
CR12: Statistical Learning & Applications

Algorithms for Clustering

Lecturer: J. Salmon Scribe: A. Alcolei

Setting: given a data set X ∈ Rn×p where n is the number of observation and p is the number of features,
we want to separate these data into K classes (clusters), i.e.we want to learn :

1. the centroid (center) of each cluster

2. an assignation function A : {1, . . . , n} → {1, . . . ,K}, meaning �sample xi belongs to class A(i)�.

Figure 1: A simple representation of the situation (n = 25, p = 2,K = 3)

1 The K-means Algorithm

1.1 The Algorithm

The K-means algorithm [1.1] computes K clusters of a input data set, such that the average (squared)
distance from a point to the centre of its cluster, i.e.the inertia, is minimized.

Theorem. K-means monotonically decreases the inertia 1
n

∑K
j=1

∑n
i=1 ‖xi − cj‖2

Proof. Let ψ(X(t)) = 1
n

∑K
j=1

∑n
i=1 ‖xi, cj‖2 where X(t) is the current partition X

(t)
1 , . . . , X

(t)
K with centroids

1

2 Algorithms for Clustering

Algorithm 1 The K-means Algorithm

Input: a data set X = {x1, . . . , xn} (xi ∈ Rp).
Output: a partition M = {X1, . . . , XK} of X together with the centroids c1, . . . , cK of each cluster.
Initialization: choose c1, . . . , cK in X at random
Repeat until convergence:

• for j = 1 . . .K do Xj ←− ∅

• assignment step:
for i = 1 . . . n do

A(xi)←− arg min
j∈{1,...,K}

‖xi − cj‖2

XA(xi) ←− XA(xi) ∪ {xi}
done

• re-estimation step:
for j = 1 . . .K do

nj ←−
∑n
i=1 1(xi ∈ Xj)

cj ←− 1
nj

∑n
i=1 xi1(xi ∈ Xj)

done

return M , c1, . . . , cK

c
(t)
1 , . . . , c

(t)
K and assignation function A(t), then

ψ(X(t)) >
K∑
j=1

∑
xi∈X(t)

j

‖xi, c(t)A(t+1)

(xi)

‖2 (since A(xi) minimizes the quantity ‖xi − cj‖2 over all j ∈ {1, . . . , K})

>
K∑
j=1

∑
xi∈X(t)

j

‖xi, c(t+1)
j ‖2 (since c

(t+1)
j minimizes the quantity ‖xi − cj‖2 over all xi ∈ Xj)

> ψ(X(t+1))

Corollary. K-means stops after a �nite number of steps.

Proof. There is no in�nite sequence of partitions such that the inertia decreases strictly since there is only

a �nite number of partitions:

(
n
k

)
. Thus the sequence ψ(X(t))t∈N has a �nite number of values, i.e.there

exists t such that ψ(X(t+1)) = ψ(X(t)). This implies that at step t, X(t+1) = X(t) otherwise some elements
would be wrongly classi�ed.

Remark. • The above corollary does not tell anything about how quick the algorithm converges, we

only have an exponential bound:

(
n
k

)
. The time needed for the algorithm to converge depend on the

initialization, some heuristic can be �nd in the literature to get better result.

• Similarly, the solution found by the algorithm is only a local optimal, since in general the inertia overall
all partitions is not a convex function. The result depends on the initialization. Thus it might be useful
to run the algorithm several times and pick the best result as a �nal answer.

Algorithms for Clustering 3

• It is possible to parametrize the K-means algorithm for example by changing the way the distance
between two points is measured or by projecting points on random coordinates if the feature space is of
high dimension.

1.2 Kernalised K-means

We change the previous algorithm so as to minimize in the reproducing kernel Hilbert space H associated
to Rp instead of minimizing in Rp. Using ϕ : Rp → H, the algorithm remains the same except for:

- The initialization step: we choose c1, . . . , cK in H instead of Rp.

- The assignment step: we compute Axi ∈ arg min
j∈{1,...,K}

‖ϕ(xi)− cj‖2 instead of Axi ∈ arg min
j∈{1,...,K}

‖xi − cj‖2.

