Fisher kernels with application to image representation

Advanced Learning Models 2015-2016
Jakob Verbeek, January 21, 2016

Course website:
http://lear.inrialpes.fr/people/mairal/teaching/2015-2016/MSIAM
Outline

- Homework: hand-in today January 21st
 - Subtraction of 0.5 points per day too late

- Data Challenge: available next week January 28th
 - Register with UJF/ENSIMAG email

- This week
 - Fisher kernels, application to visual recognition with local features
 - Feed-forward neural networks
 - Convolutional neural networks (CNN)
 - Applications of CNN

- Next week: sequential data
 - Hidden Markov models
 - Recurrent neural networks
 - Applications of RNN
A brief recap on kernel methods

- A way to achieve non-linear classification (or other data analysis) by using a kernel that computes inner products of data after non-linear transformation
 - Given the transformation, we can derive the kernel function.

- Conversely, if a kernel is positive definite, it is known to compute a dot-product in a (not necessarily finite dimensional) feature space
 - Given the kernel, we can determine the feature mapping function.

\[k(x_1, x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle \]

\[\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x}) \]
A brief recap on kernel methods

- Most often we start with data in a vector space, and map it to another feature space to allow for non-linear classification in the original space, using linear classification in the feature space.
- Kernels can also be used to represent non-vectorial data, and to make them amenable to linear classification (or other linear data analysis) techniques.
- For example, suppose we want to classify sets of points in a vector space, where the size of each set may vary.

\[X = \{ x_1, x_2, \ldots, x_N \} \quad \text{with} \quad x_i \in \mathbb{R}^d \]

- We can define a representation of sets by concatenating the mean and variance of the set in each dimension.

\[\varphi(X) = \begin{pmatrix} \text{mean}(X) \\ \text{var}(X) \end{pmatrix} \]

- Fixed size representation of sets in 2d dimensions.
- Use kernel to compare different sets:

\[k(X_1, X_2) = \langle \varphi(X_1), \varphi(X_2) \rangle \]
Fisher kernels

- Motivated by the need to represent variably sized objects in a vector space, such as sequences, sets, trees, graphs, etc., such that they become amenable to be used with linear classifiers, and other data analysis tools.

- A generic method to define kernels over arbitrary data types based on generative statistical models.
 - Define a probability distribution over the items we want to represent

\[p(x; \theta), \quad x \in X, \quad \theta \in \mathbb{R}^D \]
Fisher kernels

- Given a generative data model \(p(x; \theta), \ x \in X, \ \theta \in \mathbb{R}^D \)
- Represent data \(x \) in \(X \) by means of the gradient of the data log-likelihood, or “Fisher score”:
 \[
g(x) = \nabla_{\theta} \ln p(x), \quad g(x) \in \mathbb{R}^D
\]
- Define a kernel over \(X \) by taking the scaled inner product between the Fisher score vectors:
 \[
k(x, y) = g(x)^T F^{-1} g(y)
\]
- Where \(F \) is the Fisher information matrix \(F \):
 \[
 F = E_{p(x)}[g(x)g(x)^T]
 \]
- \(F \) is positive definite since
 \[
 \alpha^T F \alpha = E_{p(x)}[(g(x)^T \alpha)^2] > 0
 \]
Fisher kernels

- The Fisher score has zero mean under the generative model

\[
E_{p(x)}[g(x)] = \int_x p(x) \frac{\partial}{\partial \theta} \ln p(x)
\]

\[
= \int_x p(x) \frac{1}{p(x)} \frac{\partial}{\partial \theta} p(x)
\]

\[
= \int_x \frac{\partial}{\partial \theta} p(x)
\]

\[
= \frac{\partial}{\partial \theta} \int_x p(x)
\]

\[
= \frac{\partial}{\partial \theta} 1 = 0
\]

