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A brief recap on kernel methods

 A way to achieve non-linear classification (or other data analysis) by using a 
kernel that computes inner products of data after non-linear transformation
► Given the transformation, we can derive the kernel function.

 Conversely, if a kernel is positive definite, it is known to compute a dot-
product in a (not necessarily finite dimensional) feature space 
► Given the kernel, we can determine the feature mapping function.

Φ:  x → φ(x)

k (x1, x2)=〈ϕ (x1),ϕ (x2)〉



A brief recap on kernel methods

 Most often we start with data in a vector space, and map it to another feature 
space to allow for non-linear classification in the original space, using linear 
classification in the feature space

 Kernels can also be used to represent non-vectorial data, and to make them 
amenable to linear classification (or other linear data analysis) techniques

 For example, suppose we want to classify sets of points in a vector space, 
where the size of each set may vary

 We can define a representation of sets by concatenating the mean and 
variance of the set in each dimension

► Fixed size representation of sets in 2d dimensions
► Use kernel to compare different sets:

k (X 1, X2)=〈ϕ (X 1),ϕ (X 2)〉

X={x1, x2,... , xN } with xi∈R
d

ϕ (X )=(mean (X )
var (X ) )



Fisher kernels

 Motivated by the need to represent variably sized objects in a vector space, 
such as sequences, sets, trees, graphs, etc., such that they become 
amenable to be used with linear classifiers, and other data analysis tools 

 A generic method to define kernels over arbitrary data types based on 
statistical model of the items we want to represent

 Parameters and/or structure of the model p(x) estimated from data
► Typically in unsupervised manner

 Automatic data-driven configuration of kernel instead of manual design
► Kernel typically used for supervised task 

[Jaakkola & Haussler, “Exploiting generative models in discriminative classifiers”,In 
Advances in Neural Information Processing Systems 11, 1998.]

p( x ;θ) , x∈X , θ∈RD



Fisher kernels

 Given a generative data model 

 Represent data x in X by means of the gradient of the data log-likelihood, or 
“Fisher score”:

 Define a kernel over X by taking the scaled inner product between the Fisher 
score vectors: 

 Where F is the Fisher information matrix F:

 F is positive definite since

g(x)=∇ θ ln p(x) ,
g(x)∈RD

p(x ;θ) , x∈X , θ∈RD

k (x , y)=g(x)T F−1 g( y)

F=Ep (x ) [g(x)g(x)
T ]

α
T Fα=Ep (x) [(g(x)

T
α)

2 ]>0



Fisher kernels

 The Fisher score has zero mean under the generative model

 Therefore, the Fisher information matrix is the covariance matrix of the Fisher 
score under the generative model

E p(x)[g(x)]=∫x p (x)
∂
∂θ

ln p(x)

=∫x p (x)
1
p(x)

∂
∂θ

p (x)

=∫x
∂
∂θ

p (x)

= ∂
∂θ∫x p (x)

= ∂
∂θ

1

=0

F=Ep (x ) [g(x)g(x)
T ]



Fisher vector

 Since F is positive definite we can decompose its inverse as 

 Therefore, we can write the kernel as 

► Where phi is known as the Fisher vector

 From this explicit finite-dimensional data embedding it follows immediately 
that the Fisher kernel is a positive-semidefinite 

 Since F is covariance of Fisher score, normalization by L makes the Fisher 
vector have unit covariance matrix under p(x)

F−1
=LT L

ϕ (xi)=L g(xi)

k (xi , x j)=g(xi)
T F−1g(x j)=ϕ (xi)

T
ϕ (x j)



Normalization with inverse Fisher information matrix

 Gradient of log-likelihood w.r.t. parameters

 Fisher information matrix 

 Normalized Fisher kernel 
► Renders Fisher kernel invariant for parametrization 

 Consider different parametrization given by some invertible function 

 Jacobian matrix relating the parametrizations

 Gradient of log-likelihood w.r.t. new parameters

 Fisher information matrix 

 Normalized Fisher kernel 

Fθ=∫ g(x)g(x)
T p(x)dx

λ= f (θ)

g(x)=∇ θ ln p(x)

k (x1, x2)=g(x1)
T Fθ

−1 g(x2)

