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1 Recap from last lecture

n is the number of training points, p the number of dimensions of the points
and M the number of labels

1.1 Convex optimisation principals

• Gradient descent algorithm

min
θ∈Rp

f(θ)

θt+1 ← θt − ηt∇f(θt)

• Newton algorithm

θt+1 ← θt −∇2f(θt)
−1∇f(θt)
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• Projected gradient descent

min
θ∈C

f(θ)

θt+1 ← πC [θt − ηt∇f(θk)]

• Proximal gradient descent

min
θ∈Rp

(f(θ) + Ω(θ))

θt+1 ← arg minθ∈Rp

1

2

∥∥∥∥θ − [θt − 1

L
∇f(θt)

]∥∥∥∥2
2

+
1

L
Ω(θ)

• Stochastic gradient descent

min
θ∈Rp

Ex[l(θ, x)]

� Draw Xt ∼ P [x]

� θt+1 ← θt − ηt∇θl(θt, Xt)

1.2 Non parametric estimation

1.2.1 Nearest neighbour algorithm (NN)

Training data are (Xi, Xj)i=1...n, where Xi ∈ Rp and Xj ∈ {1, . . . ,M}
Given a test point X ∈ Rp

î(X) = arg mini=1,...,n d(X,Xi)

ŷNN(X) = yî(X)

1.2.2 K-NN

Extension of voting scheme for the K nearest neighbours

ŷk−NN(X) = V ote(yî1 , . . . , yîk)

1.2.3 Smoothing technique for regression

Training data are (Xi, Yi), where Xi ∈ Rp and Yi ∈ R

ŷ(X) =
n∑
i=1

Kσ(X,Xi)Yi
n∑
j=1

Kσ(Xj, Xi)
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2 New stu�

2.1 Theorem Cover and Hart 1967

�asymptotically, the NN error rate is never more than twice the Bayes error
rate� [2], whereby the Bayes error rate is the best achievable result.

The training data is (Yi, Xi) with Yi drawn according to P [Y = c|X],
where c ∈ {1, . . . ,M}.

min
f :Rp 7→{1,...,M}

E(X,Y )[1f(X)6=Y ] =

EXEY |X [1f(X)6=Y ] =

EX

[
n∑
c=1

P [Y = c|X]1f(X)6=Y

]
=

EX

[
n∑
c=1

P [Y = c|X]− P [Y = f(X)|X]

]
=

EX [1− P [Y = f(X)|X]]

The Bayes classi�er minimizes the above quantity. It is such that

ŶBayes(X) = arg maxc=1,...,n P [Y = c|X]

Sketch of proof: (proven in the '60s)

A) Prove theorem in some �ideal� setting

B) Show that the ideal case �converges� to the general case (very technical
proof)

We only do A)
Ideal setting means two things:

• M = 2 (two labels)

• Assume that the training set is in�nite and dense

∀X ∈ Rp there exists (Xi, Yi) in the training set with X = Xi
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Error rate: E(Y,X,training data)[1Y 6=Ŷ (X)] where (Y,X) is the test data

= E(Y,X,Y ′)[1Y 6=Y ′ ] Y ′ ∼ P [Y = c|X]: training label

Y ∼ P [Y ′ = c|X]: test label

= E(Y,X)

[
M=2∑
c=1

P [Y ′ = c|X]1Y 6=c

]

= EX

 2∑
c=1

P [Y ′ = c|X]EY |X [1Y 6=c]︸ ︷︷ ︸
=P [Y 6=c|X]


= EX

[
2∑
c=1

P [Y = c|X](1− P [Y = c|X])

]

= EX

2P [Y 6= ŶBayes(X)|X](1− P [Y 6= ŶBayes(X)|X]︸ ︷︷ ︸
≤1

)


≤ 2EX

[
P [Y 6= ŶBayes(X)|X]

]
= 2E(Y,X)

[
1Y 6=ŶBayes(X)

]
2.2 Nonlinear classi�cation with kernels

2.2.1 Introduction

Linear classi�er

min
θ∈Rp

1

n

n∑
i=1

L(Yi, θ
TXi) +

λ

2
‖θ‖22

The problem of linear classi�cation is to �nd a linear decision function,
that seperates the training data with a hyperplane. In some cases a non
linear decision function can be better suited to seperate the training data.

