Generative Deep Networks

Jakob Verbeek
INRIA, Grenoble, France

January 18, 2017

Thanks to Aaron Courville, lan Goodfellow, Durk Kingma and Kevin McGuinness for figures and slides

January 18, 2017

0/37



What is a generative model?
» A model py(x) we can draw samples from
» For example, a Gaussian mixture model

K

po(x) = polz = k)po(x|z = k) (1)

k=1
» Estimation with Expectation-Maximization algorithm
» Sampling: pick component from prior distribution py(k),
then draw sample from selected Gaussian

» Need more complex distributions in practice

A
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Example: modeling images

» Modeling the distribution of 10° ImageNet samples
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Why is generative modeling important?

> Unsupervised learning to regularize supervised learning

v

Generate training data for discriminative models

v

Discriminative tasks where the output has multiple modes

v

Generate novel visual content (in-painting)
» Proxy-task to study complex generative models
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How to design complex generative models?

» Generate a latent variable z from a simple distribution p(z),
e.g. standard Gaussian

» Map this latent variable to an observation of interest x by a
(non-linear) deep network fy(-)

> Induces complex distribution py(x) on x
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How to learn deep generative models?

v

Marginal distribution on x obtained by integrating out z
p(z) = N(z:0.1), (2)
po(x|z) = d(x, fy(z)), (3)
po(x) = [ pl)palelz). (*)

v

Evaluation of py(x) intractable due to integral involving
non-linear deep net f(+)

» Maximum likelihood estimation non-trivial

» Two recent promising approaches

» Generative adversarial networks
» Auto-encoding variational Bayes
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Generative adversarial networks

» Introduced by Goodfellow et al. in 2014 [GPAM*14]

» Don't try to evaluate py(x), just learn to sample from it
» Sample z, map it using deep net to x = fy(z)

» Avoids dealing with intractable integral
> ldea: pit generative model against a discriminative model

» Discriminator tries to tell samples from generative model from
real samples

» Discriminator is a second deep network, train both in
competition
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Schematic setup of adversarial training
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Typical generator architecture, for images
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» Unit Gaussian distribution on z, typically 10-100 dim.

» Up-convolutional deep network (reverse recognition CNN)
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Typical discriminator architecture, for images

conv
conv
M

» Recognition CNN model

» Binary classification output: real / synthetic
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Training GANs

Latent random variable
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» Discriminator: maximum likelihood on correct class label,

given generator

Fake

» Generator: minimize likelihood on correct class label, given

discriminator
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Learning process

po(data) Data distribution
l Model distribution
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Theoretical properties

mein mq?x V(#,0) = IExpyn)[In Dp(x)]
+IE,p(z)[In(1 — Dy(fy(2)))] (5)

» Theoretical properties, assuming infinite data, infinite model
capacity, reaching optimal discriminator given the generator at
each iteration

» Unique global optimum
» Optimum corresponds to data distribution
» Convergence to optimum guaranteed
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How to evaluate the generative model?

» By construction intractable to compute py(x*), in particular

for points in a test set

» Approximate value of py(x*) with Parzen window estimator

using samples x; ~ py(x), see [BBV11]

L
1
* * 2
pparzen(x ): z E N(X VX1, 0 /)
I=1
Model | MNIST | TFD
DBN [3] 138 +2 1909 + 66

Stacked CAE [3] | 121+ 1.6 | 2110 + 50
Deep GSN [6] 214 +1.1 | 1890 + 29
Adversarial nets 225+ 2 | 2057 £ 26
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Schematic setup of adversarial training

CIFAR-10 (fully connected) CIFAR-10 (convolutional)
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Generating hotel bedrooms

» Trained on LSUN dataset, 3 million images [RMC16]
» Linear trajectory in latent space between z; and z

» Smooth transitions suggest generalization
» Sharp transitions would suggest literal memorization
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Vector arithmetic on faces

» Word embedding with word2vec shows regularities of type

Zking — Zman + Zwoman ~ Zqueen (7)

> For faces, averaging z vectors over three samples for stability

man man woman
with glasses without glasses without glasses

woman with glasses
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More fun with faces: approximately linear pose embedding
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More face samples
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ImageNet samples
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Issues in practice

» GANs are known to be very difficult to train in practice
» Formulated as mini-max objective between two networks
» Optimization can oscillate between solutions

» Hard to pick “compatible” architectures between generator
and discriminator

» Generator can collapse to represent part of the training data,
and miss another part
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Back to design of complex generative models
» Generate a latent variable z from a simple distribution, e.g.
standard Gaussian

» Map latent variable to an observation x by a deep net,
parameterized by @, this time in a non-deterministic manner

» For example, using deep net that outputs mean pp(-) and
variance oy(-) of iid Gaussian model on output variables

p(z) = N(z:0,1), (8)
po(xlz) = N(x: po(2), 53(2)), (9)
p) = [ pl2)palxl2). (10)
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Auto-encoding variational Bayes (AEVB)

» Introduced by Kingma & Welling in 2014 [KW14], see also
tutorial by Carl Doersch [Doe]

» Latent variable models typically learned with Expectation -
Maximization algorithm, think EM for mixture of Gaussians

> In case of generative model based on deep net defining
po(x|z), posterior py(z|x) intractable

» Work with approximate posterior distribution instead, leads to
“variational EM" algorithm
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Variational bound on log-likelihood

» General approach underlying the EM algorithm

» Lower-bound marginal likelihood on x with KL-divergence
over posterior py(z|x)

mur:/maWwa, (11)

z

F = Inpo(x) — D(a(2)lIpa(zIx)) < Inpo(x)  (12)

» Kullback-Leibler divergence non-negative, and zero if and only
ifg=p

mwmz/mnmﬁj (13)
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Standard EM as bound optimization algorithm

F = Inps(x) = D(a(2)llp(zl)) (14)
— Eqlin p(z) + In po(x|2)] + H(q) (15)
(16)

» Two forms used in conventional EM algorithms
» E-step: keep model fixed, optimize over g(z), see (14)
» M-step: keep q(z) fixed, optimize over parameters 6, see (15).
This is generally easier since expectation of conditional
log-likelihood, rather than log of marginal likelihood.