- Therefore, the Fisher information matrix is the covariance matrix of the Fisher score under the generative model

\[
F = E_{p(x)}[g(x)g(x)^T]
\]
Fisher vector

• Since F is positive definite we can decompose its inverse as

\[F^{-1} = L^T L \]

• Therefore, we can write the kernel as

\[k(x_i, x_j) = g(x_i)^T F^{-1} g(x_j) = \phi(x_i)^T \phi(x_j) \]

 Where \(\phi \) is known as the Fisher vector

\[\phi(x_i) = L g(x_i) \]

• From this explicit finite-dimensional data embedding it follows immediately that the Fisher kernel is a positive-semidefinite

• Since F is covariance of Fisher score, normalization by L makes the Fisher vector have unit covariance matrix under \(p(x) \)
Normalization with inverse Fisher information matrix

- Gradient of log-likelihood w.r.t. parameters \(g(x) = \nabla_\theta \ln p(x) \)
- Fisher information matrix \(F_\theta = \int g(x) g(x)^T p(x) \, dx \)
- Normalized Fisher kernel \(k(x_1, x_2) = g(x_1)^T F_\theta^{-1} g(x_2) \)
 - Renders Fisher kernel invariant for parametrization

- Consider different parametrization given by some invertible function \(\lambda = f(\theta) \)
- Jacobian matrix relating the parametrizations \([J]_{ij} = \frac{\partial \theta_j}{\partial \lambda_i} \)
- Gradient of log-likelihood w.r.t. new parameters \(h(x) = \nabla_\lambda \ln p(x) = J \nabla_\theta \ln p(x) = J g(x) \)
- Fisher information matrix \(F_\lambda = \int h(x) h(x)^T p(x) \, dx = J F_\theta J^T \)
- Normalized Fisher kernel \(h(x_1)^T F_\lambda^{-1} h(x_2) = g(x_1)^T J^T (J F_\theta J^T)^{-1} J g(x_2) \)
 \[
 = g(x_1)^T J^T J^{-T} F_\theta^{-1} J^{-1} J g(x_2) \\
 = g(x_1)^T F_\theta^{-1} g(x_2) \\
 = k(x_1, x_2)
 \]
Data-adaptive kernel design

- Fisher vector given by linear projection of gradient
 \[\phi(x) = F^{-1/2} \nabla_\theta \ln p(x) \]

- Fisher kernel is dot-product over Fisher vectors
 \[k(x_i, x_j) = \phi(x_i)^T \phi(x_j) \]

- Parameters of the model \(p(x) \) estimated from data
 - Structure typically determined manually in advance

- Data characteristics captured by Fisher vector depend on data used to train the generative model

- Semi-automatic data-driven kernel design instead of predominant completely manual design
Fisher kernels: example with Gaussian data model

- Let lambda be the inverse variance, i.e. precision, parameter

\[p(x) = N(x; \mu, \lambda) = \sqrt{\frac{\lambda}{2\pi}} \exp \left[-\frac{1}{2} \lambda (x - \mu)^2 \right] \]

\[\ln p(x) = \frac{1}{2} \ln \lambda - \frac{1}{2} \ln (2\pi) - \frac{1}{2} \lambda (x - \mu)^2 \]

\[\theta = (\mu, \lambda)^T \]

- The partial derivatives are found to be

\[\frac{\partial \ln p(x)}{\partial \mu} = \lambda (x - \mu) \]

\[\frac{\partial \ln p(x)}{\partial \lambda} = \frac{1}{2} \left[\lambda^{-1} - (x - \mu)^2 \right] \]
Fisher kernels: example with Gaussian data model

- The partial derivatives are found to be
 \[\frac{\partial \ln p(x)}{\partial \mu} = \lambda (x - \mu) \quad \frac{\partial \ln p(x)}{\partial \lambda} = \frac{1}{2} \left[\lambda^{-1} - (x - \mu)^2 \right] \]