[J ]ij=
∂θ j
∂ λi

h(x)=∇ λ ln p(x)=J∇θ ln p(x)=J g(x)

h(x1)
T Fλ

−1h(x2)=g(x1)
T JT (JFθ J

T
)
−1 J g(x2)

Fλ=∫ h(x)h(x)
T p(x)dx=J F θJ

T

=g(x1)
T J T J−T F θ

−1 J−1 J g(x2)

=g(x1)
T F θ

−1 g(x2)

=k (x1, x2)



Fisher kernels: example with Gaussian data model

 Let lambda be the inverse variance, i.e. precision, parameter

 The partial derivatives are found to be

p(x)=N (x ;μ ,λ)=√λ /(2π)exp [−1
2
λ(x−μ)2]

θ=(μ ,λ)T

ln p(x)=
1
2

lnλ−
1
2

ln (2π)−
1
2
λ(x−μ)2

∂ ln p(x)
∂μ

=λ(x−μ)
∂ ln p (x)
∂λ

=
1
2
[λ−1

−(x−μ)2 ]



Fisher kernels: example with Gaussian data model

 Now suppose an i.i.d. data model over a set of data points

 Then the Fisher vector is given by the sum of Fisher vectors of the points
► Encodes the discrepancy in the first and second order moment of the data 

w.r.t. those of the model

► Where

p(x)=N (x ;μ ,λ)=√λ /(2π)exp [−1
2
λ(x−μ)2]

p(X)=p(x1,. .. , xN)=∏i=1

N
p(xi)

ϕ (X )=∑i=1

N
ϕ (xi)=N (

(μ̂−μ)/σ

(σ
2
−σ̂

2 )/ (σ2√2 ))

μ̂=
1
N∑i=1

N
xi σ̂

2
=
1
N
∑i=1

N
(xi−μ)

2



Fisher kernels – relation to generative classification

 Suppose we make use of generative model for classification via Bayes' rule
► Where x is the data to be classified, and y is the discrete class label

and

 Classification with the Fisher kernel obtained using the marginal distribution 
p(x) is at least as powerful as classification with Bayes' rule.

 This becomes useful when the class conditional models are poorly estimated, 
either due to bias or variance type of errors.

 In practice often used without class-conditional models, but direct generative 
model for the marginal distribution on X.

p( y∣x)= p( x∣y) p( y)/ p( x) ,

p( x)=∑k=1

K
p( y=k ) p(x∣y=k )

p( x∣y)= p(x ;θy) ,

p( y=k )=πk=
exp(αk )

∑k '=1

K
exp(αk ' )



Fisher kernels – relation to generative classification

 Consider the Fisher score vector with respect to the marginal distribution on X

 In particular for the alpha that model the class prior probabilities we have

∇θ ln p(x)=
1
p( x)

∇θ∑k=1

K
p(x , y=k )

=
1
p( x)
∑k=1

K
p( x , y=k )∇θ ln p(x , y=k )

=∑k=1

K
p( y=k∣x) [∇θ ln p( y=k )+∇θ ln p(x∣y=k ) ]

∂ ln p( x)
∂αk

= p( y=k∣x)−πk



Fisher kernels – relation to generative classification

 First K elements in Fisher score given by class posteriors minus a constant

 Consider discriminative multi-class classifier, for the k-th class
► Let the weight vector be zero, except for the k-th position where it is one 
► Let the bias term be equal to the prior probability of that class 

 Then

and thus

 Thus the Fisher kernel based classifier can implement classification via 
Bayes' rule, and generalizes it to other classification functions.

f k ( x)=wk
T g ( x)+bk= p( y=k∣x)

g(x)=∇ θ ln p(x)=( p( y=1∣x)−π1,... , p( y=K∣x)−πK , ... )

argmaxk f k (x)=argmax k p( y=k∣x)



Application in visual object recognition

 A number of challenging factors

 Intra-class appearance variation 
► Category contains many instances
► Objects deformation due to pose
► Sub-categories: boat = ferry + yacht +...

 Scene composition 
► Heavy occlusions: e.g. tables and chairs
► Clutter: coincidental image content present

 Imaging conditions 
► viewpoint, scale, illumination



Representing images as “bags of features”

 Global rigid representation likely to be affected by nuisance factors such as 
deformation, (self-)occlusion, clutter, etc.

