Statistical learning, course No.5

November 19, 2014

1 Summary of previous class

We saw why
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was interesting.
Questions :

e How can we solve this ?

e What is a good regularization for 2 7

Definition : A kernel K : X x X — R is a positive definite kernel if it is
symmetric and Va € R"Vx € X"
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Theorem : K : X x X — R is a positive definite if and only if there is a
Hilbert space H and a mapping ¢ : X — H such that Vz,y € X

K(z,y) =< p(x), p(y) >

Definition : Reproducing Kernel Hilbert Space (RKHS)
Let H C RY be a Hilbert space. K : X x X — R is a reproducing kernel for H :

1. H contains the functions K, : t — K(z,t)

2.VfeH Ve €X, f(x)=(f; K.)

Theorem : A function K : X x X — R is positive definite if and only if it is
the reproducing kernel of a RKHS.



Theorem : If an Hilbert space has a reproducing kernel, it is unique. Con-
versely, a function is reproducing for at most one Hilbert space, with an unique
mapping ¢ as above.

Example-exercise : X =RP and K(z,y) = (z7y)2. Is it a RKHS ?

Solution : K(z,y) = trace(zzTyy”) = (zaT|yy")r (F stands for ”Frobe-
nius”) What do we know about the Hilbert space H ?

It must contain the functions K, : t € RP —— (zaT|[ttT)p, and thus, as
it is a vector space, must contain Span(K;,x € RP, that is, all functions
t—tT (X0 cywial)t, 0 €R, 2 € X =RP,

Remark: a matriz Z is symmetric iff it can be written Z = UAUT = P LA ut.
Now, let us prove that this we have obtained the sought space :

H = {fz:t+— t"Z1,VZ € M,(R) symmetric}

with inner product (fz|fz:) = trace(ZT Z') It is an Hilbert space (exercise).
Now, we need only to check properties 1. and 2. :

1. K, = fy,r, OK
2. fz(x) = 27 Zx = trace(x” Zz) = trace(ZTxa™) = (fz|frar) = (fz|Kz)
v

2 Kernel methods

2.1 Kernel trick

Use the Aronszajn theorem, i.e. we use the mapping ¢ : z € X — K, € H.
The method of the kernel trick consists to do operations in ‘H, computing kernel
evaluations only.

Examples :

||2 —

e Compute distances in H. z,z € X, dx(z,y) = |le(x) — ¢(y)

e Compute the barycenter, in H of points x;,7 = 1...n in X'. This barycenter
is =5 30 (i)

e data centering: We would like to consider ¢ = ¢ — p.
Thus, we change of kernel : consider K : XxX — R such that f((zi, zj) =<
&(x;); p(x;) > R. Calculation gives us:

n
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K(z,y) = K(z,y) - EZK(%,I‘J‘) - EZK(%,’M) + EZK(“’M)
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Thus, the new Kernel matrix is K = (I — G)K(I — G) where G = L7
(exercise : find G).

2.2 Representer theorem

Consider a RKHS with reproducing kernel K and some data points z; € X.
Let ¢ : R™! — R be strictly increasing with respect to its last parameter.
We consider the minimization problem:

min (f (21), .-, f (@n), [ £]]) (**)

feH

Theorem : Any solution f to ** has the form f = Y o K,,, ie. is in
Span(K,,). (Does not state existence.)

Examples :
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Remark: | f]| is a good regularization funtion since it penalizes large varia-
tions of f with respect to the geometry induced by K :

[f (@) = F(y)| = [(FIEKe = Ky)| < ([ FI[[[ e — Ky || (Cauchy-Schwarz inequality)

Proof of theorem : Define Ho C H by Ho = Span(K,,). It is a subspace of
H of finite dimension.

Now, consider a solution f of ** Decompose f = fi + f,, with f,, the
orthogonal projection of f in Ho. Note that (f1|K,) = 0 by definitions of Hg
and fi. Thus, f(x;) = (f|Ke,) = (f//|Ke). Thus **is equivalent to :

min(f//(x1), ..., f,(xn), | f;; + foLll) (**)

and || fL + f;/|I| is minimized for f1 =0, due to Pythagora theorem. This,
combined with the hypothesis on 1, gives the result. v/

Consider now f = 3, a; K,, Remark that f(z;) = (f; Ki) =3 aiK(x,5) =
[Kal; )

With this, we can express || f]|, and this implies that ** can be solved by
solving
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Examples of **’ :
e Kernel ridge regression : L(u,v) = (u — v)?/2. A solution is a* =

(K + M\ I)71Y (exercise).



e Kernel logistic regression : L(u,v) = log(1 + e~ ") This is a convex opti-
mization problem.

e Support vector machines (SVM) L(u,v) = max(0,1 — uv) The problem is
equivalent to
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&i>1—yi[Kal];

This is a quadratic program (QP).

3 Kernel examples

3.1 Kernel for DNA sequences
Question : what is a good kernel for DNA sequences 7
Consider the alphabet A = {A,C,G, T} and the mapping ¢ : A" — RP

such that for all x € A", ¢(z) = [pu(x)]ucar Where @, (z) is the number of
occurrences of v in x.

Definition : The spectrum kernel for some k > 0 is

K(‘T7y) = Z Qou(m)(pu(y)

uc Ak

Question : How can we compute K(z,y) efficiently ?

|z|—k+1 |y|—k+1

K@y)= > > lofiisk-1j=ylj+h-1]
i=1 =1

Complezity : O(k|z||ly|) polynomial but not optimal. We can do better with a
retrieval tree. This method allows to search for patterns of length k in z in time
complexity O(k|z|), thus we obtain a complexity O(k(|z| + |y|)).

3.2 Kernel for graphs
Set G = (V, E) a graph, with labels on vertices.

Definition A walk is a sequence of joint vertices. Denote w,(G) the set of
walks on G of length n.

We define p5(G) = Zwewn(G) 1s is the label sequence of w, O the set of sequences
of labels of length M, and ¢(G) = [¢s(G)]secs



Question : How can we compute the walk kernel K(G,H) =3 .o ¢s(G)pos(H)
?  We define product graph G x H with V(G x H) = {(z,y) € V(G) x
V(H) with some labels} and for X = (uj,u2),Y = (v1,v2) € V(G x H),

X,Y € E(G x H) if and only if uy,us € F(G) and vy,v2 € E(H).

Idea : There is a bijection between the walks in GxH and walks in G and H
with some labels.

Let A be the adjacency matrix of G x H. Then, [A"]; ; is the number of
walks of length n starting at node ¢ and ending at j.

Exercise : Prove that with this, the complexity for computing K is O(n|G||H|d(G)d(H)),
where |G| is the number of vertices (or maybe the edges, or maybe something
else) of G and d(G) is the maximum degree in G.