- Using central 3rd and 4th Gaussian moment, we get Fisher Information matrix
 \[E_p[(x - \mu)^3] = 0 \]
 \[E_p[(x - \mu)^4] = 3 \sigma^4 \]
 \[F = \begin{pmatrix} \lambda & 0 \\ 0 & \frac{1}{2} \lambda^{-2} \end{pmatrix} \]

- The Fisher vector is then
 \[\varphi(x) = \begin{pmatrix} (x - \mu)/\sigma \\ \frac{1}{\sqrt{2}} \left(1 - (x - \mu)^2/\sigma^2 \right) \end{pmatrix} \]
Fisher kernels: example with Gaussian data model

- Now suppose an i.i.d. data model over a set of data points

\[p(x) = N(x; \mu, \lambda) = \sqrt{\lambda/(2\pi)} \exp \left[-\frac{1}{2} \lambda (x - \mu)^2 \right] \]

\[p(X) = p(x_1, \ldots, x_N) = \prod_{i=1}^{N} p(x_i) \]

- Then the Fisher vector is given by the sum of Fisher vectors of the points
 - Encodes the discrepancy in the first and second order moment of the data w.r.t. those of the model

\[\varphi(X) = \sum_{i=1}^{N} \varphi(x_i) = N \left(\frac{(\hat{\mu} - \mu)/\sigma}{(\hat{\sigma}^2 - \sigma^2)/|\sigma^2 \sqrt{2}|} \right) \]

- Where

\[\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i \]

\[\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \]
Fisher kernels – relation to generative classification

- Suppose we make use of generative model for classification via Bayes' rule
 - Where x is the data to be classified, and y is the discrete class label
 \[
 p(y|x) = \frac{p(x|y)p(y)}{p(x)}
 \]

 \[
 p(x) = \sum_{k=1}^{K} p(y=k) p(x|y=k)
 \]

 and

 \[
 p(x|y) = p(x; \theta_y),
 \]

 \[
 p(y=k) = \pi_k = \frac{\exp(\alpha_k)}{\sum_{k'=1}^{K} \exp(\alpha_{k'})}
 \]

- Classification with the Fisher kernel obtained using the marginal distribution p(x) is at least as powerful as classification with Bayes' rule.

- This becomes useful when the class conditional models are poorly estimated, either due to bias or variance type of errors.

- In practice often used without class-conditional models, but direct generative model for the marginal distribution on X.
Fisher kernels – relation to generative classification

- Consider the Fisher score vector with respect to the marginal distribution on X
 \[
 \nabla_\theta \ln p(x) = \frac{1}{p(x)} \nabla_\theta \sum_{k=1}^K p(x, y=k) \\
 = \frac{1}{p(x)} \sum_{k=1}^K p(x, y=k) \nabla_\theta \ln p(x, y=k) \\
 = \sum_{k=1}^K p(y=k|x) [\nabla_\theta \ln p(y=k) + \nabla_\theta \ln p(x|y=k)]
 \]

- In particular for the alpha that model the class prior probabilities we have
 \[
 \frac{\partial \ln p(x)}{\partial \alpha_k} = p(y=k|x) - \pi_k
 \]
Fisher kernels – relation to generative classification

- First K elements in Fisher score given by class posteriors minus a constant
 \[g(x) = \nabla_\theta \ln p(x) = p(y = 1|x) - \pi_1, ..., p(y = K|x) - \pi_K, ... \]

- Consider discriminative multi-class classifier, for the k-th class
 - Let the weight vector be zero, except for the k-th position where it is one
 - Let the bias term be equal to the prior probability of that class

- Then
 \[f_k(x) = w_k^T g(x) + b_k = p(y = k|x) \]
 and thus
 \[\arg\max_k f_k(x) = \arg\max_k p(y = k|x) \]

- Thus the Fisher kernel based classifier can implement classification via Bayes' rule, and generalizes it to other classification functions.
Challenging factors in object recognition

- Intra-class appearance variation
 - Objects deformation due to pose
 - Transparency: e.g. bottles
 - Sub-categories: boat = ferry + yacht + ...