 Instead consider local image regions, or “patches”, on which some 
representation is computed that is (partially) invariant to imaging conditions 
such as viewpoint, illumination, scale, etc.
► Local patterns more likely to be preserved, or at least some of them

 Patch extraction and description stage
► Patch sampling from image on dense multi-scale grid, or interest points
► Descriptor computation: SIFT, HOG, LBP, color names, …

 Set of local descriptors characterizes the image (or video, or speech, or ...)

 Feature aggregation stage
► Global image signature computed 
► Can be classified or used for matching

 See [Sivic & Zisseman, ICCV’03]



Local descriptor based image representations

 SIFT patch description most popular
► 4x4 spatial grid
► 8 bin orientation histogram

[Lowe, IJCV 2004]

 Coding stage: embed local descriptors, typically in higher dimensional space
► For example: 1-hot coding of the index of the nearest cluster center

 Pooling stage: aggregate per-patch embeddings
► For example: sum pooling

Φ(X )=∑i=1

N
ϕ (xi)

X={x1, ... , xN }

ϕ (xi)



The “bag of visual words” representation

 Offline k-means clustering of many descriptors from many training images

 Encoding a new image:

– Compute local descriptors, assign to cluster
– Count histogram of descriptors in each cluster

 Sum pooling of “1-hot encoding” of local descriptors

[5, 2, 3] [3, 6, 1]

ϕ (xi)=[0,. .. ,0,1,0, ... ,0] h=∑i
ϕ (xi)



Examples of clusters of local image descriptors

Airplanes

Motorbikes

Faces

Wild Cats

Leafs

People

Bikes



Application of FV for bag-of-words image-representation

 Bag of word (BoW) representation
► Map every descriptor to a cluster / visual word index 

 Model visual word indices with i.i.d. multinomial 

► Likelihood of N i.i.d. indices:

► Fisher vector given by gradient
 i.e. BoW histogram + constant

p(wi=k )=
expαk

∑k '
expαk '

=πk

∂ ln p(w1:N )

∂αk
=∑i=1

N ∂ ln p(w i)

∂αk
=hk−N πk

wi∈{1, ... , K }

p(w1 :N)=∏i=1

N
p(wi)
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Fisher vector GMM representation: Motivation 

• Suppose we want to refine a given visual vocabulary to obtain a 
richer image representation

• Bag-of-word histogram stores # patches assigned to each word
– Need more words to refine the representation
– But this directly increases the computational cost
– And leads to many empty bins: redundancy

0
0

2

0

0
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Fisher vector representation in a nutshell

• Instead, the Fisher Vector for GMM also records the mean and 
variance of the points per dimension in each cell

– More information for same # visual words 
– Does not increase computational time significantly 
– Leads to high-dimensional feature vectors

 Even when the counts are the same,

 the position and variance of the points in the cell can vary



Application of FV for Gaussian mixture model of local features

 Gaussian mixture models for local image descriptors
[Perronnin & Dance, CVPR 2007]

► State-of-the-art feature pooling for image/video classification/retrieval

 Offline: Train k-component GMM on collection of local features

 Each mixture component corresponds to a visual word
► Parameters of each component: mean, variance, mixing weight
► We use diagonal covariance matrix for simplicity

 Coordinates assumed independent, locally per Gaussian

p(x)=∑k=1

K
πkN (x ;μk ,σk)



Application of FV for Gaussian mixture model of local features

 Model local image features with Gaussian mixture model

 Fisher vector representation: gradient of log-likelihood 
► For the means and variances we have:

► Soft-assignments given by component posteriors

F−1/2∇μk
ln p(x1 :N)=

1
√πk
∑n=1

N
p(k∣xn)

(xn−μk)
σk

F−1/2∇σ k
ln p(x1 :N)=

1

√2πk
∑n=1

N

p(k∣xn){(xn−μk)
2

σk
2 −1}

p(k∣xn)=
πkN (xn;μk ,σk)

p(xn)

p(x)=∑k=1

K
πkN (x ;μk ,σk)



Image representation using Fisher kernels

 Data representation

 In total K(1+2D) dimensional representation, since for each visual 
word / Gaussian we have
► Mixing weight (1 scalar)
► Mean (D dimensions)
► Variances (D dimensions, since single variance per dimension)

