Statistical learning, course No.5

November 19, 2014

1 Summary of previous class

We saw why

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L(Y_i, f(X_i)) + \lambda \Omega(f)$$

was interesting.

Questions :

- How can we solve this ?
- What is a good regularization for Ω ?

Definition : A kernel $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a *positive definite kernel* if it is symmetric and $\forall \alpha \in \mathbb{R}^n \forall x \in \mathcal{X}^n$

$$\sum_{i,j=1}^{n} \alpha_i \alpha_j K(x_i, x_j) \ge 0$$

Theorem : $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a positive definite if and only if there is a Hilbert space \mathcal{H} and a mapping $\varphi : \mathcal{X} \to \mathcal{H}$ such that $\forall x, y \in \mathcal{X}$

$$K(x,y) = \langle \varphi(x), \varphi(y) \rangle$$

Definition : Reproducing Kernel Hilbert Space (RKHS) Let $\mathcal{H} \subseteq \mathbb{R}^{\mathcal{X}}$ be a Hilbert space. $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a *reproducing kernel for* \mathcal{H} :

- 1. \mathcal{H} contains the functions $K_x : t \longmapsto K(x, t)$
- 2. $\forall f \in \mathcal{H}, \forall x \in \mathcal{X}, f(x) = \langle f; K_x \rangle$

Theorem : A function $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive definite if and only if it is the reproducing kernel of a RKHS.

Theorem : If an Hilbert space has a reproducing kernel, it is unique. Conversely, a function is reproducing for at most one Hilbert space, with an unique mapping φ as above.

Example-exercise : $\mathcal{X} = \mathbb{R}^p$ and $K(x, y) = (x^T y)^2$. Is it a RKHS ?

Solution : $K(x,y) = \operatorname{trace}(xx^Tyy^T) = \langle xx^T | yy^T \rangle_F$ (F stands for "Frobenius") What do we know about the Hilbert space \mathcal{H} ?

It must contain the functions $K_x : t \in \mathbb{R}^p \mapsto \langle xx^T | tt^T \rangle_F$, and thus, as it is a vector space, must contain $Span(K_x, x \in \mathbb{R}^p, that is, all functions$ $t \mapsto t^T(\sum_{i=1}^n \alpha_i x_i x_i^T)t, \alpha_i \in \mathbb{R}, x_i \in \mathcal{X} = \mathbb{R}^p.$

Remark: a matrix Z is symmetric iff it can be written $Z = U\Delta U^T = \sum_{i=1}^p \Delta_i U_i U_i^T$. Now, let us prove that this we have obtained the sought space :

$$\mathcal{H} := \{ f_Z : t \longmapsto t^T Z t, \forall Z \in M_p(\mathbb{R}) \text{ symmetric} \}$$

with inner product $\langle f_Z | f_{Z'} \rangle = \text{trace}(Z^T Z')$ It is an Hilbert space (exercise). Now, we need only to check properties 1. and 2. :

1.
$$K_x = f_{xx^T}$$
, OK
2. $f_Z(x) = x^T Z x = \operatorname{trace}(x^T Z x) = \operatorname{trace}(Z^T x x^T) = \langle f_Z | f_{xx^T} \rangle = \langle f_Z | K_x \rangle$

2 Kernel methods

2.1 Kernel trick

Use the Aronszajn theorem, i.e. we use the mapping $\varphi : x \in \mathcal{X} \to K_x \in \mathcal{H}$. The method of the *kernel trick* consists to do operations in \mathcal{H} , computing kernel evaluations only.

Examples :

- Compute distances in \mathcal{H} . $x, x \in \mathcal{X}$, $d_K(x, y) = \|\varphi(x) \varphi(y)\|^2 = \dots = K(x, x) 2K(x, y) + K(y, y)$
- Compute the barycenter, in \mathcal{H} of points $x_i, i = 1...n$ in \mathcal{X} . This barycenter is $\mu = \frac{1}{n} \sum_i \varphi(x_i)$.
- data centering: We would like to consider $\tilde{\varphi} = \varphi \mu$.

Thus, we change of kernel : consider $\tilde{K} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that $\tilde{K}(x_i, x_j) = \langle \tilde{\varphi}(x_i); \tilde{\varphi}(x_j) \rangle \in \mathbb{R}$. Calculation gives us:

$$\tilde{K}(x,y) = K(x,y) - \frac{1}{n} \sum_{k=1}^{n} K(x_k, x_j) - \frac{1}{n} \sum_{l=1}^{n} K(x_l, x_l) + \frac{1}{n^2} \sum_{k,l} K(x_k, k_l)$$

Thus, the new Kernel matrix is $\tilde{K} = (I - G)K(I - G)$ where $G = \frac{1}{n}$? (exercise : find G).

2.2 Representer theorem

Consider a RKHS with reproducing kernel K and some data points $x_i \in \mathcal{X}$.

Let $\psi : \mathbb{R}^{n+1} \to \mathbb{R}$ be strictly increasing with respect to its last parameter. We consider the minimization problem:

$$\min_{f \in \mathcal{H}} \psi(f(x_1), ..., f(x_n), ||f||)$$
(**)

Theorem : Any solution f to ** has the form $f = \sum_i \alpha_i K_{x_i}$, i.e. is in $Span(K_{x_i})$. (Does not state existence.)

