
Statistical learning, course No.5

November 19, 2014

1 Summary of previous class

We saw why

min
f∈H

1

n

n∑
i=1

L(Yi, f(Xi)) + λΩ(f)

was interesting.
Questions :

• How can we solve this ?

• What is a good regularization for Ω ?

Definition : A kernel K : X × X → R is a positive definite kernel if it is
symmetric and ∀α ∈ Rn∀x ∈ Xn

n∑
i,j=1

αiαjK(xi, xj) ≥ 0

Theorem : K : X × X → R is a positive definite if and only if there is a
Hilbert space H and a mapping ϕ : X → H such that ∀x, y ∈ X

K(x, y) =< ϕ(x), ϕ(y) >

Definition : Reproducing Kernel Hilbert Space (RKHS)
Let H ⊆ RX be a Hilbert space. K : X ×X → R is a reproducing kernel for H :

1. H contains the functions Kx : t 7−→ K(x, t)

2. ∀f ∈ H,∀ x ∈ X , f(x) = 〈f ;Kx〉

Theorem : A function K : X × X → R is positive definite if and only if it is
the reproducing kernel of a RKHS.
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Theorem : If an Hilbert space has a reproducing kernel, it is unique. Con-
versely, a function is reproducing for at most one Hilbert space, with an unique
mapping ϕ as above.

Example-exercise : X = Rp and K(x, y) = (xT y)2. Is it a RKHS ?

Solution : K(x, y) = trace(xxT yyT ) = 〈xxT |yyT 〉F (F stands for ”Frobe-
nius”) What do we know about the Hilbert space H ?
It must contain the functions Kx : t ∈ Rp 7−→ 〈xxT |ttT 〉F , and thus, as
it is a vector space, must contain Span(Kx, x ∈ Rp, that is, all functions
t 7−→ tT (

∑n
i=1 αixix

T
i )t, αi ∈ R, xi ∈ X = Rp.

Remark: a matrix Z is symmetric iff it can be written Z = U∆UT =
∑p
i=1 ∆iUiU

T
i .

Now, let us prove that this we have obtained the sought space :

H := {fZ : t 7−→ tTZt,∀Z ∈Mp(R) symmetric}

with inner product 〈fZ |fZ′〉 = trace(ZTZ ′) It is an Hilbert space (exercise).
Now, we need only to check properties 1. and 2. :

1. Kx = fxxT , OK

2. fZ(x) = xTZx = trace(xTZx) = trace(ZTxxT ) = 〈fZ |fxxT 〉 = 〈fZ |Kx〉

X

2 Kernel methods

2.1 Kernel trick

Use the Aronszajn theorem, i.e. we use the mapping ϕ : x ∈ X → Kx ∈ H.
The method of the kernel trick consists to do operations in H, computing kernel
evaluations only.

Examples :

• Compute distances in H. x, x ∈ X , dK(x, y) = ‖ϕ(x) − ϕ(y)‖2 = ... =
K(x, x)− 2K(x, y) +K(y, y)

• Compute the barycenter, in H of points xi, i = 1...n in X . This barycenter
is µ = 1

n

∑
i ϕ(xi).

• data centering: We would like to consider ϕ̃ = ϕ− µ.

Thus, we change of kernel : consider K̃ : X×X → R such that K̃(xi, xj) =<
ϕ̃(xi); ϕ̃(xj) >∈ R. Calculation gives us:

K̃(x, y) = K(x, y)− 1

n

n∑
k=1

K(xk, xj)−
1

n

n∑
l=1

K(xi, xl) +
1

n2

∑
k,l

K(xk, kl)
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Thus, the new Kernel matrix is K̃ = (I − G)K(I − G) where G = 1
n?

(exercise : find G).

2.2 Representer theorem

Consider a RKHS with reproducing kernel K and some data points xi ∈ X .
Let ψ : Rn+1 → R be strictly increasing with respect to its last parameter.

We consider the minimization problem:

min
f∈H

ψ(f(x1), ..., f(xn), ‖f‖) (**)

Theorem : Any solution f to ** has the form f =
∑
i αiKxi , i.e. is in

Span(Kxi
). (Does not state existence.)

