CR12: Statistical Learning & Applications

Algorithms for Clustering

Lecturer: J. Salmon

Scribe: A. Alcolei

Setting: given a data set $X \in \mathbb{R}^{n \times p}$ where *n* is the number of observation and *p* is the number of features, we want to separate these data into *K* classes (clusters), *i.e.* we want to learn :

- 1. the centroid (center) of each cluster
- 2. an assignation function $\mathcal{A}: \{1, \ldots, n\} \to \{1, \ldots, K\}$, meaning "sample x_i belongs to class $\mathcal{A}(i)$ ".

Figure 1: A simple representation of the situation (n = 25, p = 2, K = 3)

1 The K-means Algorithm

1.1 The Algorithm

The K-means algorithm [1.1] computes K clusters of a input data set, such that the average (squared) distance from a point to the centre of its cluster, *i.e.* the inertia, is minimized.

Theorem. K-means monotonically decreases the inertia $\frac{1}{n} \sum_{j=1}^{K} \sum_{i=1}^{n} ||x_i - c_j||^2$

Proof. Let $\psi(X^{(t)}) = \frac{1}{n} \sum_{j=1}^{K} \sum_{i=1}^{n} ||x_i, c_j||^2$ where $X^{(t)}$ is the current partition $X_1^{(t)}, \dots, X_K^{(t)}$ with centroids

Algorithm 1 The K-means Algorithm

Input: a data set $X = \{x_1, \ldots, x_n\}$ $(x_i \in \mathbb{R}^p)$.

Output: a partition $M = \{X_1, \ldots, X_K\}$ of X together with the centroids c_1, \ldots, c_K of each cluster. **Initialization**: choose c_1, \ldots, c_K in X at random **Repeat until** convergence:

- for $j = 1 \dots K$ do $X_j \longleftarrow \emptyset$
- assignment step: for $i = 1 \dots n$ do $\mathcal{A}(x_i) \longleftarrow \underset{j \in \{1, \dots, K\}}{\operatorname{arg\,min}} \|x_i - c_j\|^2$ $X_{\mathcal{A}(x_i)} \longleftarrow X_{\mathcal{A}(x_i)} \cup \{x_i\}$

done

• re-estimation step:

for
$$j = 1 ... K$$
 do
 $n_j \leftarrow \sum_{i=1}^n \mathbb{1}(x_i \in X_j)$
 $c_j \leftarrow \frac{1}{n_j} \sum_{i=1}^n x_i \mathbb{1}(x_i \in X_j)$
done

return M, c_1, \ldots, c_K

 $c_1^{(t)}, \ldots, c_K^{(t)}$ and assignation function $\mathcal{A}^{(t)}$, then

$$\begin{split} \psi(X^{(t)}) &\ge \sum_{j=1}^{K} \sum_{x_i \in X_j^{(t)}} \|x_i, c_{\mathcal{A}_{(x_i)}^{(t+1)}}^{(t)}\|^2 \qquad (\text{since } \mathcal{A}(x_i) \text{ minimizes the quantity } \|x_i - c_j\|^2 \text{ over all } j \in \{1, \dots, K\}) \\ &\ge \sum_{j=1}^{K} \sum_{x_i \in X_j^{(t)}} \|x_i, c_j^{(t+1)}\|^2 \qquad (\text{since } c_j^{(t+1)} \text{ minimizes the quantity } \|x_i - c_j\|^2 \text{ over all } x_i \in X_j) \\ &\ge \psi(X^{(t+1)}) \end{split}$$

Corollary. K-means stops after a finite number of steps.

Proof. There is no infinite sequence of partitions such that the inertia decreases strictly since there is only a finite number of partitions: $\binom{n}{k}$. Thus the sequence $\psi(X^{(t)})_{t \in \mathbb{N}}$ has a finite number of values, *i.e.* there exists t such that $\psi(X^{(t+1)}) = \psi(X^{(t)})$. This implies that at step t, $X^{(t+1)} = X^{(t)}$ otherwise some elements would be wrongly classified.