Examples :

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i} L(Y_i, f(X_i)) + \frac{\lambda}{2} \|f\|^2$$

Remark: ||f|| is a good regularization function since it penalizes large variations of f with respect to the geometry induced by K:

 $|f(x) - f(y)| = |\langle f|K_x - K_y\rangle| \le ||f|| ||K_x - K_y||$ (Cauchy-Schwarz inequality)

Proof of theorem : Define $\mathcal{H}_0 \subseteq \mathcal{H}$ by $\mathcal{H}_0 = Span(K_{x_i})$. It is a subspace of \mathcal{H} of finite dimension.

Now, consider a solution f of ** Decompose $f = f_{\perp} + f_{//}$ with $f_{//}$ the orthogonal projection of f in \mathcal{H}_0 . Note that $\langle f_{\perp}|K_x\rangle = 0$ by definitions of \mathcal{H}_0 and f_{\perp} . Thus, $f(x_i) = \langle f|K_{x_i}\rangle = \langle f_{//}|K_x\rangle$. Thus ** is equivalent to :

$$\min \psi(f_{//}(x1), \dots, f_{//}(xn), \|f_{//} + f_{\perp}\|)$$
(**')

and $||f_{\perp} + f_{//}|||$ is minimized for $f_{\perp} = 0$, due to Pythagora theorem. This, combined with the hypothesis on ψ , gives the result. \checkmark

Consider now $\hat{f} = \sum_{i} \alpha_i K_{x_i}$ Remark that $\hat{f}(x_j) = \langle \hat{f}; K_{x_j} \rangle = \sum_{i} \alpha_i K(x_{i,j}) = [K\alpha]_j$

With this, we can express $\|\hat{f}\|$, and this implies that ** can be solved by solving

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n L(Y_i, [K\alpha]_i) + \lambda \alpha^T K \alpha / 2$$

Examples of **':

• Kernel ridge regression : $L(u, v) = (u - v)^2/2$. A solution is $\alpha^* = (K + \lambda_n I)^{-1} Y$ (exercise).

- Kernel logistic regression : $L(u, v) = \log(1 + e^{-uv})$ This is a convex optimization problem.
- Support vector machines (SVM) $L(u, v) = \max(0, 1 uv)$ The problem is equivalent to

$$\min_{\substack{\xi \in \mathbb{R}^n, \alpha \in \mathbb{R}^n \\ \xi_i \ge 0\\ \xi_i \ge 1 - y_i [K\alpha]_i}} \frac{1}{n} \sum_i \xi_i + \lambda \alpha^T K \alpha / 2$$

This is a quadratic program (QP).

3 Kernel examples

3.1 Kernel for DNA sequences

Question : what is a good kernel for DNA sequences ?

Consider the alphabet $\mathcal{A} = \{A, C, G, T\}$ and the mapping $\varphi : \mathcal{A}^n \to \mathbb{R}^p$ such that for all $x \in \mathcal{A}^n$, $\varphi(x) = [\varphi_u(x)]_{u \in \mathcal{A}^k}$ where $\varphi_u(x)$ is the number of occurrences of u in x.

Definition : The spectrum kernel for some k > 0 is

$$K(x,y) = \sum_{u \in \mathcal{A}^k} \varphi_u(x) \varphi_u(y)$$

Question : How can we compute K(x, y) efficiently ?

$$K(x,y) = \sum_{i=1}^{|x|-k+1} \sum_{j=1}^{|y|-k+1} \mathbf{1}_{x[i,i+k-1]=y[j,j+k-1]}$$

Complexity : O(k|x||y|) polynomial but not optimal. We can do better with a retrieval tree. This method allows to search for patterns of length k in x in time complexity O(k|x|), thus we obtain a complexity O(k(|x| + |y|)).

3.2 Kernel for graphs

Set G = (V, E) a graph, with labels on vertices.

Definition A walk is a sequence of joint vertices. Denote $w_n(G)$ the set of walks on G of length n.

We define $\varphi_s(G) = \sum_{w \in w_n(G)} 1_s$ is the label sequence of w, S the set of sequences of labels of length M, and $\varphi(G) = [\varphi_s(G)]_{s \in S}$

Question: How can we compute the walk kernel $K(G, H) = \sum_{s \in S} \varphi_s(G)\varphi_s(H)$? We define product graph $G \times H$ with $V(G \times H) = \{(x, y) \in V(G) \times V(H) \text{ with some labels}\}$ and for $X = (u_1, u_2), Y = (v_1, v_2) \in V(G \times H), X, Y \in E(G \times H)$ if and only if $u_1, u_2 \in E(G)$ and $v_1, v_2 \in E(H)$.

Idea : There is a bijection between the walks in GxH and walks in G and H with some labels.

Let A be the adjacency matrix of $G \times H$. Then, $[A^n]_{i,j}$ is the number of walks of length n starting at node i and ending at j.

Exercise : Prove that with this, the complexity for computing K is O(n|G||H|d(G)d(H)), where |G| is the number of vertices (or maybe the edges, or maybe something else) of G and d(G) is the maximum degree in G.