 Gradient with respect to mixing weights often dropped in practice 
since it adds little discriminative information for classification.
► Results in 2KD dimensional image descriptor

G(X ,Θ)=F−1/2( ∂ L∂α1 , ... ,
∂ L
∂αK

, ∇μ1
L, ... ,∇μK

L , ∇σ 1
L, ... , ∇σK

L )
T



Illustration of gradient w.r.t. means of Gaussians



BoW and FV from a function approximation viewpoint

 Let us consider uni-dimensional descriptors: vocabulary 
quantizes real line

 For both BoW and FV the representation of an image is 
obtained by sum-pooling the representations of descriptors.
► Ensemble of descriptors sampled in an image
► Representation of single descriptor

 One-of-k encoding for BoW
 For FV concatenate per-visual word gradients of form

 Linear function of sum-pooled descriptor encodings is a sum 
of linear functions of individual descriptor encodings:

Φ(X )=∑i=1

N
ϕ (xi)

X={x1, ... , xN }

ϕ (xi)=[0,. .. ,0,1,0, ... ,0]

ϕ (xi)=(... , p(k∣xi)[1 (xi−μk)
σk

(xi−μk)
2
−σk

2

σk
2 ] , ...)

wTΦ(X )=∑i=1

N
wT ϕ (xi)



From a function approximation viewpoint

 Consider the score of a single descriptor for BoW
► If assigned to k-th visual word then 
► Thus: constant score for all descriptors assigned to a visual word

wTϕ (x i)=wk

Each cell corresponds to a visual word



From a function approximation viewpoint

 Consider the same for FV, and assume soft-assignment is “hard”
► Thus: assume for one value of k we have 
► If assigned to the k-th visual word:

 Note that        is no longer a scalar but a vector
► Thus: score is a second-order polynomial of the descriptor x, for 

descriptors assigned to a given visual word.

wT ϕ (x i)=wk
T [1 (xi−μk)

σk

(xi−μk)
2
−σk

2

σk
2 ]

p(k∣xi)≈1

wk



From a function approximation viewpoint

 Consider that we want to approximate a true classification function 
(green) based on either BoW (blue) or FV (red) representation
► Weights for BoW and FV representation fitted by least squares to 

optimally match the target function

 Better approximation with FV 
► Local second order approximation, instead of local zero-order
► Smooth transition from one visual word to the next



Fisher vectors: classification performance VOC'07
 Yearly evaluation from 2005 to 2012 for image classification 



Fisher vectors: classification performance VOC'07

• Fisher vector representation yields better performance for a 
given number of Gaussians / visual words than Bag-of-words.

• For a fixed dimensionality Fisher vectors perform better, and are 
more efficient to compute



PCA dimension reduction of local descriptors

 We use diagonal covariance model

 Dimensions might be correlated

 Apply PCA projection to
► De-correlate features
► Reduce dimension of final FV

 FV with 256 Gaussians over local 

SIFT descriptors of dimension 128

Results on PASCAL VOC’07:



Normalization of the Fisher vector

 Inverse Fisher information matrix F
► Renders FV invariant for re-parametrization
► Linear projection, analytical approximation for MoG gives diagonal matrix

[Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

 Power-normalization, applied independently per dimension
► Renders Fisher vector less sparse

[Perronnin, Sanchez, Mensink, ECCV'10]
► Corrects for poor independence assumption on local descriptors

[Cinbis, Verbeek, Schmid, PAMI'15]

 L2-normalization
► Makes representation invariant to number of local features
► Among other Lp norms the most effective with linear classifier

[Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

F=E[g (x)g(x)T ]
f (x)=F−1/2g(x)

f (x)← sign(f (x ))|f (x)|
ρ

0<ρ<1

f (x)←
f (x)

√ f (x)T f (x)



Effect of power and L2 normalization in practice

 Classification results on the PASCAL VOC 2007 benchmark dataset.

 Regular dense sampling of local SIFT descriptors in the image
► PCA projected to 64 dimensions to de-correlate and compress

 Using mixture of 256 Gaussians over the SIFT descriptors
► FV dimensionality: 2*64*256 = 32 * 1024

Power 
Nomalization

L2 
normalization

Performance 
(mAP)

Improvement 
over baseline

No No 51.5 0

Yes No 59.8 8.3

No Yes 57.3 5.8

Yes Yes 61.8 10.3



Can you guess what is behind the masked area ?