- **Remark.** The above corollary does not tell anything about how quick the algorithm converges, we only have an exponential bound: $\binom{n}{k}$. The time needed for the algorithm to converge depend on the initialization, some heuristic can be find in the literature to get better result.
 - Similarly, the solution found by the algorithm is only a local optimal, since in general the inertia overall all partitions is not a convex function. The result depends on the initialization. Thus it might be useful to run the algorithm several times and pick the best result as a final answer.

• It is possible to parametrize the K-means algorithm for example by changing the way the distance between two points is measured or by projecting points on random coordinates if the feature space is of high dimension.

1.2 Kernalised K-means

We change the previous algorithm so as to minimize in the reproducing kernel Hilbert space \mathcal{H} associated to \mathbb{R}^p instead of minimizing in \mathbb{R}^p . Using $\varphi : \mathbb{R}^p \to \mathcal{H}$, the algorithm remains the same except for:

- The initialization step: we choose c_1, \ldots, c_K in \mathcal{H} instead of \mathbb{R}^p .
- The assignment step: we compute $\mathcal{A}_{x_i} \in \underset{j \in \{1,...,K\}}{\operatorname{arg\,min}} \|\varphi(x_i) c_j\|^2$ instead of $\mathcal{A}_{x_i} \in \underset{j \in \{1,...,K\}}{\operatorname{arg\,min}} \|x_i c_j\|^2$.

Remark. We do not need to compute explicitly $\varphi(x_i)$ for each $x_i \in X$, all we need to know are the values $\langle \varphi(x_i), \varphi(x_j) \rangle$ for every pair $x_i, x_j \in X$.

2 Gaussian Mixture and EM Algorithm

2.1 Gaussian maximum likelihood

The density of a Gaussian random variable over \mathbb{R}^p is given by

$$\varphi_{\mu,\Sigma}(x) = \frac{1}{\sqrt{(2\pi)^p \det(\Sigma)}} \exp\left(-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)\right)$$

where μ is the mean of the variable ($\mu \in \mathbb{R}^p$) and Σ is the co-variance matrix ($\Sigma \in \mathbb{R}^{p \times p}$). Σ is positive definite so $rk(\Sigma) = p$. This formula satisfy the conditions for being a probability distribution:

- 1. $\forall x \in \mathbb{R}^p, \varphi_{\mu,\Sigma}(x) \ge 0$
- 2. $\int_{x \in \mathbb{R}^p} \varphi_{\mu, \Sigma}(x) dx = 1$

Example. • $p = 1, \Sigma = \sigma^2, \mu = 0: \varphi_{\mu,\Sigma}(x) = \frac{\exp(\frac{-x^2}{2\sigma^2})}{\sqrt{2\pi\sigma^2}}$ (cf. figure below for different value of σ)

•
$$p = 2, \Sigma \in \mathbb{R}^2, \mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, the contour lines are described for all c in \mathbb{R} by
 $\{x \in \mathbb{R}^p \mid \varphi_{\mu,\Sigma}(x) = c\} = \{x \in \mathbb{R}^p \mid -\ln(\varphi_{\mu,\Sigma}(x)) = c'\} \quad (for \ c' = \ln(c))$
 $= \{x \in \mathbb{R}^p \mid -\ln\left(\frac{1}{\sqrt{(2\pi)^p \det(\Sigma)}}\right) - \frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu) = c'\}$
 $= \{x \in \mathbb{R}^p \mid \sum_{i=1}^p \sum_{j=1}^p x_i x_j \alpha_{ij} + c'' = 0\} \quad (for \ some \ a_{ij}, \ c'' \ depending \ on \ \Sigma \ and \ c)$

(cf. figures below for
$$\Sigma = \begin{pmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{pmatrix}$$
 and for general $\Sigma \in \mathbb{R}^2$ for different values of c)

In statistical machine learning we are interested in the following problem: suppose you observe $(X_1, X_2, \ldots, X_n) \approx \varphi_{\mu,\Sigma}$, can you estimate μ and Σ ? (*iid* stands for independent and identically distributed)

