV f(61)

end

If n, = 7, then we minimise the g,(f) (quadratic function) at each step.
96(0) = f(6:) + V£(6:)7(0 — 6:) + L/2]|0 — 6:][3

then the minimum of gy is achieved by 6; — %Vf(@t)

V() =0« Vf(6)+ L0 —6)=0

S 0=0,—1Vf0)



gt(6)
9t1(0)

f gt+2(9)

flow) < f(8y)

Proposition: if f is convex, differentiable and V f is L-Lipschitz, then gradient descent with

*_ 2
N = % gives f(0;) — f* < M (convergence rate)

Proof of the proposition: f(0) < g:(0) = f(6:) + (V£(0:))T (0 — 6) + &[]0 — 0,3
We can see that 6y, minimises g;(), so we directly have g;(6) = g¢(641) + £||0 — 0441]|3
FB+1) < 9e(0i1) = 90(6%) — 51167 — bua |13

— F(6) + VFO)T (0" — 00) + £116° — 0,3 — L116" — 014113

As f(0y) + Vf(0)T (0" — 6;) < f* (convexity)

FOerr) = F* < 516" = 013 — 1107 — bu4a]|22

T(FO) — 1) < (S0 FOn)] - TF < L016° — 6013 — £116° — 0l]3 < £116° — 6oll3
End of proof.

Extension: optimisation with constraints (projective gradient descent)

Let C be convex set: we want to compute mingec f(6)

It’s actually simple: do the same thing, but project each 6; on C. That is, replace
Or41 0 — (V) (6r)

by

Ori1 < OBy — (V) (0:))

where Il is the euclidian projection on C

Proximal gradient descent

Let’s say you want to optimise a non-smooth function, for instance:



mingere f(0) + Q(0)
where Q(0) = ||6|]1: we can’t use the gradient on €.

Then you need to replace (***) by i1 = argmingerrs||0 — (0, — $VF(0)[13 + 12(0) =
called proximal gradient descent

This operator is called the proximal operator.

1.2.4 Newton method

When f is twice differentiable, we can define the Hessian: V2f(6) = [%] which is a p times p
matrix.

Idea: instead of doing a first-order approximation, we use a quadratic approximation.

Algorithm:

Input 6y € R?P

fort =1...7T

F(0) = f(0:) +V F(0)T(0 — 0:) + 5(0 — 0,) V2 (6,)(6 — 6,)

Minimize the quadractic approximation 0,1 < 68; — V2f(0;) 'V f(6;)

endfor

Each iteration costs O(p®), which is a lot. However, the convergence rate is very good:

If the smallest eigenvalue of the Hessian is always greater than [ > 0, and the Hessian is M-
Lipschitz continuous, then there exists a constant C such that ||6;11 — 6*||2 < C||0; — 6|3

For large scale problems, there are variants L-BFGS.

1.2.5 Stochastic Gradient Descent

We are often minimizing a function of the form:

fa(0) =15 L(yi, X;,0). (empirical risk)

f(0) =Eq, x) [L(y, X,0)] (expected risk)

Remark: complexity per iteration of gradient descent for minimizing for is O(M) because
an(6’) = % Z?:l VQL(yiv Xi, 0)

Algorithm

for t=1...T

Draw(y:, X¢)

Update 041 < 0y — 1:VoL(ys, X, 0¢)

end for

The interpretation of 7y > 0 is the “step-size”, and of Vo L(y:, X¢,0;) is a noisy gradient.

Typical behaviour f,,(6)



P

Remarks:

e E[f(6)]— f*=0 (%) for convex functions (under technical assumptions)

e this is a “ slow” rate but the cost per iteration is cheap
o useful for large-scale machine learning

e in practice, fast to get low-precision solution, and slow for high precision

1.3 Non-parametric approaches
1.3.1 Nearest Neighbor Approach (NN)
Assume that you have training data (Y;, X;) with i = 1...n with ¥; € {1,...,M}.
Given some text data X € RP, the NN classification rule is i € argmini—1. . .d(X,X;),

hatynn () = y;.
Variant k-NN: Qk—NN(x) = Vote(@h, e ,ggk).
Remarks:

e there is no “learning” of parameters
e requires “appropriate” distance functions

e simple but O(n) complexity at test time

Figures of Elements of Statistical Learning by Hastie et al, page 466 (485 in the PDF): The
classification shown on the second figure is too precise, while the first one can account for noisy or
wrong training data. — There are approximate NN techniques that do some pre-computation. For
instance “KD-trees”, “local sensitive hashing LSH”.

1.3.2 Smoothing techniques for regression

; n ko (X, X;)Y;
fl@) =321, %

=Y nYi (O-m =1andn >0) 1

— 112
K, is a weight function, for instance a smoothing kernel. Example: K, (X, X;) = emIIX—XZIIQ
This is called the Nadaraya-Watson estimator. Book by Wasserman “Non-parametric statistics”



1.3.3 Application in image processing: non-local means by Buades et al. 2005

Noisy image; pixel y;.
Hypothesis: a pixel can be explained by a “patch” X; around it (10x10 pxels), = X; € R,
Non local means approach consider all the patches (X;,y;) as “training set”. The denoised pixel

i is obtained by g; = Y7, %Y

Z; = p+¢ with E[g;] =0 and ¢ are i.id. p=13" 2

=340 a=0(%)

Idea: to denoise a pixel, look for similar patches in the rest of the images (assign high weight to
similar patches, low weight otherwise).

Then, take the (weighted) average of the pixels at the center of the patches. This works if the
noise has a zero average, and is independent.

1.3.4 Theorem by Cover and Hart, 1967

“Asymptotically, the error rate of 1-NN is never more than twice the Bayes error rate”.

The data (y, x) is drawn according to some probability distribution. In particular, we have some
conditional probabilities P[Y = y|z] (with x € RP, y € 1... M)

Bayes classifier: §payes(z) = argmaz.—1. . pyP[Y = c|X = z]

This is not possible in practice, because we don’t know the conditional probabilities.

mingre— .. myExy) Lo 2vy]

= ExEyiv Loy

=Ex D PlY = | X]11p(x)2v)]

=Ex[1 -P[Y = f(X)|X]]

This is minimum for f(X) = argmaz,=1.. MP[Y = ¢|X]| = UBayes(X)
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