First idea transform X with a nonlinear function ϕ : Rp → Rd where
d 6= p

min
θ∈Rd

1

n

n∑
i=1

L(Yi, θ
Tϕ(Xi)) +

λ

2
‖θ‖22

Q: How to choose ϕ?

Second idea

min
f∈F

1

n

n∑
i=1

L(Yi, f(Xi)) + λΩ(f) (1)
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F is set of nonlinear functions
Q1: What is Ω?
Q2: How do I solve equation 1?
Case of parameterized functions s.t. F : {f θ, θ ∈ Rp}

min
θ∈Rp

1

n

n∑
i=1

L(Yi, f
θ(Xi)) + λΩ(f θ)

Obviously this does not solve Q1, it also does not solve Q2, the problem
might be non-convex. One solution to Q1 and Q2: �kernels�

• Extend linear machine learning to non-linear settings, without losing
any good properties

• Do not require the Xi to be in Rp, you just need the X to be in some
set X

Example cx=



−graphs
−DNAsequences
−time
−string
−groups

the only downside is the O(M2) complexity with the amount of data (M
is number of training points).

Useful resources:

• John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern

Analysis. Cambridge University Press, New York, NY, USA, 2004

• �Machine learning with Kernel methods� course of Jean-Phillipe VERT
(http://cbio.ensmp.fr/~jvert/teaching/)

2.2.2 RKHS (Reproducing Kernel Hilbert Space) and kernels

Idea:

• Instead of working with X , work �implicitely� with ϕ(X) in a Hilbert
space H

• Reformulate learning problem by �involving� pairwise comparisons be-
tween the Xi's
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Example For n = 3 (3 training points in X ), we can de�ne a similarity
measure K:

K =

 1 0.6 0.1
0.6 1 0.2
0.1 0.2 1

 ∈ Rm×m

De�ne a �comparison function� K, called a kernel

• + methods �blind� to the type of data

• + K can be non-linear

• + K will be �plugged� in many algorithms

• - K has m2 entries

De�nition (Semi) positive de�nite kernel or (p.d. kernel) on some set X :
K : X × X → R is p.d. i�

• it is symmetric K(X,X ′) = K(X ′, X) ∀(X,X ′) ∈ X × X

• ∀(X1, . . . , XN) ∈ XN and (a1, . . . , an) ∈ RN then
n∑
i=1

n∑
j=1

aiajK(Xi, Xj) ≥

0

or aTKna ≥ 0 where a =

 a1
...
aN

 and KN = [K(xi, xj)](i,j)∈N×N

or Kn is semi-positive de�nite

Motivation Theorem (Aronszajn, 1950)[1]
K is a p.d. kernel i� there exists a Hilbert space H and a mapping

ϕ : X → H such that

∀(x, x′) ∈ X × X K(x, x′) = 〈ϕ(x), ϕ(x′)〉H

De�nition of spaces

• Euclidean spaces: Vector space of �nite dimension + inner product

inner product: bilinear + symmetric + 〈x, x〉 ≥ 0 i� x 6= 0

• pre-Hilbert: properties of Euclidean space + possibly in�nite dimension
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• Hilbert: pre-Hilbert + complete

complete: all Cauchy sequences converge in the space

Cauchy sequence: (um)m≥0 is Cauchy if lim
m→+ inf

sup
p,q≥m

|up − uq| = 0

Example

• linear Kernel X = Rd

� K(x, x′) = xTx′ = x′Tx = K(x′x)

� Consider x1, . . . , xn ∈ Rp and (a1, . . . , an) ∈ Rn andX = [x1, . . . , xn] ∈
Rp×n

n∑
j=1

n∑
i=1

aiajK(xi, xj)