- Scene composition
 - Heavy occlusions: e.g. tables and chairs
 - Clutter: coincidental image content present

- Imaging conditions
 - viewpoint, scale, illumination
Representing images as “bags of features”

- Global rigid representation likely to be affected by nuisance factors such as deformation, (self-)(self-)occlusion, clutter, etc.

- Instead consider local image regions, or “patches”, on which some representation is computed that is (partially) invariant to imaging conditions such as viewpoint, illumination, scale, etc.
 - Local patterns more likely to be preserved, or at least some of them

- Patch extraction and description stage
 - Patch sampling from image on dense multi-scale grid, or interest points
 - Descriptor computation: SIFT, HOG, LBP, color names, …

- Set of local descriptors characterizes the image (or video, or speech, or …)

- Feature aggregation stage
 - Global image signature computed
 - Can be classified or used for matching

- See e.g. Schmid & Mohr, PAMI, 1997.
Local descriptor based image representations

- SIFT patch description most popular
 - 4x4 spatial grid
 - 8 bin orientation histogram
 - Lowe, IJCV, 2004

\[X = \{ x_1, ..., x_N \} \]

- Coding stage: embed local descriptors, typically in higher dimensional space
 - For example: assignment to cluster indices
 \[\varphi(x_i) \]

- Pooling stage: aggregate per-patch embeddings
 - For example: sum pooling
 \[\Phi(X) = \sum_{i=1}^{N} \varphi(x_i) \]
The “bag of visual words” representation

- Offline clustering of many descriptors from many training images

- Encoding a new image:
 - Compute local descriptors, assign to cluster
 - Count histogram of descriptors in each cluster

- Sum pooling of “1-hot encoding” of local descriptors

\[
\varphi(x_i) = [0, \ldots, 0, 1, 0, \ldots, 0]
\]

\[
h = \sum_i \varphi(x_i)
\]
Example visual words found by clustering

- Airplanes
- Motorbikes
- Faces
- Wild Cats
- Leafs
- People
- Bikes
Application of FV for bag-of-words image-representation

- Bag of word (BoW) representation
 - Map every descriptor to a cluster / visual word index \(w_i \in \{1, \ldots, K\} \)

- Model visual word indices with i.i.d. multinomial
 \[
p(w_i = k) = \frac{\exp \alpha_k}{\sum_{k'} \exp \alpha_{k'}} = \pi_k
 \]

- Likelihood of \(N \) i.i.d. indices:
 \[
p(w_1:N) = \prod_{i=1}^N p(w_i)
 \]

- Fisher vector given by gradient
 - i.e. BoW histogram + constant
 \[
 \frac{\partial \ln p(w_1:N)}{\partial \alpha_k} = \sum_{i=1}^N \frac{\partial \ln p(w_i)}{\partial \alpha_k} = h_k - N \pi_k
 \]
Fisher vector GMM representation: Motivation

- Suppose we want to refine a given visual vocabulary to obtain a richer image representation

- Bag-of-word histogram stores # patches assigned to each word
 - Need more words to refine the representation
 - But this directly increases the computational cost
 - And leads to many empty bins: redundancy
Fisher vector GMM representation: Motivation

• Feature vector quantization is computationally expensive
• To extract visual word histogram for a new image
 – Compute distance of each local descriptor to each k-means center
 – run-time O(NKD) : linear in
 • N: nr. of feature vectors ~ 10^4 per image
 • K: nr. of clusters ~ 10^3 for recognition
 • D: nr. of dimensions ~ 10^2 (SIFT)

• So in total in the order of 10^9 multiplications
 per image to obtain a histogram of size 1000

• Can this be done more efficiently ?!
 – Yes, extract more than just a visual word histogram from a given
 clustering
Fisher vector representation in a nutshell