 Obviously yes, since image regions are far from i.i.d.

 Yet Bag-of-word and GMM Fisher Vector representations assumes i.i.d. data

[Cinbis, Verbeek, Schmid, PAMI 2015]



What's wrong with iid image representations ?

 Linear classification with BoW histograms: 
► Each occurrence of a visual word index leads to same score increment
► Fisher vector over MoG: similar linear score change as in BoW model
► Classification score proportional to object size !

 Retrieval
► Distances of form d(x,y) = f( x-y ) do not discount for small changes in 

large values: | 150 – 160 |  =   10  =  | 1 - 11 |
► Dot product scoring is linear given the query image, just like the linear 

classifier case

f (h+ Δ)=wT (h+ Δ )=wT h+ wT Δ



“Tricks” to improve BoW image representation 
 Discounting of small changes in large values, limiting influence of burstiness 

► Chi-square distance between vectors

► Hellinger distance: element-wise square-rooting
(Fisher Vector power normalization)

                L2        Hellinger           Chi-square

d ( x , y)=
1
2
(x− y )2

x+ y

d ( x , y)=(√ x−√ y)
2



But how about Fisher vectors of non-iid models ?

 Standard BoW: Single universal multinomial governs all images
► Sample patches iid from the universal multinomial model

 Compound Dirichlet–multinomial model (a.k.a. Multivariate Pólya 
distribution) assumes there is a latent multinomial per image 
► First, sample a multinomial image model from Dirichlet prior 
► Then, sample each word iid from multinomial image model 
► New hyper-parameter alpha

► Latent multinomial generates full dependency across patches in an image

p(π)=Dir (α)
p(w=k∣π)=πk

p(w1: n)=∫ p(π)∏i=1

n
p(w i∣π)



Latent multinomial generates full dependency across patches

 After we observe many patches of road, sky, bike, …. 

 We infer that multinomial is likely to assign high likelihood to such patches

 Therefore, we expect to see even more such patches in the rest of the 
image

p (wn+ 1∣w1:n)=∫ p (π∣w1:n) p(wn∣π)



Fisher vector non-iid model

 Compound Dirichlet–multinomial model (a.k.a. Multivariate Pólya distribution) 

 Gradient given by di-gamma function of word counts n
k
 + parameter alpha

p(w1:n)=∫ p(π)∏i=1

n
p(w i∣π)

p(π)=Dir (α)
p(wi=k∣π)=πk

∂ ln p(w1 : n)

∂αk
=ψ(αk+nk)+const .



Gradient: transformations on counts

 Small alpha > sparse Dirichlet prior > monotone concave, like sqrt

 Large alpha > dense Dirichlet prior  > linear, like BoW histogram

ψ(α+ nk)

nk



Fisher vector Gaussian mixture model

 Fisher vectors for Mixture of Gaussians (MoG) [Perronnin & Dance, CVPR'07]

► Gaussian over feature space per visual word
► Local (SIFT) descriptors are iid draws from “universal” MoG
► State-of-the-art representation for image categorization (+sqrt transform)

 Gradient of log-likelihood of descriptors in image
► High-dimensional image descriptor: K(2D+1)

∂ L
∂μk

=hk Σk
−1
(μk−μ̃k )

∂ L

∂Σk
−1
=hk

1
2
(Σk−Σ̃k )

p (x )=∑k
p (w=k ) p (x∣w=k )=∑k

πk N ( x ;μk ,Σk)

p (x1:n)=∏i
p (x i)

∂ L
∂αk

=hk−πk

μ̃k=
1
n∑i

p(w=k∣xi) xi



Latent mixture of Gaussian (MoG) model

 To remove iid assumption we proceed as before: 
► Treat image-specific MoG model as latent variable  
► Put priors on: mixing weights, variances, and means:

 Generative process per image
► Sample MoG parameters from prior distributions
► Sample descriptors iid from image-specific MoG

p( x1: n)=∫ p (π ,μ ,λ)∏i=1

n
p (xi∣π ,μ ,λ)

p( xi∣π ,μ ,λ)=∑k
πk N (x i∣μk ,λk

−1
)

p(π)=Dir (π∣α)
p (λ)=Gam(λ∣a ,b)

p(μ∣λ)=N (μ∣μ0,(βλ)
−1
)



