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History of the course

A large part of the course material is due to Jean-
Philippe Vert, who gave the course from 2004 to 2015
and who is on sabbatical at UC Berkeley in 2016.

@ Along the years, the course has become more and more exhaustive
and the slides are probably one of the best reference available on
kernels.

@ This is a course with a fairly large amount of math, but still
accessible to computer scientists who have heard what is a Hilbert
space (at least once in their life).
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Starting point: what we know is how to solve
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But real data is often more complicated...
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Main goal of this course

o Extend well-understood, linear statistical learning techniques to
real-world, complicated, structured, high-dimensional data (images,
texts, time series, graphs, distributions, permutations...)
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A concrete supervised learning problem

Regularized empirical risk formulation

The goal is to learn a prediction function f : X — ) given labeled
training data (x; € X,y; € V)i=1,.n
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A concrete supervised learning problem

Unfortunately, linear models often perform poorly unless the problem
features are well-engineered or the problem is very simple.
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First approach to work with a non-linear functional space F
@ The “deep learning” space F is parametrized:

f(X) = Uk(AkO'k—l(Ak—l ce 0'2(A20’1(A1X)) .. ))

e Finding the optimal Ay, Ay, ..., Ay yields an (intractable)
non-convex optimization problem in huge dimension.
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A concrete supervised learning problem
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Figure: Exemple of convolutional neural network from ?

What are the main limitations of neural networks?
@ Poor theoretical understanding.
@ They require cumbersome hyper-parameter tuning.

@ They are hard to regularize.

Despite these shortcomings, they have had an enormous success, thanks
to large amounts of labeled data, computational power and engineering.
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A concrete supervised learning problem
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Second approach based on kernels
@ Works with possibly infinite-dimensional functional spaces F;
@ Works with non-vectorial structured data sets X such as graphs;

@ Regularization is natural and easy.

Current limitations (and open research topics)

o Lack of scalability with n (traditionally O(n?));
@ Lack of adaptivity to data and task.
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Organization of the course

Content
@ Present the basic theory of kernel methods.

@ Develop a working knowledge of kernel engineering for specific data
and applications (graphs, biological sequences, images).

© Introduce open research topics related to kernels such as large-scale
learning with kernels and “deep kernel learning”.

Practical

@ Course homepage with slides, schedules, homework's etc...:
http://lear.inrialpes.fr/people/mairal/teaching/2015-2016/MVA/.

e Evaluation: 50% homework + 50% data challenge.
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