- Instead, the Fisher Vector for GMM also records the mean and variance of the points per dimension in each cell
 - More information for same # visual words
 - Does not increase computational time significantly
 - Leads to high-dimensional feature vectors

- Even when the counts are the same, the position and variance of the points in the cell can vary
Application of FV for Gaussian mixture model of local features

- Gaussian mixture models for local image descriptors
 [Perronnin & Dance, CVPR 2007]
 - State-of-the-art feature pooling for image/video classification/retrieval

- Offline: Train k-component GMM on collection of local features
 \[p(x) = \sum_{k=1}^{K} \pi_k N(x; \mu_k, \sigma_k) \]

- Each mixture component corresponds to a visual word
 - Parameters of each component: mean, variance, mixing weight
 - We use diagonal covariance matrix for simplicity
 - Coordinates assumed independent, locally per Gaussian
Application of FV for Gaussian mixture model of local features

- Model local image features with Gaussian mixture model
 \[
p(x) = \sum_{k=1}^{K} \pi_k N(x \mid \mu_k, \sigma_k)
 \]

- Fisher vector representation: gradient of log-likelihood
 - For the means and variances we have:
 \[
 F^{-1/2} \nabla_{\mu_k} \ln p(x_1:N) = \frac{1}{\sqrt{\pi_k}} \sum_{n=1}^{N} p(k|x_n) \frac{x_n - \mu_k}{\sigma_k}
 \]
 \[
 F^{-1/2} \nabla_{\sigma_k} \ln p(x_1:N) = \frac{1}{\sqrt{2 \pi_k}} \sum_{n=1}^{N} p(k|x_n) \left\{ \frac{(x_n - \mu_k)^2}{\sigma_k^2} - 1 \right\}
 \]

 - Soft-assignments given by component posteriors
 \[
p(k|x_n) = \frac{\pi_k N(x_n \mid \mu_k, \sigma_k)}{p(x_n)}
 \]
Application of FV for Gaussian mixture model of local features

• Fisher vector components give the difference between the data mean predicted by the model and observed in the data, and similar for variance.

• For the gradient w.r.t. the mean

\[F^{-1/2} \nabla_{\mu_k} \ln p(x_{1:N}) = \frac{1}{\sqrt{\pi_k}} \sum_{n=1}^{N} p(k|x_n) \frac{(x_n - \mu_k)}{\sigma_k} = \frac{n_k}{\sigma_k \sqrt{\pi_k}} (\hat{\mu}_k - \mu_k) \]

where

\[n_k = \sum_{n=1}^{N} p(k|x_n) \]
\[\hat{\mu}_k = n_k^{-1} \sum_{n=1}^{N} p(k|x_n) x_n \]

• Similar for the gradient w.r.t. the variance

\[F^{-1/2} \nabla_{\sigma_k} \ln p(x_{1:N}) = \frac{1}{\sqrt{2 \pi_k}} \sum_{n=1}^{N} p(k|x_n) \left\{ \frac{(x_n - \mu_k)^2}{\sigma_k^2} - 1 \right\} = \frac{n_k}{\sigma_k^2 \sqrt{2 \pi_k}} (\hat{\sigma}_k^2 - \sigma_k^2) \]

where

\[\hat{\sigma}_k^2 = n_k^{-1} \sum_{n=1}^{N} p(k|x_n) (x_n - \mu_k)^2 \]
Image representation using Fisher kernels

- Data representation

\[
G(X, \Theta) = F^{-1/2} \left(\frac{\partial L}{\partial \alpha_1}, \ldots, \frac{\partial L}{\partial \alpha_K}, \nabla_{\mu_1} L, \ldots, \nabla_{\mu_K} L, \nabla_{\sigma_1} L, \ldots, \nabla_{\sigma_K} L \right)^T
\]

- In total \(K(1+2D)\) dimensional representation, since for each visual word / Gaussian we have
 - Mixing weight (1 scalar)
 - Mean (D dimensions)
 - Variances (D dimensions, since single variance per dimension)