Latent mixture of Gaussian model

 For this model computation of likelihood and its gradient are intractable

 Learning is done using a Variational EM algorithm 
► based on optimizing variational free-energy bound on the log-likelihood

 Constraining distribution q to have a certain independence structure both 
steps of EM algorithm become tractable 

 Use the gradient of the bound as an approximate Fisher Vector
► In general, if bound is tight, then the exact Fisher vector is recovered
► Generates similar discounting effects as observed for latent BoW model

 Eg, for mixing weights same di-gamma function, now applied to soft-counts

V=log p (x1: n)−DKL(q(w1: n ,π ,λ ,μ)∥p(w1: n ,π ,λ ,μ∣x1 :n))

=H (q)+ E q ⟦log p( x1 :n , w1 :n ,π ,λ ,μ)⟧

q (w1 :n ,π ,λ ,μ)=q (w1 :n)q(π ,λ ,μ)



Experimental evaluation on image categorization task

 Data set: PASCAL VOC 2007
► Images labeled for presence of 20 object categories

 Airplane, bicycle, boat, bus, car, cat, cow, dog, horse, motorbike, person, …
► 5000 images to train models, and 5000 images used for evaluation

 Performance measured in mean Average Precision over the 20 classes

 SIFT descriptors computed over dense multi-scale grid, PCA to 80 dim

 To incorporate spatial layout image representations computed over 
► Complete image, 4 quadrants, 3 horizontal bands



Evaluation Bag-of-word models

 Comparing linear classifiers based on
► BoW histogram, sqrt of BoW histogram, latent BoW model Fisher Vector
► Varying vocabulary size, and use of spatial pyramid (SPM)

 Latent BoW model and sqrt tansform lead to comparable improvement 



Evaluation Latent mixture of Gaussians model

 Comparing linear classifiers based on
► Fisher Vector of MoG model, sqrt of MoG FV, Latent MoG model FV  
► Varying vocabulary size, and use of spatial pyramid (SPM)

 Latent MoG model and sqrt transform lead to comparable improvement 

 Non-iid models explain effectiveness of FV power normalization
► But computationally power normalization is much cheaper



Example applications: Fine-grained classification

 Winning INRIA+Xerox system at FGComp’13:
http://sites.google.com/site/fgcomp2013
► multiple low-level descriptors: SIFT, color, etc.
► Fisher Vector embedding

[Gosselin, Murray, Jégou, Perronnin, “Revisiting the Fisher vector for fine-
grained classification”, PRL’14.]

 Many other successful uses of FVs for fine-grained recognition
► Rodriguez and Larlus, “Predicting an object location using a global image 

representation”, ICCV’13.
► Gavves, Fernando, Snoek, Smeulders, Tuytelaars, “Fine-Grained 

Categorization by Alignments”, ICCV’13
► Murray, Perronnin, “Generalized Max Pooling”, CVPR’14.

ai r cr af t  ( 100) bi r ds ( 83) car s ( 196) dogs ( 120) shoes ( 70)



Example applications: object localization

 ImageNet’13 detection: http://www.image-net.org/challenges/LSVRC/2013/

 Winning system by University of Amsterdam 
► region proposals with selective search
► Fisher Vector embedding
► Fast Local Area Independent Representation (FLAIR)

Van de Sande, Snoek, Smeulders, “Fisher and VLAD with FLAIR”, 
CVPR’14.



Example applications: face verification

 Face track description:
► track face
► extract SIFT descriptors
► encode using Fisher vectors
► pool at face track level

Parkhi, Simonyan, Veldaldi, Zisserman, “A compact and discriminative 
face track descriptor”, CVPR’14.

 New state-of-the-art results on the YouTube faces dataset



Example: action recognition and localization

 THUMOS action recognition challenge 2013 & 2014

http://crcv.ucf.edu/ICCV13-Action-Workshop

 Winning systems by INRIA-LEAR
► improved dense trajectory video features
► Fisher Vector embedding

Wang, Oneata, Verbeek and Schmid, “A robust and efficient video 
representation for action recognition”, IJCV’15.
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