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What is a generative model?
I A model pθ(x) we can draw samples from

I For example, a Gaussian mixture model

pθ(x) =
K∑

k=1

pθ(z = k)pθ(x |z = k) (1)

I Estimation with Expectation-Maximization algorithm
I Sampling: pick component from prior distribution pθ(k),

then draw sample from selected Gaussian

I Need more complex distributions in practice
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Example: modeling images

I Modeling the distribution of 106 ImageNet samples
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Why is generative modeling important?

I Unsupervised learning to regularize supervised learning

I Generate training data for discriminative models

I Discriminative tasks where the output has multiple modes

I Generate novel visual content (in-painting)
I Proxy-task to study complex generative models
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How to design complex generative models?

I Generate a latent variable z from a simple distribution p(z),
e.g. standard Gaussian

I Map this latent variable to an observation of interest x by a
(non-linear) deep network fθ(·)

I Induces complex distribution pθ(x) on x
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How to learn deep generative models?

I Marginal distribution on x obtained by integrating out z

p(z) = N (z ; 0, I ), (2)

pθ(x |z) = δ(x , fθ(z)), (3)

pθ(x) =

∫
z
p(z)pθ(x |z). (4)

I Evaluation of pθ(x) intractable due to integral involving
non-linear deep net fθ(·)

I Maximum likelihood estimation non-trivial

I Two recent promising approaches
I Generative adversarial networks
I Auto-encoding variational Bayes
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Generative adversarial networks

I Introduced by Goodfellow et al. in 2014 [GPAM+14]

I Don’t try to evaluate pθ(x), just learn to sample from it
I Sample z , map it using deep net to x = fθ(z)

I Avoids dealing with intractable integral

I Idea: pit generative model against a discriminative model

I Discriminator tries to tell samples from generative model from
real samples

I Discriminator is a second deep network, train both in
competition
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Schematic setup of adversarial training

January 18, 2017 7 / 37



Typical generator architecture, for images

I Unit Gaussian distribution on z , typically 10-100 dim.

I Up-convolutional deep network (reverse recognition CNN)
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Typical discriminator architecture, for images

I Recognition CNN model

I Binary classification output: real / synthetic
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Training GANs

I Discriminator: maximum likelihood on correct class label,
given generator

I Generator: minimize likelihood on correct class label, given
discriminator
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Learning process
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Theoretical properties

min
θ

max
φ

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)]

+IEz∼p(z)[ln(1− Dφ(fθ(z)))] (5)

I Theoretical properties, assuming infinite data, infinite model
capacity, reaching optimal discriminator given the generator at
each iteration

I Unique global optimum
I Optimum corresponds to data distribution
I Convergence to optimum guaranteed
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How to evaluate the generative model?

I By construction intractable to compute pθ(x∗), in particular
for points in a test set

I Approximate value of pθ(x∗) with Parzen window estimator
using samples xl ∼ pθ(x), see [BBV11]

pparzen(x∗) =
1

L

L∑
l=1

N
(
x∗; xl , σ

2I
)

(6)
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Schematic setup of adversarial training
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Generating hotel bedrooms

I Trained on LSUN dataset, 3 million images [RMC16]
I Linear trajectory in latent space between z1 and z2

I Smooth transitions suggest generalization
I Sharp transitions would suggest literal memorization
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Vector arithmetic on faces

I Word embedding with word2vec shows regularities of type

zking − zman + zwoman ≈ zqueen (7)

I For faces, averaging z vectors over three samples for stability
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More fun with faces: approximately linear pose embedding
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More face samples
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ImageNet samples
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Issues in practice

I GANs are known to be very difficult to train in practice

I Formulated as mini-max objective between two networks

I Optimization can oscillate between solutions

I Hard to pick “compatible” architectures between generator
and discriminator

I Generator can collapse to represent part of the training data,
and miss another part
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Back to design of complex generative models

I Generate a latent variable z from a simple distribution, e.g.
standard Gaussian

I Map latent variable to an observation x by a deep net,
parameterized by θ, this time in a non-deterministic manner

I For example, using deep net that outputs mean µθ(·) and
variance σθ(·) of iid Gaussian model on output variables

p(z) = N (z ; 0, I ), (8)

pθ(x |z) = N (x ;µθ(z), σ2
θ(z)), (9)

p(x) =

∫
z
p(z)pθ(x |z). (10)
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Auto-encoding variational Bayes (AEVB)

I Introduced by Kingma & Welling in 2014 [KW14], see also
tutorial by Carl Doersch [Doe]

I Latent variable models typically learned with Expectation -
Maximization algorithm, think EM for mixture of Gaussians

I In case of generative model based on deep net defining
pθ(x |z), posterior pθ(z |x) intractable

I Work with approximate posterior distribution instead, leads to
“variational EM” algorithm
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Variational bound on log-likelihood

I General approach underlying the EM algorithm

I Lower-bound marginal likelihood on x with KL-divergence
over posterior pθ(z |x)

pθ(x) =

∫
z
p(z)pθ(x |z), (11)

F ≡ ln pθ(x)− D
(
q(z)||pθ(z |x)

)
≤ ln pθ(x) (12)

I Kullback-Leibler divergence non-negative, and zero if and only
if q = p

D(q||p) =

∫
z
q(z) ln

q(z)

p(z)
(13)
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Standard EM as bound optimization algorithm

F ≡ ln pθ(x)− D
(
q(z)||pθ(z |x)

)
(14)

= IEq[ln p(z) + ln pθ(x |z)] + H(q) (15)

(16)

I Two forms used in conventional EM algorithms
I E-step: keep model fixed, optimize over q(z), see (14)
I M-step: keep q(z) fixed, optimize over parameters θ, see (15).

