Advanced Learning Models

Jakob Verbeek
jakob.verbeek@inria.fr

December 10, 2015
Part I

Overfitting, bias-variance tradeoff: what is the problem?

Thanks to Laurent Jacob for sharing slides!
We start with an informal example.

We will formalize what we observe later.
We observe 10 couples \((x_i, y_i)\).

We want to estimate \(y\) from \(x\).

Our first strategy: find \(f\) such that \(f(x_i)\) is close to \(y_i\).
Bias-variance tradeoff: intuition

Find f as a line

$$
\min_{f(x) = ax+b} \| Y - f(X) \|^2
$$
Bias-variance tradeoff: intuition

Find f as a quadratic function

$$\min_{f(x) = ax^2 + bx + c} \| Y - f(X) \|^2$$
Find f as a polynomial of degree 10

$$\min_{f(x)=\sum_{j=0}^{10} a_j x^j} \| Y - f(X) \|^2$$
Which function would you trust to predict y corresponding to $x = 0.5$?
Bias-variance tradeoff: intuition

- Reminder: we aim at “finding \(f \) such that \(f(x_i) \) is close to \(y_i \”).
- With the polynomial of degree 10, \(f(x_i) - y_i = 0 \) for all 10 points.
- There is something wrong with our objective.
More precisely:

- If we allow any function f, we can find a lot of perfect solutions for the training data.
- Our actual goal is to estimate y for new points x from the same population:

$$
\min_{f} \mathbb{E}(X,Y) \| Y - f(X) \|^2
$$
Even more precisely:

- We did not take into account the fact that our 10 points are a subsample from the population.
- If we sample 10 new points from the same population, the complex functions are likely to change more than the simple ones.
- Consequence: these functions will probably generalize less well to the rest of the population.
When the degree increases, the error $\|y - f(x)\|^2$ over the 10 observations always decreases.

Over the rest of the population, the error decreases, then increases.
When the degree increases, the error $\|y - f(x)\|^2$ over the 10 observations always decreases.

Over the rest of the population, the error decreases, then increases.
This suggests the existence of a tradeoff between two types of errors:

- Sets of functions which are too simple cannot contain functions which explain the data well enough.
- Sets of functions which are too rich may contain functions which are too specific to the observed sample.
This suggests the existence of a tradeoff between two types of errors:

- Sets of functions which are too simple cannot contain functions which explain the data well enough.
- Sets of functions which are too rich may contain functions which are too specific to the observed sample.
Our introductive examples had a large number of descriptors.

This case involves increasingly complex functions of a single variable.
In fact, the two notions are related: here in particular, the three functions are linear in different representations.

Reminder (linear regression):
\[
\arg \min_{\theta \in \mathbb{R}^p} \| Y - X\theta \|^2 = (X^\top X)^{-1}X^\top Y \quad (\text{if } X^\top X \text{ is invertible}).
\]

How can we use this fact to compute
\[
\arg \min_{f(x) = \sum_{j=1}^{p} a_j x_j} \| Y - f(X) \|^2?
\]
We could have illustrated the same principle using linear functions involving more and more variables.

Example: predicting a phenotype using the expression of an increasing number of genes.

We stucked to polynomials, which allow for better visual representations.

Along this class, the notion of complexity of a set of functions will become more and more precise.

Complexity is what causes problems for inference, not just dimension.
Until now, we did not need to introduce a model for the data, i.e., a distribution over $\mathcal{X} \times \mathcal{Y}$:

- Data could come from any population.
- The functions we used to predict y can be derived from particular probabilistic models, but this is not necessary (they were in fact historically introduced without a model).

The objective is not to criticize the use of models, but to show that the tradeoff problem we introduced goes beyond probabilistic models.

We now show how using a model can give a better insight into the problem.
A little more formally: biais-variance decomposition

- We now assume that the data follow:

\[y = f(x) + \varepsilon, \quad (1) \]

and \(\mathbb{E}[\varepsilon] = 0. \)

- Without loss of generality, we consider an estimator \(\hat{f} \) of \(f \), which is a
function of training data \(\mathcal{D} = (x_i, y_i)_{i=1,\ldots,n} \) sampled i.i.d. from (1)

- Note: \(\hat{f} \) is a random function.

- We consider the mean \textbf{quadratic error} \(\mathbb{E}[(y - \hat{f}(x))^2] \) incurred when
using \(\hat{f} \) to estimate for a given \(x \) the corresponding \(y \) sampled from
(1) independently from \(\mathcal{D} \).