Idea: Let $\varphi_{\mu,\Sigma}(X_1,\ldots,X_n) := \prod_{i=1}^n \varphi_{\mu,\Sigma}(X_i)$, we want to find $(\hat{\mu},\hat{\Sigma}) \in \underset{\mu,\Sigma}{\operatorname{arg max}} \varphi_{\mu,\Sigma}(X_1,\ldots,X_n)$. The quantity $\varphi_{\mu,\Sigma}(X_1,\ldots,X_n)$ seen as a function of μ and Σ is called the *likelihood*. The pair $(\hat{\mu},\hat{\Sigma})$ is called the *maximum likelihood*.

Example. For p = 1, $\Sigma = 1$, we have $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Proposition. The empirical mean and the empirical co-variance are good estimators, i.e.

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu}) (X_i - \hat{\mu})^{\top}$

Proof. We only show the first equality: Finding $(\hat{\mu}, \hat{\Sigma}) \in \underset{\mu, \Sigma}{\operatorname{arg\,max}} \varphi_{\mu, \Sigma}(X_1, \dots, X_n)$ is equivalent to finding $(\hat{\mu}, \hat{\Sigma}) \in \underset{\mu, \Sigma}{\operatorname{arg\,min}} [-\ln (\varphi_{\mu, \Sigma}(X_1, \dots, X_n))] (*)$. Yet, (*) is easier to solve since it involves minimizing over a sum rather than maximizing over a product :

$$(*) = \underset{\mu,\Sigma}{\operatorname{arg\,min}} \left[c + \frac{1}{2} \cdot tr\left(\sum_{i=1}^{n} (X_i - \mu)\Sigma^{-1} (X_i - \mu)^{\top}\right) + \frac{n}{2} \cdot \ln(\det(\Sigma)) \right]$$

where c is some constant that does not depend on μ or Σ .

Thus, fixing Σ we get:

$$(*) = \underset{\mu}{\operatorname{arg\,min}} \left[\frac{1}{2} \cdot tr\left(\sum_{i=1}^{n} (X_i - \mu) \Sigma^{-1} (X_i - \mu)^{\mathsf{T}} \right) \right]$$

 $\sum_{i=1}^{n} (X_i - \mu) \Sigma^{-1} (X_i - \mu)^{\top}$ is a convex function of μ so its global minimum $\hat{\mu}$ is the unique point that satisfies:

$$\frac{\delta}{\delta\mu} \left(\sum_{i=1}^{n} (X_i - \hat{\mu}) \Sigma^{-1} (X_i - \hat{\mu})^{\top} \right) = 0$$

This implies that $\sum_{i=1}^{n} \Sigma^{-1}(X_i - \hat{\mu}) = 0$, that is $\sum_{i=1}^{n} X_i = n\hat{\mu}$ and so $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$

2.2 Mixture

We refine the model presented above by regarding the density of (X_1, \ldots, X_n) as a mixture of K weighted gaussian densities, $\varphi_{\mu_k, \Sigma_k}$, over \mathbb{R}^p :

$$(X_1, \ldots, X_n) \underset{iid}{\sim} f(x) = \sum_{k=1}^K \pi_k \cdot \varphi_{\mu_k, \Sigma_k}(x), \text{ where } \pi_k \text{ is the weight associated to } \varphi_{\mu_k, \Sigma_k}(x)$$

Example. In \mathbb{R}^2 for K = 3, $\pi_k = \frac{1}{3}$ we could have a distribution like the following:

Drawing $x \in \mathbb{R}^p$ according to the distribution of the Gaussian mixture f is equivalent as drawing x as follows (hierarchical way):

- 1. draw k with probability $\{\pi_1, \ldots, \pi_K\}$ over the elements of $\{1, \ldots, K\}$
- 2. draw $x \in \mathbb{R}^p$ according to the distribution associated to k, i.e. according to $\varphi_{\mu_k, \Sigma_k}$