=
n∑
i=1

n∑
j=1

aiajx
T
i xj

=

(∑
i

aixi

)T (∑
j

ajxj

)
= 〈Xa,Xa〉
= ‖Xa‖22 ≥ 0

• Polynomial kernel K(x, x′) = (xTx′)d for x ∈ Rp

� proof for d=2:

∗ symmetric is obvious

∗ Consider xi, . . . , xn ∈ Rp and a = (a1, . . . , an) ∈ Rn

n∑
i=1

n∑
j=1

aiaj (xTi xj)
2︸ ︷︷ ︸

xTi xjx
T
j xi

trace(xTi xjx
T
j xi)

= trace(xjx
T
j xix

T
i )

trace




n∑
j=1

ajxjx
T
j︸ ︷︷ ︸

∈Rp×p




n∑
i=1

aixix
T
i︸ ︷︷ ︸

∈Rp×p




=
〈∑

aixix
T
i ,
∑

aixix
T
i

〉
F
≥ 0
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it turns out, that (A,B)→ trace(ATB) =
∑
i,j

AijBij is an in-

ner product, the norm associated with it is called the Frobe-
nius norm ‖ · ‖F

� Proof of Aronszjan for �nite set X = {x1, . . . , xn} K is p.d. kernel

Kn = [K(xi, xj)](i,j)∈Rn×n

Kn is Kn = US2UT s.t. UTU =
n∑
k=1

skuku
T
k︸ ︷︷ ︸

rank=1

where U = [u1, . . . , un]

U contains the eigen vectors of Kn, the corresponding eigen values
are non-negative because of the p.d. property.

K(xi, xj) =
n∑
k=1

s2kuk[i]uk[j] = 〈ϕ(xi), ϕ(xj)〉 where ϕ(xi) =


s1u1(i)

...
skuk(i)

...
snun(i)

 ∈ Rn

De�nition RKHS Let X be a set and H ⊂ RX be a class of functions
forming a Hilbert space with inner-product 〈, 〉H

K : X 2 → R is called a reproducing kernel for H i�

A) H contains the functions Kx : X 7→ R, Kx : t→ K(x, t) ∀x ∈ X

B) for all x ∈ X and f ∈ H (f: decision function, non-linear, but linear in
Hilbert space), then

f(x) = 〈f,Kx〉H
(Reproducing property)

Intuition Spoiler: What's going to happen next
We are going to consider

min
f∈H

1

n

n∑
i=1

L(Yi, f(xi)) +
λ

2
‖f‖2H (2)
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We will show, that if K is reproducing for H, then there exists a solution of
equation 2 that is a linear combination of Kxi

∃α ∈ Rn s.t. f =
n∑
i=1

αKxi

We notice that

‖f‖2H = 〈f, f〉H

=

〈
n∑
i=1

αiki,

n∑
j=1

ajkj

〉
H

=
∑
i,j

αiαj〈Kxi , Kxj〉H

=
∑
i,j

αiαjKxi(yj)

= αTKnα

f(xi) = 〈f,Kxi〉H =

〈
n∑
j=1

αjKxj , Kxi

〉

=
n∑
j=1

αjK(xj, xi)

= [Knα]i

Theorem A function K : X ×X → R is p.d. i� it is a reproducing kernel
of a Hilbert space H.

Theorem If H is a RKHS, it has a unique kernel. Conversely, a function
K is reproducing for at most one Hilbert space

Example of RKHS linear kernel
Q: What is H?
Candidate: H0 = {fx : t 7→ xT t;x ∈ Rp}
de�nition of inner-product: 〈fx, fy〉H0 = xTy
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∀x′ ∈ Rp and fx ∈ H0

fx(x
′) = xTx′ = 〈fx, fx′〉H0 = 〈fx, Kx′〉H0

→ therefore: H = H0

for K(x, x′) = (xTx′)2, H = {t 7→ tTZt, Z symmetric matrix }
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