Examples :

min
f∈H

1

n

∑
i

L(Yi, f(Xi)) +
λ

2
‖f‖2

Remark: ‖f‖ is a good regularization funtion since it penalizes large varia-
tions of f with respect to the geometry induced by K :
|f(x)−f(y)| = |〈f |Kx−Ky〉| ≤ ‖f‖‖Kx−Ky‖ (Cauchy-Schwarz inequality)

Proof of theorem : Define H0 ⊆ H by H0 = Span(Kxi
). It is a subspace of

H of finite dimension.
Now, consider a solution f of ** Decompose f = f⊥ + f// with f// the

orthogonal projection of f in H0. Note that 〈f⊥|Kx〉 = 0 by definitions of H0

and f⊥. Thus, f(xi) = 〈f |Kxi
〉 = 〈f//|Kx〉. Thus ** is equivalent to :

minψ(f//(x1), ..., f//(xn), ‖f// + f⊥‖) (**’)

and ‖f⊥ + f//|‖ is minimized for f⊥ = 0, due to Pythagora theorem. This,
combined with the hypothesis on ψ, gives the result. X

Consider now f̂ =
∑
i αiKxi

Remark that f̂(xj) = 〈f̂ ;Kxj
〉 =

∑
i αiK(xi,j ) =

[Kα]j
With this, we can express ‖f̂‖, and this implies that ** can be solved by

solving

min
α∈Rn

1

n

n∑
i=1

L(Yi, [Kα]i) + λαTKα/2

Examples of **’ :

• Kernel ridge regression : L(u, v) = (u − v)2/2. A solution is α∗ =
(K + λnI)−1Y (exercise).
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• Kernel logistic regression : L(u, v) = log(1 + e−uv) This is a convex opti-
mization problem.

• Support vector machines (SVM) L(u, v) = max(0, 1− uv) The problem is
equivalent to

min
ξ∈Rn,α∈Rn

ξi≥0
ξi≥1−yi[Kα]i

1

n

∑
i

ξi + λαTKα/2

This is a quadratic program (QP).

3 Kernel examples

3.1 Kernel for DNA sequences

Question : what is a good kernel for DNA sequences ?

Consider the alphabet A = {A,C,G, T} and the mapping ϕ : An → Rp
such that for all x ∈ An, ϕ(x) = [ϕu(x)]u∈Ak where ϕu(x) is the number of
occurrences of u in x.

Definition : The spectrum kernel for some k > 0 is

K(x, y) =
∑
u∈Ak

ϕu(x)ϕu(y)

Question : How can we compute K(x, y) efficiently ?

K(x, y) =

|x|−k+1∑
i=1

|y|−k+1∑
j=1

1x[i,i+k−1]=y[j,j+k−1]

Complexity : O(k|x||y|) polynomial but not optimal. We can do better with a
retrieval tree. This method allows to search for patterns of length k in x in time
complexity O(k|x|), thus we obtain a complexity O(k(|x|+ |y|)).

3.2 Kernel for graphs

Set G = (V,E) a graph, with labels on vertices.

Definition A walk is a sequence of joint vertices. Denote wn(G) the set of
walks on G of length n.

We define ϕs(G) =
∑
w∈wn(G) 1s is the label sequence of w, S the set of sequences

of labels of length M , and ϕ(G) = [ϕs(G)]s∈S
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Question : How can we compute the walk kernel K(G,H) =
∑
s∈S ϕs(G)ϕs(H)

? We define product graph G × H with V (G × H) = {(x, y) ∈ V (G) ×
V (H) with some labels} and for X = (u1, u2), Y = (v1, v2) ∈ V (G × H),
X,Y ∈ E(G×H) if and only if u1, u2 ∈ E(G) and v1, v2 ∈ E(H).

Idea : There is a bijection between the walks in GxH and walks in G and H
with some labels.

Let A be the adjacency matrix of G × H. Then, [An]i,j is the number of
walks of length n starting at node i and ending at j.

Exercise : Prove that with this, the complexity for computingK isO(n|G||H|d(G)d(H)),
where |G| is the number of vertices (or maybe the edges, or maybe something
else) of G and d(G) is the maximum degree in G.
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