The problem of finding the mixture of K Gaussian distributions from a given set of samples (X_1, \ldots, X_n) can be seen as a generalization of the K-means problem where the distance to the centre of a cluster changes according to the index of the cluster. The Expectation-Maximization algorithm (EM) [2.2] can thus be viewed as a generalization of the K-means algorithm, where the value to maximize is

$$\varphi(\theta) = f_{\theta}(X_1, \dots, X_n) = \prod_{i=1}^n f_{\theta}(X_i)$$

We have the same kind of termination property:

Proposition. Let $\theta^{(t)}$ be the iterates of the EM algorithm and $\varphi(\theta^{(t)})$ be their corresponding inertia, then $\forall t, \, \varphi(\theta^{(t+1)}) \ge \varphi(\theta^{(t)}).$

Proof. We do not give a complete proof here. The idea is the following: since maximizing over the likelihood $\varphi(\theta) = f_{\theta}(X_1, \ldots, X_n)$ is hard, we instead maximize over the log-likelihood $L(\theta) = \ln(\varphi(\theta)) =$ $\sum_{i=1}^{n} \ln(f_{\theta}(X_i))$. This is still hard to evaluate except if we knew from which Gaussian density inside the Gaussian mixture each X_i was drawn out. Thus for each $i \in \{1, \ldots, n\}$ we define z_i to be the hidden random variable that indicates whether X_i is drawn from the j^{th} Gaussian density, with probability p_{ij} $(\sum_{j=1}^{K} p_{ij} = 1)$, and we try to maximize the parametrized log likelihood $L(\theta, (p_{ij})_{1 \leq i \leq K \atop 1 \leq j \leq K}) =$ $\sum_{i=1}^{n} \ln \left(\sum_{j=1}^{K} \mathbb{1}_{z_i=j} \cdot f_{\theta_j}(X_i) \right).$

• once again the answer provided by the EM algorithm is only a local optimum and depends Remark. on the initialization.

• In practice, the EM algorithm is used for recovering missing or incomplete data.

Algorithm 2 The Expectation-Maximization Algorithm

Input: a data set $X = \{x_1, \ldots, x_n\}$ $(x_i \in \mathbb{R}^p)$.

Output: $\theta := \begin{pmatrix} \pi_1, \dots, \pi_K \\ \mu_1, \dots, \mu_K \\ \Sigma_1, \dots, \Sigma_K \end{pmatrix}$, a set of weights and Gaussian densities that locally maximize the probability

of the x_i 's being drawn from the corresponding Gaussian mixture $f_{\theta}(x) = \sum_{k=1}^{K} \pi_k \cdot \varphi_{\mu_k, \Sigma_k}(x)$.

Initialization: choose $\theta := \begin{pmatrix} \pi_1, \dots, \pi_K \\ \mu_1, \dots, \mu_K \\ \Sigma_1, \dots, \Sigma_K \end{pmatrix}$ at random. Let $p_{i,k}$ be the probability that x_i is coming from the k^{th} class.

Repeat until convergence:

- estimation step: for $i = 1 \dots n$ for $j = 1 \dots k$ $p_{i,k} \longleftarrow \frac{\pi_j \cdot \varphi_{\mu_j, \Sigma_j}(x_i)}{f_{\theta}(x_i)} \left(= \frac{\pi_j \cdot \varphi_{\mu_j, \Sigma_j}(x_i)}{\sum_{k=1}^K \pi_k \cdot \varphi_{\mu_k, \Sigma_k}(x_i)} \right)$ done
- maximization step:

for
$$j = 1...K$$
 do
 $\pi_j \leftarrow \frac{1}{n} \sum_{i=1}^{n} p_{i,j}$
 $\mu_j \leftarrow \frac{\sum_{i=1}^{n} p_{i,j}x_i}{\sum_{i=1}^{n} p_{i,j}}$
 $\sigma_j \leftarrow \frac{\sum_{i=1}^{n} p_{i,j}(x_i - \mu_j)^{\top}(x_i - \mu_j)}{\sum_{i=1}^{n} p_{i,j}}$
done

return M, c_1, \ldots, c_K