> In classic mixture of Gaussian (MoG) case
» Bound log-lik. per data point, sum over points in data set
» Inference on latent variable is done per data point
» Exact inference is tractable to compute, leads to tight bound
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Variational EM with inference net

> In the case of a deep generative model

» Exact inference is intractable due to non-linearities
» SGD training on large data makes iterative variation inference
cumbersome, a one-shot posterior approximation is desirable

> Settle for optimizing non-tight bound F on log-lik.

» Referred to as “Vartiational EM” learning
» No guarantees on true log-lik., we improve a bound instead

» Use a second “inference network”, parameterized by ¢, that
computes approximate posterior on z given x

» No need to store and iteratively estimate variational
distribution parameters

qs(z|x) =N (z; (%), a‘%(x)) (17)
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Yet a different form of the variational bound

F(x,0,¢) = Eq,[In po(x|2)] — D(qs(2[x)lIp(z))  (18)

» First, “reconstruction”, term measures to what extent g gives
the “right” z for a given x

» Second, “regularization”, term keeps g from collapsing to a
single point z
» Can be computed in closed form if both terms are Gaussian
» Differentiable function of inference net parameters

p(z) = N (z,0,1), (19)
qs(z|x) = N (z; ud,(x),ai(x)) , (20)
D(allp) = 5[1+1n030) ~ 130~ o3(x)]  (21)
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Approximating the reconstruction term

F(x,0,9) = Eq,[In pg(x|2)] — D(as(z|x)llp(2))  (22)
» Expectation in reconstruction term is intractable to compute

» Approximate with a sample average over zs ~ gy (z|x)

S

R = IEq,[In po(x|2) Z n pp(x|zs) (23)
=1

» Estimator is non-differentiable due to sampling operator
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Re-parametrization trick

» Side-step non-differentiable sampling operator by
re-parametrizing samples z; ~ g4(z|x) =N <z; e (X), aé(x))

» Use inference net to modulate samples from a unit Gaussian
zs = pp(x) + op(x)es, es ~ N (€s;0,1) (24)

» Sample estimator is now a differentiable function of inference
net, given unit Gaussian samples

» Entire objective function approximated in unbiased manner by
differentiable function

F(x,0,0) ~ F(x,0,¢,{es}) = Zlnpe (x|zs) — D(gs(z|x)||p(2))
(25)
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Re-parametrization trick, in a cartoon
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Auto-encoder view
» Encoder: inference net takes example x, computes encoding z

» Decoder: generative net takes code z, computes sample x

» Two terms in loss function
» KL divergence at central bottleneck (code) layer
» Reconstruction term at decoder output (last) layer

F(x, 0,6, {es}) = Eq,[In ps(x|2)] — D(q4(z|x)lIp(2)) (26)
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Auto-Encoding Variational Bayes training algorithm

> Repeat:
» Sample random training data point x, or mini-batch

» Sample one or multiple values {e}

» Use back-propagation to compute gy = V4F(x,0, ¢, {es}) and
80 = VGF(Xa 93 ¢7 {65})

» Update parameters, set ¢ <— ¢ 4+ agy and 0 < 0 + agy

q¢(2 | 2) po(z | 2)
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Random samples from AEVB model fit on MNIST
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Application of AEVB in a supervised generative model

» Variant introduced by Kingma et al. NIPS'14 [KRMW14]
> Class label y, latent variable z, observation x

pr(y) = Cat (y; ) (27)
p(z) = N (z;0,1) (28)
po(xly,z) = N (x; poly, 2), 05(y, 2)) (29)
» Approximate posterior
qas(y|x) = Cat (y; m4(x)) (30)
ao(zlx,y) = N (z: po(x, ), 05(x, ¥)) (31)
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Objective function for semi-supervised model

» Complete objective function has three terms
» Generative term for unlabeled data

p(x) = U(x) (32)
U(x) = Bq,(yz1x[Inpo(xly, z) + In pe(y) + In pr(z) — Ingg(y, 2|x)]

» Generative term for labeled data,
p(x,y) > L(x,y) (33)
L(x,y) = Eq,(z|xy)lIn pa(x]y,z) + Inpo(y) + In pz(2) — In gs(z|x, y)]

» Discriminative term for labeled data: encoder used as
classifier, otherwise encoder is only trained from unlabeled
data

T= Y U+ Y Lluy)+a Y Ingyylx) (34)

()~Bo (o)~ ()b
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Examples of generated images

» Handwriting styles by fixing class label y, and varying 2

dimensional latent variable z
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Examples of generated images

» The leftmost columns show images from the test set.

» The other columns show generated images x, where the latent
variable z of each row is set to the value inferred from the
test-set image on the left. Each column corresponds to a class

label y.
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