- Expectation is taken over \(\mathcal{D} \) used to estimate \(\hat{f} \), and \(\varepsilon = y - f(x) \).
A little more formally: bias-variance decomposition

Proposition

Under the previous hypotheses,

\[E[(y - \hat{f}(x))^2] = \left(E[\hat{f}(x)] - f(x) \right)^2 + E \left[\left(E[\hat{f}(x)] - \hat{f}(x) \right)^2 \right] + E[(y - f(x))^2] \]

- The first term is the squared bias of \(\hat{f} \): the difference between its mean (over the sample of \(D \)) and the true \(f \).
- The second term is the variance of \(\hat{f} \): how much \(\hat{f} \) varies around its average when the dataset \(D \) changes.
- The third term is the Bayes error, and does not depend on the estimator. The actual quantity of interest is the excess of risk \(E[(y - \hat{f}(x))^2] - E[(y - f(x))^2] \).
Tradeoff between two types of error:

- Sets of functions which are too simple cannot contain functions which explain the data well enough: these sets lead to estimators with a large bias.
- Sets of functions which are too rich may contain functions which are too specific to the observed sample: these sets lead to estimators with a large variance.
Tradeoff between two types of error:

- Sets of functions which are too simple cannot contain functions which explain the data well enough: these sets lead to estimators with a large bias.

- Sets of functions which are too rich may contain functions which are too specific to the observed sample: these sets lead to estimators with a large variance.
Reminder (König-Huygens)

For any real random variable Z, $\mathbb{E}\left[(Z - \mathbb{E}[Z])^2\right] = \mathbb{E}[Z^2] - \mathbb{E}[Z]^2$

$$\mathbb{E}[(y - \hat{f}(x))^2] = \mathbb{E}[y^2 - 2y\hat{f}(x) + \hat{f}(x)^2]$$
Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable Z, $E\left[(Z - E[Z])^2\right] = E[Z^2] - E[Z]^2$

\[
E[(y - \hat{f}(x))^2] = E[y^2 - 2y\hat{f}(x) + \hat{f}(x)^2] \\
= E[y^2] - E[2y\hat{f}(x)] + E[\hat{f}(x)^2]
\]
Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable Z, $\mathbb{E} \left[(Z - \mathbb{E}[Z])^2 \right] = \mathbb{E}[Z^2] - \mathbb{E}[Z]^2$

\[
\begin{align*}
\mathbb{E}[(y - \hat{f}(x))^2] &= \mathbb{E}[y^2 - 2y\hat{f}(x) + \hat{f}(x)^2] \\
&= \mathbb{E}[y^2] - \mathbb{E}[2y\hat{f}(x)] + \mathbb{E}[\hat{f}(x)^2] \\
&= \mathbb{E}[y^2] + \mathbb{E}[(y - \mathbb{E}[y])^2] - 2\mathbb{E}[y]\mathbb{E}[\hat{f}(x)] \\
&\quad + \mathbb{E}[\hat{f}(x)]^2 + \mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2]
\end{align*}
\]
Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable Z, $\mathbb{E} \left[(Z - \mathbb{E}[Z])^2 \right] = \mathbb{E}[Z^2] - \mathbb{E}[Z]^2$

$$\mathbb{E}[(y - \hat{f}(x))^2] = \mathbb{E}[y^2] - 2y\hat{f}(x) + \hat{f}(x)^2$$

$$= \mathbb{E}[y^2] - \mathbb{E}[2y\hat{f}(x)] + \mathbb{E}[\hat{f}(x)^2]$$

$$= f(x)^2 + \mathbb{E}[(y - f(x))^2] - 2f(x)\mathbb{E}[\hat{f}(x)] + \mathbb{E}[\hat{f}(x)]^2 + \mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2]$$
Reminder (König-Huygens)

For any real random variable Z, $\mathbb{E} \left[(Z - \mathbb{E}[Z])^2 \right] = \mathbb{E}[Z^2] - \mathbb{E}[Z]^2$

\[
\mathbb{E}[(y - \hat{f}(x))^2] = \mathbb{E}[y^2 - 2y\hat{f}(x) + \hat{f}(x)^2] \\
= \mathbb{E}[y^2] - \mathbb{E}[2y\hat{f}(x)] + \mathbb{E}[\hat{f}(x)^2] \\
= f(x)^2 + \mathbb{E}[(y - f(x))^2] \\
- 2f(x)\mathbb{E}[\hat{f}(x)] \\
+ \mathbb{E}[\hat{f}(x)]^2 + \mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2] \\
= \mathbb{E}[(y - f(x))^2] + \mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2] \\
+ \left(\mathbb{E}[\hat{f}(x)] - f(x) \right)^2
\]
Using a (rather general) model, we managed to start formalizing the tradeoff introduced with our example.

- Decomposition valid for any x, thus also in expectation over independent x.

\[
\mathbb{E}[(y - \hat{f}(x))^2] = \left(\mathbb{E}[\hat{f}(x)] - f(x)\right)^2 + \mathbb{E} \left[\left(\mathbb{E}[\hat{f}(x)] - \hat{f}(x)\right)^2 \right]
+ \mathbb{E}[(y - f(x))^2]
\]