Remark. We do not need to compute explicitly ϕ(xi) for each xi ∈ X, all we need to know are the values
〈ϕ(xi), ϕ(xj)〉 for every pair xi, xj ∈ X.

2 Gaussian Mixture and EM Algorithm

2.1 Gaussian maximum likelihood

The density of a Gaussian random variable over Rp is given by

ϕµ,Σ(x) =
1√

(2π)p det(Σ)
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
where µ is the mean of the variable (µ ∈ Rp) and Σ is the co-variance matrix (Σ ∈ Rp×p). Σ is positive
de�nite so rk(Σ) = p. This formula satisfy the conditions for being a probability distribution:

1. ∀x ∈ Rp, ϕµ,Σ(x) > 0

2.
∫
x∈Rp ϕµ,Σ(x)dx = 1

Example. • p = 1, Σ = σ2, µ = 0: ϕµ,Σ(x) =
exp(−x

2

2σ2)
√

2πσ2
(cf. �gure below for di�erent value of σ)

• p = 2, Σ ∈ R2, µ =

(
0
0

)
, the contour lines are described for all c in R by

{x ∈ Rp | ϕµ,Σ(x) = c} = {x ∈ Rp | − ln(ϕµ,Σ(x)) = c′} (for c′ = ln(c))

= {x ∈ Rp | − ln

(
1√

(2π)p det(Σ)

)
− 1

2
(x− µ)>Σ−1(x− µ) = c′}

= {x ∈ Rp |
p∑
i=1

p∑
j=1

xixjαij + c′′ = 0} (for some aij, c
′′ depending on Σ and c)

(cf. �gures below for Σ =

(
σ2 0
0 σ2

)
and for general Σ ∈ R2 for di�erent values of c).

4 Algorithms for Clustering

µ

σ2 = 1
σ2 = 1/2
σ2 = 4

µ µ

In statistical machine learning we are interested in the following problem: suppose you observe (X1, X2, . . . , Xn) ∼
iid

ϕµ,Σ, can you estimate µ and Σ? (iid stands for independent and identically distributed)

Idea: Let ϕµ,Σ(X1, . . . , Xn) :=
∏n
i=1 ϕµ,Σ(Xi), we want to �nd (µ̂, Σ̂) ∈ arg max

µ,Σ
ϕµ,Σ(X1, . . . , Xn). The

quantity ϕµ,Σ(X1, . . . , Xn) seen as a function of µ and Σ is called the likelihood. The pair (µ̂, Σ̂) is called
the maximum likelihood.

Example. For p = 1, Σ = 1, we have µ̂ = 1
n

∑n
i=1Xi

µ

×××× ××××××

ϕµ,1
ϕµ̂,1

Proposition. The empirical mean and the empirical co-variance are good estimators, i.e.

µ̂ =
1

n

n∑
i=1

Xi and Σ̂ =
1

n

n∑
i=1

(Xi − µ̂)(Xi − µ̂)>

Proof. We only show the �rst equality: Finding (µ̂, Σ̂) ∈ arg max
µ,Σ

ϕµ,Σ(X1, . . . , Xn) is equivalent to �nding

(µ̂, Σ̂) ∈ arg min
µ,Σ

[− ln (ϕµ,Σ(X1, . . . , Xn))] (∗) . Yet, (∗) is easier to solve since it involves minimizing over a

sum rather than maximizing over a product :

(∗) = arg min
µ,Σ

[
c+

1

2
· tr

(
n∑
i=1

(Xi − µ)Σ−1(Xi − µ)>

)
+
n

2
· ln(det(Σ))

]

where c is some constant that does not depend on µ or Σ.