- Gradient with respect to mixing weights often dropped in practice since it adds little discriminative information for classification.
 - Results in 2KD dimensional image descriptor
Illustration of gradient w.r.t. means of Gaussians
BoW and FV from a function approximation viewpoint

- Let us consider uni-dimensional descriptors: vocabulary quantizes real line

- For both BoW and FV the representation of an image is obtained by sum-pooling the representations of descriptors.
 - Ensemble of descriptors sampled in an image \(X = \{x_1, ..., x_N\} \)
 - Representation of single descriptor
 - One-of-k encoding for BoW \(\varphi(x_i) = [0, ..., 0,1,0, ..., 0] \)
 - For FV concatenate per-visual word gradients of form
 \[
 \varphi(x_i) = \left(..., p(k|x_i) \begin{bmatrix} 1 & \frac{x_i - \mu_k}{\sigma_k} & \frac{(x_i - \mu_k)^2 - \sigma_k^2}{\sigma_k^2} \end{bmatrix}, ... \right)
 \]

- Linear function of sum-pooled descriptor encodings is a sum of linear functions of individual descriptor encodings:
 \[
 \Phi(X) = \sum_{i=1}^{N} \varphi(x_i) \\
 w^T \Phi(X) = \sum_{i=1}^{N} w^T \varphi(x_i)
 \]
From a function approximation viewpoint

- Consider the score of a single descriptor for BoW
 - If assigned to k-th visual word then \(w^T \varphi(x_i) = w_k \)
 - Thus: constant score for all descriptors assigned to a visual word

Each cell corresponds to a visual word
From a function approximation viewpoint

- Consider the same for FV, and assume soft-assignment is “hard”
 - Thus: assume for one value of k we have $p(k|x_i) \approx 1$
 - If assigned to the k-th visual word:
 \[
 w^T \varphi(x_i) = w_k^T \begin{bmatrix} 1 & \frac{(x_i - \mu_k)}{\sigma_k} & \frac{(x_i - \mu_k)^2 - \sigma_k^2}{\sigma_k^2} \end{bmatrix}
 \]
 - Note that w_k is no longer a scalar but a vector
 - Thus: score is a second-order polynomial of the descriptor x, for descriptors assigned to a given visual word.
From a function approximation viewpoint

- Consider that we want to approximate a true classification function (green) based on either BoW (blue) or FV (red) representation
 - Weights for BoW and FV representation fitted by least squares to optimally match the target function

- Better approximation with FV
 - Local second order approximation, instead of local zero-order
 - Smooth transition from one visual word to the next
Fisher vectors: classification performance VOC'07

- Yearly evaluation from 2005 to 2012 for image classification
Fisher vectors: classification performance VOC'07

- Fisher vector representation yields better performance for a given number of Gaussians / visual words than Bag-of-words.
- For a fixed dimensionality Fisher vectors perform better, and are more efficient to compute.
Normalization of the Fisher vector

- Inverse Fisher information matrix F
 - Renders FV invariant for re-parametrization
 - Linear projection, analytical approximation for MoG gives diagonal matrix
 [Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

- Power-normalization, applied independently per dimension
 - Renders Fisher vector less sparse
 [Perronnin, Sanchez, Mensink, ECCV'10]
 - Corrects for poor independence assumption on local descriptors
 [Cinbis, Verbeek, Schmid, PAMI'15]

- L2-normalization
 - Makes representation invariant to number of local features
 - Among other Lp norms the most effective with linear classifier
 [Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

$$F = E[g(x)g(x)^T]$$

$$f(x) = F^{-1/2}g(x)$$

$$f(x) \leftarrow \text{sign}(f(x))|f(x)|^\rho$$

$$0 < \rho < 1$$

$$f(x) \leftarrow \frac{f(x)}{\sqrt{f(x)^Tf(x)}}$$
Effect of power and L2 normalization in practice