This is generally easier since expectation of conditional
log-likelihood, rather than log of marginal likelihood.

I In classic mixture of Gaussian (MoG) case
I Bound log-lik. per data point, sum over points in data set
I Inference on latent variable is done per data point
I Exact inference is tractable to compute, leads to tight bound
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Variational EM with inference net

I In the case of a deep generative model
I Exact inference is intractable due to non-linearities
I SGD training on large data makes iterative variation inference

cumbersome, a one-shot posterior approximation is desirable

I Settle for optimizing non-tight bound F on log-lik.
I Referred to as “Vartiational EM” learning
I No guarantees on true log-lik., we improve a bound instead

I Use a second “inference network”, parameterized by φ, that
computes approximate posterior on z given x

I No need to store and iteratively estimate variational
distribution parameters

qφ(z |x) = N
(
z ;µφ(x), σ2

φ(x)
)

(17)
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Yet a different form of the variational bound

F (x , θ, φ) = IEqφ [ln pθ(x |z)]− D
(
qφ(z |x)||p(z)

)
(18)

I First, “reconstruction”, term measures to what extent q gives
the “right” z for a given x

I Second, “regularization”, term keeps q from collapsing to a
single point z

I Can be computed in closed form if both terms are Gaussian
I Differentiable function of inference net parameters

p(z) = N (z ; 0, I ) , (19)

qφ(z |x) = N
(
z ;µφ(x), σ2

φ(x)
)
, (20)

D(q||p) =
1

2

[
1 + lnσ2

φ(x)− µ2
φ(x)− σ2

φ(x)
]

(21)
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Approximating the reconstruction term

F (x , θ, φ) = IEqφ [ln pθ(x |z)]− D
(
qφ(z |x)||p(z)

)
(22)

I Expectation in reconstruction term is intractable to compute

I Approximate with a sample average over zs ∼ qφ(z |x)

R ≡ IEqφ [ln pθ(x |z)] ≈ 1

S

S∑
s=1

ln pθ(x |zs) (23)

I Estimator is non-differentiable due to sampling operator
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Re-parametrization trick

I Side-step non-differentiable sampling operator by

re-parametrizing samples zs ∼ qφ(z |x) = N
(
z ;µφ(x), σ2

φ(x)
)

I Use inference net to modulate samples from a unit Gaussian

zs = µφ(x) + σφ(x)εs , εs ∼ N (εs ; 0, I ) (24)

I Sample estimator is now a differentiable function of inference
net, given unit Gaussian samples

I Entire objective function approximated in unbiased manner by
differentiable function

F (x , θ, φ) ≈ F (x , θ, φ, {εs}) =
1

S

S∑
s=1

ln pθ(x |zs)− D
(
qφ(z |x)||p(z)

)
(25)
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Re-parametrization trick, in a cartoon
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Auto-encoder view
I Encoder: inference net takes example x , computes encoding z
I Decoder: generative net takes code z , computes sample x

I Two terms in loss function
I KL divergence at central bottleneck (code) layer
I Reconstruction term at decoder output (last) layer

F (x , θ, φ, {εs}) = IEqφ [ln pθ(x |z)]− D
(
qφ(z |x)||p(z)

)
(26)
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Auto-Encoding Variational Bayes training algorithm
I Repeat:

I Sample random training data point x , or mini-batch

I Sample one or multiple values {εs}

I Use back-propagation to compute gφ = ∇φF (x , θ, φ, {εs}) and
gθ = ∇θF (x , θ, φ, {εs})

I Update parameters, set φ← φ+ αgφ and θ ← θ + αgθ
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Random samples from AEVB model fit on MNIST
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Application of AEVB in a supervised generative model
I Variant introduced by Kingma et al. NIPS’14 [KRMW14]
I Class label y , latent variable z , observation x

pπ(y) = Cat (y ;π) (27)

p(z) = N (z ; 0, I ) (28)

pθ(x |y , z) = N
(
x ;µθ(y , z), σ2

θ(y , z)
)

(29)

I Approximate posterior

qφ(y |x) = Cat (y ;πφ(x)) , (30)

qφ(z |x , y) = N
(
z ;µφ(x , y), σ2

φ(x , y)
)

(31)
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Objective function for semi-supervised model

I Complete objective function has three terms
I Generative term for unlabeled data

p(x) ≥ U(x) (32)

U(x) = IEqφ(y ,z|x)[ln pθ(x |y , z) + ln pθ(y) + ln pπ(z)− ln qφ(y , z |x)]

I Generative term for labeled data,

p(x , y) ≥ L(x , y) (33)

L(x , y) = IEqφ(z|x,y)[ln pθ(x |y , z) + ln pθ(y) + ln pπ(z)− ln qφ(z |x , y)]

I Discriminative term for labeled data: encoder used as
classifier, otherwise encoder is only trained from unlabeled
data

J =
∑

(x)∼p̃u

U(x) +
∑

(x,y)∼p̃l

L(x , y) + α
∑

(x,y)∼p̃l

ln qφ(y |x) (34)
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Examples of generated images

I Handwriting styles by fixing class label y , and varying 2
dimensional latent variable z
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Examples of generated images

I The leftmost columns show images from the test set.

I The other columns show generated images x , where the latent
variable z of each row is set to the value inferred from the
test-set image on the left. Each column corresponds to a class
label y .
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