Algorithms for Clustering 5

Thus, �xing Σ we get:

(∗) = arg min
µ

[
1

2
· tr

(
n∑
i=1

(Xi − µ)Σ−1(Xi − µ)>

)]
∑n
i=1(Xi − µ)Σ−1(Xi − µ)> is a convex function of µ so its global minimum µ̂ is the unique point that

satis�es:
δ

δµ

(
n∑
i=1

(Xi − µ̂)Σ−1(Xi − µ̂)>

)
= 0

This implies that
∑n
i=1 Σ−1(Xi − µ̂) = 0, that is

∑n
i=1Xi = nµ̂ and so µ̂ = 1

n

∑n
i=1Xi

2.2 Mixture

We re�ne the model presented above by regarding the density of (X1, . . . , Xn) as a mixture of K weighted
gaussian densities, ϕµk,Σk , over R

p:

(X1, . . . , Xn) ∼
iid
f(x) =

K∑
k=1

πk · ϕµk,Σk(x), where πk is the weight associated to ϕµk,Σk

Example. In R2 for K = 3, πk = 1
3 we could have a distribution like the following:

+µ2

+µ1

+µ3

Drawing x ∈ Rp according to the distribution of the Gaussian mixture f is equivalent as drawing x as follows
(hierarchical way):

1. draw k with probability {π1, . . . , πK} over the elements of {1, . . . ,K}

2. draw x ∈ Rp according to the distribution associated to k, i.e. according to ϕµk,Σk

The problem of �nding the mixture of K Gaussian distributions from a given set of samples (X1, . . . , Xn)
can be seen as a generalization of the K-means problem where the distance to the centre of a cluster changes
according to the index of the cluster. The Expectation-Maximization algorithm (EM) [2.2] can thus be
viewed as a generalization of the K-means algorithm, where the value to maximize is

ϕ(θ) = fθ(X1, . . . , Xn) =

n∏
i=1

fθ(Xi)

6 Algorithms for Clustering

We have the same kind of termination property:

Proposition. Let θ(t) be the iterates of the EM algorithm and ϕ(θ(t)) be their corresponding inertia, then
∀t, ϕ(θ(t+1)) > ϕ(θ(t)).

Proof. We do not give a complete proof here. The idea is the following: since maximizing over the like-
lihood ϕ(θ) = fθ(X1, . . . , Xn) is hard, we instead maximize over the log-likelihood L(θ) = ln(ϕ(θ)) =∑n
i=1 ln(fθ(Xi)). This is still hard to evaluate except if we knew from which Gaussian density inside

the Gaussian mixture each Xi was drawn out. Thus for each i ∈ {1, . . . , n} we de�ne zi to be the hid-
den random variable that indicates whether Xi is drawn from the jth Gaussian density, with probabil-
ity pij (

∑K
j=1 pij = 1), and we try to maximize the parametrized log likelihood L(θ, (pij) 1 6 i 6 n

1 6 j 6 K

) =∑n
i=1 ln

(∑K
j=1 1zi=j · fθj (Xi)

)
.

Remark. • once again the answer provided by the EM algorithm is only a local optimum and depends
on the initialization.

• In practice, the EM algorithm is used for recovering missing or incomplete data.

Algorithm 2 The Expectation-Maximization Algorithm

Input: a data set X = {x1, . . . , xn} (xi ∈ Rp).

Output: θ :=

π1, . . . , πK
µ1, . . . , µK
Σ1, . . . ,ΣK

, a set of weights and Gaussian densities that locally maximize the probability

of the xi's being drawn from the corresponding Gaussian mixture fθ(x) =
∑K
k=1 πk · ϕµk,Σk(x).

Initialization: choose θ :=

π1, . . . , πK
µ1, . . . , µK
Σ1, . . . ,ΣK

 at random.

Let pi,k be the probability that xi is coming from the kth class.
Repeat until convergence:

• estimation step:
for i = 1 . . . n for j = 1 . . .K do

pi,k ←−
πj ·ϕµj,Σj (xi)

fθ(xi)

(
=

πj ·ϕµj,Σj (xi)∑K
k=1 πk·ϕµk,Σk (xi)

)
done

• maximization step:
for j = 1 . . .K do

πj ←− 1
n

∑n
i=1 pi,j

µj ←−
∑n
i=1 pi,jxi∑n
i=1 pi,j

σj ←−
∑n
i=1 pi,j(xi−µj)

>(xi−µj)∑n
i=1 pi,j

done

return M , c1, . . . , cK