- Classification results on the PASCAL VOC 2007 benchmark dataset.
- Regular dense sampling of local SIFT descriptors in the image
 - PCA projected to 64 dimensions to de-correlate and compress
- Using mixture of 256 Gaussians over the SIFT descriptors
 - FV dimensionality: $2 \times 64 \times 256 = 32 \times 1024$

<table>
<thead>
<tr>
<th>Power Normalization</th>
<th>L2 normalization</th>
<th>Performance (mAP)</th>
<th>Improvement over baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>51.5</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>59.8</td>
<td>8.3</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>57.3</td>
<td>5.8</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>61.8</td>
<td>10.3</td>
</tr>
</tbody>
</table>
PCA dimension reduction of local descriptors

- We use diagonal covariance model
- Dimensions might be correlated
- Apply PCA projection to
 - De-correlate features
 - Reduce dimension of final FV
- FV with 256 Gaussians over local SIFT descriptors of dimension 128

Results on PASCAL VOC’07:
Example applications: Fine-grained classification

- Winning INRIA+Xerox system at FGComp’13: http://sites.google.com/site/fgcomp2013
 - multiple low-level descriptors: SIFT, color, etc.
 - Fisher Vector embedding
 [Gosselin, Murray, Jégou, Perronnin, “Revisiting the Fisher vector for fine-grained classification”, PRL’14.]

- Many other successful uses of FVs for fine-grained recognition
Example applications: object detection

- Winning system by University of Amsterdam
 - region proposals with selective search
 - Fisher Vector embedding
 - Fast Local Area Independent Representation (FLAIR)

Example applications: face verification

- Face track description:
 - track face
 - extract SIFT descriptors
 - encode using Fisher vectors
 - pool at face track level

- New state-of-the-art results on the YouTube faces dataset

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
<th>AUC</th>
<th>EER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MGBS & SVM- [37]</td>
<td>78.9 ± 1.9</td>
<td>86.9</td>
<td>21.2</td>
</tr>
<tr>
<td>2 APEM FUSION [20]</td>
<td>79.1 ± 1.5</td>
<td>86.6</td>
<td>21.4</td>
</tr>
<tr>
<td>3 STFRD & PMML [11]</td>
<td>79.5 ± 2.5</td>
<td>88.6</td>
<td>19.9</td>
</tr>
<tr>
<td>4 VSOF & OSS (Adaboost) [22]</td>
<td>79.7 ± 1.8</td>
<td>89.4</td>
<td>20.0</td>
</tr>
<tr>
<td>5 Our VF² (restricted)</td>
<td>83.5 ± 2.3</td>
<td>92.0</td>
<td>16.1</td>
</tr>
<tr>
<td>6 Our VF² (restricted & flip)</td>
<td>84.7 ± 1.4</td>
<td>93.0</td>
<td>14.9</td>
</tr>
<tr>
<td>7 Our VF² (unrestricted & flip)</td>
<td>83.5 ± 2.1</td>
<td>94.0</td>
<td>13.0</td>
</tr>
<tr>
<td>8 Our VF² (unrestricted & jitt. pool.)</td>
<td>83.8 ± 1.6</td>
<td>95.0</td>
<td>12.3</td>
</tr>
</tbody>
</table>
Example: action recognition and localization

- THUMOS action recognition challenge 2013 & 2014

 http://crcv.ucf.edu/ICCV13-Action-Workshop

- Winning systems by INRIA-LEAR
 - improved dense trajectory video features
 - Fisher Vector embedding

Bag-of-words vs. Fisher vector representation

- Bag-of-words image representation
 - k-means clustering
 - histogram of visual word counts, K dimensions

- Fisher vector image representation
 - GMM clustering
 - Local first and second order moments, 2KD dimensions

- For a given dimension of the representation
 - FV needs less clusters, and is faster to compute
 - FV gives better performance since it is a smoother function of the local descriptors.

- Power and L2 normalizations effective for both representations